SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Howard Rebecca J.) "

Search: WFRF:(Howard Rebecca J.)

  • Result 1-50 of 88
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • 2019
  • Journal article (peer-reviewed)
  •  
3.
  • Santangelo, James S., et al. (author)
  • Global urban environmental change drives adaptation in white clover
  • 2022
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 375
  • Journal article (peer-reviewed)abstract
    • Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural dines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale.
  •  
4.
  • Sampson, Joshua N., et al. (author)
  • Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for 13 Cancer Types
  • 2015
  • In: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 107:12
  • Journal article (peer-reviewed)abstract
    • Background: Studies of related individuals have consistently demonstrated notable familial aggregation of cancer. We aim to estimate the heritability and genetic correlation attributable to the additive effects of common single-nucleotide polymorphisms (SNPs) for cancer at 13 anatomical sites. Methods: Between 2007 and 2014, the US National Cancer Institute has generated data from genome-wide association studies (GWAS) for 49 492 cancer case patients and 34 131 control patients. We apply novel mixed model methodology (GCTA) to this GWAS data to estimate the heritability of individual cancers, as well as the proportion of heritability attributable to cigarette smoking in smoking-related cancers, and the genetic correlation between pairs of cancers. Results: GWAS heritability was statistically significant at nearly all sites, with the estimates of array-based heritability, h(l)(2), on the liability threshold (LT) scale ranging from 0.05 to 0.38. Estimating the combined heritability of multiple smoking characteristics, we calculate that at least 24% (95% confidence interval [CI] = 14% to 37%) and 7% (95% CI = 4% to 11%) of the heritability for lung and bladder cancer, respectively, can be attributed to genetic determinants of smoking. Most pairs of cancers studied did not show evidence of strong genetic correlation. We found only four pairs of cancers with marginally statistically significant correlations, specifically kidney and testes (rho = 0.73, SE = 0.28), diffuse large B-cell lymphoma (DLBCL) and pediatric osteosarcoma (rho = 0.53, SE = 0.21), DLBCL and chronic lymphocytic leukemia (CLL) (rho = 0.51, SE = 0.18), and bladder and lung (rho = 0.35, SE = 0.14). Correlation analysis also indicates that the genetic architecture of lung cancer differs between a smoking population of European ancestry and a nonsmoking Asian population, allowing for the possibility that the genetic etiology for the same disease can vary by population and environmental exposures. Conclusion: Our results provide important insights into the genetic architecture of cancers and suggest new avenues for investigation.
  •  
5.
  • Mahajan, Anubha, et al. (author)
  • Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
  • 2022
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:5, s. 560-572
  • Journal article (peer-reviewed)abstract
    • We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 x 10(-9)), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background. Genome-wide association and fine-mapping analyses in ancestrally diverse populations implicate candidate causal genes and mechanisms underlying type 2 diabetes. Trans-ancestry genetic risk scores enhance transferability across populations.
  •  
6.
  • Sodergren, Erica, et al. (author)
  • The genome of the sea urchin Strongylocentrotus purpuratus.
  • 2006
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 314:5801, s. 941-52
  • Journal article (peer-reviewed)abstract
    • We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes.
  •  
7.
  •  
8.
  • Su, Zhan, et al. (author)
  • Common variants at the MHC locus and at chromosome 16q24.1 predispose to Barrett's esophagus.
  • 2012
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:10
  • Journal article (peer-reviewed)abstract
    • Barrett's esophagus is an increasingly common disease that is strongly associated with reflux of stomach acid and usually a hiatus hernia, and it strongly predisposes to esophageal adenocarcinoma (EAC), a tumor with a very poor prognosis. We report the first genome-wide association study on Barrett's esophagus, comprising 1,852 UK cases and 5,172 UK controls in the discovery stage and 5,986 cases and 12,825 controls in the replication stage. Variants at two loci were associated with disease risk: chromosome 6p21, rs9257809 (Pcombined=4.09×10(-9); odds ratio (OR)=1.21, 95% confidence interval (CI)=1.13-1.28), within the major histocompatibility complex locus, and chromosome 16q24, rs9936833 (Pcombined=2.74×10(-10); OR=1.14, 95% CI=1.10-1.19), for which the closest protein-coding gene is FOXF1, which is implicated in esophageal development and structure. We found evidence that many common variants of small effect contribute to genetic susceptibility to Barrett's esophagus and that SNP alleles predisposing to obesity also increase risk for Barrett's esophagus.
