SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Heyting C) "

Search: WFRF:(Heyting C)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • de Boer, E, et al. (author)
  • Meiotic interference among MLH1 foci requires neither an intact axial element structure nor full synapsis
  • 2007
  • In: Journal of cell science. - : The Company of Biologists. - 0021-9533 .- 1477-9137. ; 120:5Pt 5, s. 731-736
  • Journal article (peer-reviewed)abstract
    • During meiosis, homologous chromosomes (homologs) perform reciprocal exchanges (crossovers) at a high frequency. Crossovers display interference, i.e. their spacing is more even than would be expected if they were placed randomly along the chromosomes. Concomitantly with crossover formation, synaptonemal complexes (SCs) appear between homologs: each chromosome forms an axial structure, the axial element (AE); the AEs of homologs align, and numerous transverse filaments connect the AEs to form an SC. Both the AE and the SC have been implicated in the imposition of interference. We investigated whether intact AEs or SCs are required for crossover interference in the mouse, using a mutant lacking AE protein SYCP3, which displays structurally abnormal AEs and incomplete synapsis. We estimated the level of interference from the spacing of immunofluorescent MLH1 foci, which mark almost all crossover sites in the mouse, along the SCs. The levels of interference among MLH1 foci in wild-type and Sycp3–/– mice were comparable, implying that neither an intact AE structure nor full synapsis is required for wild-type levels of interference.
  •  
2.
  •  
3.
  • de Vries, FAT, et al. (author)
  • Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation
  • 2005
  • In: Genes & development. - : Cold Spring Harbor Laboratory. - 0890-9369 .- 1549-5477. ; 19:11, s. 1376-1389
  • Journal article (peer-reviewed)abstract
    • In meiotic prophase, synaptonemal complexes (SCs) closely appose homologous chromosomes (homologs) along their length. SCs are assembled from two axial elements (AEs), one along each homolog, which are connected by numerous transverse filaments (TFs). We disrupted the mouse gene encoding TF protein Sycp1 to analyze the role of TFs in meiotic chromosome behavior and recombination. Sycp1-/- mice are infertile, but otherwise healthy. Sycp1-/- spermatocytes form normal AEs, which align homologously, but do not synapse. Most Sycp1-/- spermatocytes arrest in pachynema, whereas a small proportion reaches diplonema, or, exceptionally, metaphase I. In leptotene Sycp1-/- spermatocytes, γH2AX (indicative of DNA damage, including double-strand breaks) appears normal. In pachynema, Sycp1-/- spermatocytes display a number of discrete γH2AX domains along each chromosome, whereas γH2AX disappears from autosomes in wild-type spermatocytes. RAD51/DMC1, RPA, and MSH4 foci (which mark early and intermediate steps in pairing/recombination) appear in similar numbers as in wild type, but do not all disappear, and MLH1 and MLH3 foci (which mark late steps in crossing over) are not formed. Crossovers were rare in metaphase I of Sycp1-/- mice. We propose that SYCP1 has a coordinating role, and ensures formation of crossovers. Unexpectedly, Sycp1-/- spermatocytes did not form XY bodies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view