SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hoffmann Linn) "

Search: WFRF:(Hoffmann Linn)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Breitbarth, Eike, et al. (author)
  • Dissolved iron (II) in the Baltic Sea surface water and implications for cyanobacterial bloom development
  • 2009
  • In: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 6:Special issue, s. 2397-2420
  • Journal article (peer-reviewed)abstract
    • Iron chemistry measurements were conducted during summer 2007 at two distinct locations in the Baltic Sea (Gotland Deep and Landsort Deep) to evaluate the role of iron for cyanobacterial bloom development in these estuarine waters. Depth profiles of Fe(II) were measured by chemiluminescent flow injection analysis (CL-FIA). Up to 0.9 nmol Fe(II) L−1 were detected in light penetrated surface waters, which constitutes up to 20% to the dissolved Fe pool. This bioavailable iron source is a major contributor to the Fe requirements of Baltic Sea phytoplankton and apparently plays a major role for cyanobacterial bloom development during our study. Measured Fe(II) half life times in oxygenated water exceed predicted values and indicate organic Fe(II) complexation. Potential sources for Fe(II) ligands, including rainwater, are discussed. Fe(II) concentrations of up to 1.44 nmol L−1 were detected at water depths below the euphotic zone, but above the oxic anoxic interface. Mixed layer depths after strong wind events are not deep enough in summer time to penetrate the oxic-anoxic boundary layer. However, Fe(II) from anoxic bottom water may enter the sub-oxic zone via diapycnal mixing and diffusion.
  •  
2.
  • Duggen, S., et al. (author)
  • The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review
  • 2010
  • In: BIOGEOSCIENCES. - 1726-4170. ; 7:3, s. 827-844
  • Research review (peer-reviewed)abstract
    • Iron is a key micronutrient for phytoplankton growth in the surface ocean. Yet the significance of volcanism for the marine biogeochemical iron-cycle is poorly constrained. Recent studies, however, suggest that offshore deposition of airborne ash from volcanic eruptions is a way to inject significant amounts of bio-available iron into the surface ocean. Volcanic ash may be transported up to several tens of kilometers high into the atmosphere during large-scale eruptions and fine ash may stay aloft for days to weeks, thereby reaching even the remotest and most iron-starved oceanic regions. Scientific ocean drilling demonstrates that volcanic ash layers and dispersed ash particles are frequently found in marine sediments and that therefore volcanic ash deposition and iron-injection into the oceans took place throughout much of the Earth's history. Natural evidence and the data now available from geochemical and biological experiments and satellite techniques suggest that volcanic ash is a so far underestimated source for iron in the surface ocean, possibly of similar importance as aeolian dust. Here we summarise the development of and the knowledge in this fairly young research field. The paper covers a wide range of chemical and biological issues and we make recommendations for future directions in these areas. The review paper may thus be helpful to improve our understanding of the role of volcanic ash for the marine biogeochemical iron-cycle, marine primary productivity and the ocean-atmosphere exchange of CO(2) and other gases relevant for climate in the Earth's history.
  •  
3.
  •  
4.
  • Hopwood, Mark J., et al. (author)
  • Fe(II) stability in coastal seawater during experiments in Patagonia, Svalbard, and Gran Canaria
  • 2020
  • In: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 17, s. 1327-1342
  • Journal article (peer-reviewed)abstract
    • © Author(s) 2020. The speciation of dissolved iron (DFe) in the ocean is widely assumed to consist almost exclusively of Fe(III)-ligand complexes. Yet in most aqueous environments a poorly defined fraction of DFe also exists as Fe(II), the speciation of which is uncertain. Here we deploy flow injection analysis to measure in situ Fe(II) concentrations during a series of mesocosm/microcosm/multistressor experiments in coastal environments in addition to the decay rate of this Fe(II) when moved into the dark. During five mesocosm/microcosm/multistressor experiments in Svalbard and Patagonia, where dissolved (0.2 μ m) Fe and Fe(II) were quantified simultaneously, Fe(II) constituted 24 %-65 % of DFe, suggesting that Fe(II) was a large fraction of the DFe pool. When this Fe(II) was allowed to decay in the dark, the vast majority of measured oxidation rate constants were less than calculated constants derived from ambient temperature, salinity, pH, and dissolved O2. The oxidation rates of Fe(II) spikes added to Atlantic seawater more closely matched calculated rate constants. The difference between observed and theoretical decay rates in Svalbard and Patagonia was most pronounced at Fe(II) concentrations < 2 nM, suggesting that the effect may have arisen from organic Fe(II) ligands. This apparent enhancement of Fe(II) stability under post-bloom conditions and the existence of such a high fraction of DFe as Fe(II) challenge the assumption that DFe speciation in coastal seawater is dominated by ligand boundFe(III) species.
  •  
5.
  • Jensen, Christian Fuglesang S., et al. (author)
  • Results from the first autologous grafting of adult human testis tissue : A case report
  • 2024
  • In: Human Reproduction. - 0268-1161. ; 39:2, s. 303-309
  • Journal article (peer-reviewed)abstract
    • Fertility restoration using autologous testicular tissue transplantation is relevant for infertile men surviving from childhood cancer and, possibly, in men with absent or incomplete spermatogenesis resulting in the lack of spermatozoa in the ejaculate (non-obstructive azoospermia, NOA). Currently, testicular tissue from pre-pubertal boys extracted before treatment with gonadotoxic cancer therapy can be cryopreserved with good survival of spermatogonial stem cells. However, strategies for fertility restoration, after successful cancer treatment, are still experimental and no clinical methods have yet been developed. Similarly, no clinically available treatments can help men with NOA to become biological fathers after failed attempts of testicular surgical sperm retrieval. We present a case of a 31-year-old man with NOA who had three pieces of testis tissue (each ∼2 × 4 × 2 mm3) extracted and cryopreserved in relation to performing microdissection testicular sperm extraction (mTESE). Approximately 2 years after mTESE, the thawed tissue pieces were engrafted in surgically created pockets bilaterally under the scrotal skin. Follow-up was performed after 2, 4, and 6 months with assessment of reproductive hormones and ultrasound of the scrotum. After 6 months, all engrafted tissue was extracted and microscopically analyzed for the presence of spermatozoa. Furthermore, parts of the extracted tissue were analyzed histologically and by immunohistochemical analysis. Active blood flow in the engrafted tissue was demonstrated by doppler ultrasound after 6 months. No spermatozoa were found in the extracted tissue. Histological and immunohistochemical analysis demonstrated graft survival with intact clear tubules and normal cell organization. Sertoli cells and spermatocytes with normal morphology were located near the basement membrane. MAGE-A and VASA positive spermatogonia/spermatocytes were detected together with SOX9 positive Sertoli cells. Spermatocytes and/or Sertoli cells positive for γH2AX was also detected. In summary, following autologous grafting of frozen-thawed testis tissue under the scrotal skin in a man with NOA, we demonstrated graft survival after 6 months. No mature spermatozoa were detected; however, this is likely due to the pre-existing spermatogenic failure.
  •  
6.
  • Aad, G, et al. (author)
  • 2015
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view