  •  
9.
  • Wang, Zhaoming, et al. (author)
  • Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33
  • 2014
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:24, s. 6616-6633
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10(-39); Region 3: rs2853677, P = 3.30 × 10(-36) and PConditional = 2.36 × 10(-8); Region 4: rs2736098, P = 3.87 × 10(-12) and PConditional = 5.19 × 10(-6), Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10(-6); and Region 6: rs10069690, P = 7.49 × 10(-15) and PConditional = 5.35 × 10(-7)) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10(-18) and PConditional = 7.06 × 10(-16)). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci.
  •  
10.
  • Feng, Shaohong, et al. (author)
  • Dense sampling of bird diversity increases power of comparative genomics
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 587:7833
  • Journal article (peer-reviewed)abstract
    • Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity(1-4). Sparse taxon sampling has previously been proposed to confound phylogenetic inference(5), and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species. A dataset of the genomes of 363 species from the Bird 10,000 Genomes Project shows increased power to detect shared and lineage-specific variation, demonstrating the importance of phylogenetically diverse taxon sampling in whole-genome sequencing.
  •  
11.
  • Johnson, Toby, et al. (author)
  • Blood Pressure Loci Identified with a Gene-Centric Array.
  • 2011
  • In: American Journal of Human Genetics. - : Elsevier BV. - 1537-6605 .- 0002-9297. ; 89:6, s. 688-700
  • Journal article (peer-reviewed)abstract
    • Raised blood pressure (BP) is a major risk factor for cardiovascular disease. Previous studies have identified 47 distinct genetic variants robustly associated with BP, but collectively these explain only a few percent of the heritability for BP phenotypes. To find additional BP loci, we used a bespoke gene-centric array to genotype an independent discovery sample of 25,118 individuals that combined hypertensive case-control and general population samples. We followed up four SNPs associated with BP at our p < 8.56× 10(-7) study-specific significance threshold and six suggestively associated SNPs in a further 59,349 individuals. We identified and replicated a SNP at LSP1/TNNT3, a SNP at MTHFR-NPPB independent (r(2) = 0.33) of previous reports, and replicated SNPs at AGT and ATP2B1 reported previously. An analysis of combined discovery and follow-up data identified SNPs significantly associated with BP at p < 8.56× 10(-7) at four further loci (NPR3, HFE, NOS3, and SOX6). The high number of discoveries made with modest genotyping effort can be attributed to using a large-scale yet targeted genotyping array and to the development of a weighting scheme that maximized power when meta-analyzing results from samples ascertained with extreme phenotypes, in combination with results from nonascertained or population samples. Chromatin immunoprecipitation and transcript expression data highlight potential gene regulatory mechanisms at the MTHFR and NOS3 loci. These results provide candidates for further study to help dissect mechanisms affecting BP and highlight the utility of studying SNPs and samples that are independent of those studied previously even when the sample size is smaller than that in previous studies.
  •  
12.
  • Hou, Liping, et al. (author)
  • Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder.
  • 2016
  • In: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 25:15, s. 3383-94
  • Journal article (peer-reviewed)abstract
    • Bipolar disorder (BD) is a genetically complex mental illness characterized by severe oscillations of mood and behavior. Genome-wide association studies (GWAS) have identified several risk loci that together account for a small portion of the heritability. To identify additional risk loci, we performed a two-stage meta-analysis of >9 million genetic variants in 9,784 bipolar disorder patients and 30,471 controls, the largest GWAS of BD to date. In this study, to increase power we used ∼2,000 lithium-treated cases with a long-term diagnosis of BD from the Consortium on Lithium Genetics, excess controls, and analytic methods optimized for markers on the X-chromosome. In addition to four known loci, results revealed genome-wide significant associations at two novel loci: an intergenic region on 9p21.3 (rs12553324, p=5.87×10(-9); odds ratio=1.12) and markers within ERBB2 (rs2517959, p=4.53×10(-9); odds ratio=1.13). No significant X-chromosome associations were detected and X-linked markers explained very little BD heritability. The results add to a growing list of common autosomal variants involved in BD and illustrate the power of comparing well-characterized cases to an excess of controls in GWAS.
