SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Horton Tammy) "

Search: WFRF:(Horton Tammy)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bribiesca-Contreras, Guadalupe, et al. (author)
  • Biogeography and Connectivity Across Habitat Types and Geographical Scales in Pacific Abyssal Scavenging Amphipods
  • 2021
  • In: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 8
  • Journal article (peer-reviewed)abstract
    • Recently, there has been a resurgent interest in the exploration of deep-sea mineral deposits, particularly polymetallic nodules in the Clarion-Clipperton Zone (CCZ), central Pacific. Accurate environmental impact assessment is critical to the effective management of a new industry and depends on a sound understanding of species taxonomy, biogeography, and connectivity across a range of scales. Connectivity is a particularly important parameter in determining ecosystem resilience, as it helps to define the ability of a system to recover post-impact. Scavenging amphipods in the superfamilies Alicelloidea Lowry and De Broyer, 2008 and Lysianassoidea Dana, 1849 contribute to a unique and abundant scavenging community in abyssal ecosystems. They are relatively easy to sample and in recent years have become the target of several molecular and taxonomic studies, but are poorly studied in the CCZ. Here, a molecular approach is used to identify and delimit species, and to investigate evolutionary relationships of scavenging amphipods from both abyssal plain and deep (>3000 m) seamount habitats in three APEIs (Areas of Particular Environmental Interest, i.e., designated conservation areas) in the western CCZ. A total of 17 different morphospecies of scavenging amphipods were identified, which include at least 30 genetic species delimited by a fragment of the cytochrome c oxidase subunit I (COI) barcode gene. The scavenging communities sampled in the western CCZ included the most common species (Abyssorchomene gerulicorbis (Shulenberger and Barnard, 1976), A. chevreuxi (Stebbing, 1906), Paralicella caperesca Shulenberger and Barnard, 1976, and P. tenuipes Chevreux, 1908) reported for other ocean basins. Only four morphospecies, representing five genetic species, were shared between APEIs 1, 4, and 7. The two abyssal plain sites at APEIs 4 and 7 were dominated by two and three of the most common scavenging species, respectively, while the APEI 1 seamount site was dominated by two species potentially new to science that appeared to be endemic to the site. The presence of common species in all sites and high genetic diversity, yet little geographic structuring, indicate connectivity over evolutionary time scales between the areas, which span about 1500 km. Similar to recent studies, the differences in amphipod assemblages found between the seamount and abyssal sites suggest that ecological conditions on seamounts generate distinct community compositions.
  •  
2.
  • Horton, Tammy, et al. (author)
  • Improving nomenclatural consistency: a decade of experience in the World Register of Marine Species
  • 2017
  • In: European journal of taxonomy. - : Museum National D'Histoire Naturelle. - 2118-9773. ; 389, s. 1-24
  • Journal article (peer-reviewed)abstract
    • The World Register of Marine species (WoRMS) has been established for a decade. The early history of the database involved compilation of existing global and regional species registers. This aggregation, combined with changes to data types and the changing needs of WoRMS users, has resulted in an evolution of data-entry consistency over time. With the task of aggregating the accepted species names for all marine species approaching completion, our focus has shifted to improving the consistency and quality of data held while keeping pace with the addition of > 2000 new marine species described annually. This paper defines priorities and longer-term aims that promote standardisation within and interoperability among biodiversity databases, provides editors with further information on how to input nomenclatural data in a standardised way and clarifies for users of WoRMS how and why names are represented as they are. We 1) explain the categories of names included; 2) list standard reasons used to explain why a name is considered ‘unaccepted’ or ‘uncertain’; 3) present and explain the more difficult situations encountered; 4) describe categories of sources and notes linked to a taxon; and 5) recommend how type material, type locality and environmental information should be entered.
  •  
3.