  •  
13.
  • Gould, Rebecca L., et al. (author)
  • Acceptance and Commitment Therapy plus usual care for improving quality of life in people with motor neuron disease (COMMEND) : a multicentre, parallel, randomised controlled trial in the UK
  • 2024
  • In: The Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 403:10442, s. 2381-2394
  • Journal article (peer-reviewed)abstract
    • Background: Motor neuron disease is a progressive, fatal neurodegenerative disease for which there is no cure. Acceptance and Commitment Therapy (ACT) is a psychological therapy incorporating acceptance, mindfulness, and behaviour change techniques. We aimed to evaluate the effectiveness of ACT plus usual care, compared with usual care alone, for improving quality of life in people with motor neuron disease.Methods: We conducted a parallel, multicentre, two -arm randomised controlled trial in 16 UK motor neuron disease care centres or clinics. Eligible participants were aged 18 years or older with a diagnosis of definite or laboratory -supported probable, clinically probable, or possible familial or sporadic amyotrophic lateral sclerosis; progressive muscular atrophy; or primary lateral sclerosis; which met the World Federation of Neurology's El Escorial diagnostic criteria. Participants were randomly assigned (1:1) to receive up to eight sessions of ACT adapted for people with motor neuron disease plus usual care or usual care alone by a web -based system, stratified by site. Participants were followed up at 6 months and 9 months post -randomisation. Outcome assessors and trial statisticians were masked to treatment allocation. The primary outcome was quality of life using the McGill Quality of Life Questionnaire -Revised (MQOL-R) at 6 months post -randomisation. Primary analyses were multi -level modelling and modified intention to treat among participants with available data. This trial was pre -registered with the ISRCTN Registry (ISRCTN12655391).Findings: Between Sept 18, 2019, and Aug 31, 2022, 435 people with motor neuron disease were approached for the study, of whom 206 (47%) were assessed for eligibility, and 191 were recruited. 97 (51%) participants were randomly assigned to ACT plus usual care and 94 (49%) were assigned to usual care alone. 80 (42%) of 191 participants were female and 111 (58%) were male, and the mean age was 63⋅1 years (SD 11⋅0). 155 (81%) participants had primary outcome data at 6 months post -randomisation. After controlling for baseline scores, age, sex, and therapist clustering, ACT plus usual care was superior to usual care alone for quality of life at 6 months (adjusted mean difference on the MQOL-R of 0⋅66 [95% CI 0⋅22-1⋅10]; d=0⋅46 [0⋅16-0⋅77]; p=0⋅0031). Moderate effect sizes were clinically meaningful. 75 adverse events were reported, 38 of which were serious, but no adverse events were deemed to be associated with the intervention.Interpretation: ACT plus usual care is clinically effective for maintaining or improving quality of life in people with motor neuron disease. As further evidence emerges confirming these findings, health-care providers should consider how access to ACT, adapted for the specific needs of people with motor neuron disease, could be provided within motor neuron disease clinical services.
  •  
14.
  • Gould, Rebecca L., et al. (author)
  • A randomised controlled trial of acceptance and commitment therapy plus usual care compared to usual care alone for improving psychological health in people with motor neuron disease (COMMEND) : study protocol
  • 2022
  • In: BMC Neurology. - : Springer Nature. - 1471-2377. ; 22
  • Journal article (peer-reviewed)abstract
    • Background: Motor neuron disease (MND) is a rapidly progressive, fatal neurodegenerative disease that predominantly affects motor neurons from the motor cortex to the spinal cord and causes progressive wasting and weakening of bulbar, limb, abdominal and thoracic muscles. Prognosis is poor and median survival is 2-3 years following symptom onset. Psychological distress is relatively common in people living with MND. However, formal psychotherapy is not routinely part of standard care within MND Care Centres/clinics in the UK, and clear evidence-based guidance on improving the psychological health of people living with MND is lacking. Previous research suggests that Acceptance and Commitment Therapy (ACT) may be particularly suitable for people living with MND and may help improve their psychological health.Aims: To assess the clinical and cost-effectiveness of ACT modified for MND plus usual multidisciplinary care (UC) in comparison to UC alone for improving psychological health in people living with MND.Methods: The COMMEND trial is a multi-centre, assessor-blind, parallel, two-arm RCT with a 10-month internal pilot phase. 188 individuals aged >= 18 years with a diagnosis of definite, laboratory-supported probable, clinically probable, or possible familial or sporadic amyotrophic lateral sclerosis, and additionally the progressive muscular atrophy and primary lateral sclerosis variants, will be recruited from approximately 14 UK-based MND Care Centres/clinics and via self-referral. Participants will be randomly allocated to receive up to eight 1:1 sessions of ACT plus UC or UC alone by an online randomisation system. Participants will complete outcome measures at baseline and at 6- and 9-months post-randomisation. The primary outcome will be quality of life at six months. Secondary outcomes will include depression, anxiety, psychological flexibility, health-related quality of life, adverse events, ALS functioning, survival at nine months, satisfaction with therapy, resource use and quality-adjusted life years. Primary analyses will be by intention to treat and data will be analysed using multi-level modelling.Discussion: This trial will provide definitive evidence on the clinical and cost-effectiveness of ACT plus UC in comparison to UC alone for improving psychological health in people living with MND.
  •  
15.
  • Kim, J. J., et al. (author)
  • Shared structural mechanisms of general anaesthetics and benzodiazepines
  • 2020
  • In: Nature. - : Nature Research. - 0028-0836 .- 1476-4687. ; 585:7824, s. 303-308
  • Journal article (peer-reviewed)abstract
    • Most general anaesthetics and classical benzodiazepine drugs act through positive modulation of γ-aminobutyric acid type A (GABAA) receptors to dampen neuronal activity in the brain1–5. However, direct structural information on the mechanisms of general anaesthetics at their physiological receptor sites is lacking. Here we present cryo-electron microscopy structures of GABAA receptors bound to intravenous anaesthetics, benzodiazepines and inhibitory modulators. These structures were solved in a lipidic environment and are complemented by electrophysiology and molecular dynamics simulations. Structures of GABAA receptors in complex with the anaesthetics phenobarbital, etomidate and propofol reveal both distinct and common transmembrane binding sites, which are shared in part by the benzodiazepine drug diazepam. Structures in which GABAA receptors are bound by benzodiazepine-site ligands identify an additional membrane binding site for diazepam and suggest an allosteric mechanism for anaesthetic reversal by flumazenil. This study provides a foundation for understanding how pharmacologically diverse and clinically essential drugs act through overlapping and distinct mechanisms to potentiate inhibitory signalling in the brain. 
  •  
16.
  • Abraham, Mark James, et al. (author)
  • Sharing Data from Molecular Simulations
  • 2019
  • In: Journal of Chemical Information and Modeling. - : AMER CHEMICAL SOC. - 1549-9596 .- 1549-960X. ; 59:10, s. 4093-4099
  • Journal article (peer-reviewed)abstract
    • Given the need for modern researchers to produce open, reproducible scientific output, the lack of standards and best practices for sharing data and workflows used to produce and analyze molecular dynamics (MD) simulations has become an important issue in the field. There are now multiple well-established packages to perform molecular dynamics simulations, often highly tuned for exploiting specific classes of hardware, each with strong communities surrounding them, but with very limited interoperability/transferability options. Thus, the choice of the software package often dictates the workflow for both simulation production and analysis. The level of detail in documenting the workflows and analysis code varies greatly in published work, hindering reproducibility of the reported results and the ability for other researchers to build on these studies. An increasing number of researchers are motivated to make their data available, but many challenges remain in order to effectively share and reuse simulation data. To discuss these and other issues related to best practices in the field in general, we organized a workshop in November 2018 (https://bioexcel.eu/events/workshop-on-sharing-data-from-molecular-simulations/). Here, we present a brief overview of this workshop and topics discussed. We hope this effort will spark further conversation in the MD community to pave the way toward more open, interoperable, and reproducible outputs coming from research studies using MD simulations.
  •  
17.