  • Jones, Daniel O.B., et al. (author)
  • Environment, ecology, and potential effectiveness of an area protected from deep-sea mining (Clarion Clipperton Zone, abyssal Pacific)
  • 2021
  • In: Progress in Oceanography. - : Elsevier BV. - 0079-6611. ; 197:September-October 2021
  • Journal article (peer-reviewed)abstract
    • To protect the range of habitats, species, and ecosystem functions in the Clarion Clipperton Zone (CCZ), a region of interest for deep-sea polymetallic nodule mining in the Pacific, nine Areas of Particular Environmental Interest (APEIs) have been designated by the International Seabed Authority (ISA). The APEIs are remote, rarely visited and poorly understood. Here we present and synthesise all available observations made at APEI-6, the most north eastern APEI in the network, and assess its representativity of mining contract areas in the eastern CCZ. The two studied regions of APEI-6 have a variable morphology, typical of the CCZ, with hills, plains and occasional seamounts. The seafloor is predominantly covered by fine-grained sediments, and includes small but abundant polymetallic nodules, as well as exposed bedrock. The oceanographic parameters investigated appear broadly similar across the region although some differences in deep-water mass separation were evident between APEI-6 and some contract areas. Sediment biogeochemistry is broadly similar across the area in the parameters investigated, except for oxygen penetration depth, which reached >2 m at the study sites within APEI-6, deeper than that found at UK1 and GSR contract areas. The ecology of study sites in APEI-6 differs from that reported from UK1 and TOML-D contract areas, with differences in community composition of microbes, macrofauna, xenophyophores and metazoan megafauna. Some species were shared between areas although connectivity appears limited. We show that, from the available information, APEI-6 is partially representative of the exploration areas to the south yet is distinctly different in several key characteristics. As a result, additional APEIs may be warranted and caution may need to be taken in relying on the APEI network alone for conservation, with other management activities required to help mitigate the impacts of mining in the CCZ.
  •  
4.
  • Rabone, Muriel, et al. (author)
  • How many metazoan species live in the world’s largest mineral exploration region?
  • 2023
  • In: Current Biology. - 0960-9822 .- 1879-0445. ; 33:12
  • Journal article (peer-reviewed)abstract
    • The global surge in demand for metals such as cobalt and nickel has created unprecedented interest in deep- sea habitats with mineral resources. The largest area of activity is a 6 million km2 region known as the Clarion- Clipperton Zone (CCZ) in the central and eastern Pacific, regulated by the International Seabed Authority (ISA). Baseline biodiversity knowledge of the region is crucial to effective management of environmental impact from potential deep-sea mining activities, but until recently this has been almost completely lacking. The rapid growth in taxonomic outputs and data availability for the region over the last decade has allowed us to conduct the first comprehensive synthesis of CCZ benthic metazoan biodiversity for all faunal size classes. Here we present the CCZ Checklist, a biodiversity inventory of benthic metazoa vital to future assessments of environmental impacts. An estimated 92% of species identified from the CCZ are new to science (436 named species from a total of 5,578 recorded). This is likely to be an overestimate owing to synonyms in the data but is supported by analysis of recent taxonomic studies suggesting that 88% of species sampled in the region are undescribed. Species richness estimators place total CCZ metazoan benthic diversity at 6,233 (+/82 SE) species for Chao1, and 7,620 (+/132 SE) species for Chao2, most likely representing lower bounds of diver- sity in the region. Although uncertainty in estimates is high, regional syntheses become increasingly possible as comparable datasets accumulate. These will be vital to understanding ecological processes and risks of biodiversity loss.
  •  
5.
  • Simon-Lledó, Erik, et al. (author)
  • Carbonate compensation depth drives abyssal biogeography in the northeast Pacific.
  • 2023
  • In: Nature ecology & evolution. - 2397-334X. ; 7, s. 1388-97
  • Journal article (peer-reviewed)abstract
    • Abyssal seafloor communities cover more than 60% of Earth's surface. Despite their great size, abyssal plains extend across modest environmental gradients compared to other marine ecosystems. However, little is known about the patterns and processes regulating biodiversity or potentially delimiting biogeographical boundaries at regional scales in the abyss. Improved macroecological understanding of remote abyssal environments is urgent as threats of widespread anthropogenic disturbance grow in the deep ocean. Here, we use a new, basin-scale dataset to show the existence of clear regional zonation in abyssal communities across the 5,000km span of the Clarion-Clipperton Zone (northeast Pacific), an area targeted for deep-sea mining. We found two pronounced biogeographic provinces, deep and shallow-abyssal, separated by a transition zone between 4,300 and 4,800m depth. Surprisingly, species richness was maintained across this boundary by phylum-level taxonomic replacements. These regional transitions are probably related to calcium carbonate saturation boundaries as taxa dependent on calcium carbonate structures, such as shelled molluscs, appear restricted to the shallower province. Our results suggest geochemical and climatic forcing on distributions of abyssal populations over large spatial scales and provide a potential paradigm for deep-sea macroecology, opening a new basis for regional-scale biodiversity research and conservation strategies in Earth's largest biome.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view