  • Gould, Rebecca, et al. (author)
  • Acceptance and Commitment Therapy for people living with motor neuron disease : an uncontrolled feasibility study
  • 2023
  • In: Pilot and Feasibility Studies. - : Springer Nature. - 2055-5784. ; 9
  • Journal article (peer-reviewed)abstract
    • Background: Motor neuron disease (MND) is a fatal, progressive neurodegenerative disease that causes progressive weakening and wasting of limb, bulbar, thoracic and abdominal muscles. Clear evidence-based guidance on how psychological distress should be managed in people living with MND (plwMND) is lacking. Acceptance and Commitment Therapy (ACT) is a form of psychological therapy that may be particularly suitable for this population. However, to the authors' knowledge, no study to date has evaluated ACT for plwMND. Consequently, the primary aim of this uncontrolled feasibility study was to examine the feasibility and acceptability of ACT for improving the psychological health of plwMND.Methods: PlwMND aged >= 18 years were recruited from 10 UK MND Care Centres/Clinics. Participants received up to 8 one-to-one ACT sessions, developed specifically for plwMND, plus usual care. Co-primary feasibility and acceptability outcomes were uptake (>= 80% of the target sample [N = 28] recruited) and initial engagement with the intervention (>= 70% completing >= 2 sessions). Secondary outcomes included measures of quality of life, anxiety, depression, disease-related functioning, health status and psychological flexibility in plwMND and quality of life and burden in caregivers. Outcomes were assessed at baseline and 6 months.Results: Both a priori indicators of success were met: 29 plwMND (104%) were recruited and 76% (22/29) attended >= 2 sessions. Attrition at 6-months was higher than anticipated (8/29, 28%), but only two dropouts were due to lack of acceptability of the intervention. Acceptability was further supported by good satisfaction with therapy and session attendance. Data were possibly suggestive of small improvements in anxiety and psychological quality of life from baseline to 6 months in plwMND, despite a small but expected deterioration in disease-related functioning and health status.Conclusions: There was good evidence of acceptability and feasibility. Limitations included the lack of a control group and small sample size, which complicate interpretation of findings. A fully powered RCT to evaluate the clinical and cost-effectiveness of ACT for plwMND is underway.
  •  
18.
  • Haloi, Nandan, et al. (author)
  • Interactive computational and experimental approaches improve the sensitivity of periplasmic binding protein-based nicotine biosensors for measurements in biofluids
  • 2024
  • In: Protein Engineering Design & Selection. - : Oxford University Press (OUP). - 1741-0126 .- 1741-0134. ; 37
  • Journal article (peer-reviewed)abstract
    • We developed fluorescent protein sensors for nicotine with improved sensitivity. For iNicSnFR12 at pH 7.4, the proportionality constant for ∆F/F0 vs [nicotine] (δ-slope, 2.7 μM−1) is 6.1-fold higher than the previously reported iNicSnFR3a. The activated state of iNicSnFR12 has a fluorescence quantum yield of at least 0.6. We measured similar dose-response relations for the nicotine-induced absorbance increase and fluorescence increase, suggesting that the absorbance increase leads to the fluorescence increase via the previously described nicotine-induced conformational change, the ‘candle snuffer’ mechanism. Molecular dynamics (MD) simulations identified a binding pose for nicotine, previously indeterminate from experimental data. MD simulations also showed that Helix 4 of the periplasmic binding protein (PBP) domain appears tilted in iNicSnFR12 relative to iNicSnFR3a, likely altering allosteric network(s) that link the ligand binding site to the fluorophore. In thermal melt experiments, nicotine stabilized the PBP of the tested iNicSnFR variants. iNicSnFR12 resolved nicotine in diluted mouse and human serum at 100 nM, the peak [nicotine] that occurs during smoking or vaping, and possibly at the decreasing levels during intervals between sessions. NicSnFR12 was also partially activated by unidentified endogenous ligand(s) in biofluids. Improved iNicSnFR12 variants could become the molecular sensors in continuous nicotine monitors for animal and human biofluids.
  •  
19.
  • Alekseenko, Alisa, et al. (author)
  • Direct detection of SARS-CoV-2 using non-commercial RT-LAMP reagents on heat-inactivated samples
  • 2021
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Journal article (peer-reviewed)abstract
    • RT-LAMP detection of SARS-CoV-2 has been shown to be a valuable approach to scale up COVID-19 diagnostics and thus contribute to limiting the spread of the disease. Here we present the optimization of highly cost-effective in-house produced enzymes, and we benchmark their performance against commercial alternatives. We explore the compatibility between multiple DNA polymerases with high strand-displacement activity and thermostable reverse transcriptases required for RT-LAMP. We optimize reaction conditions and demonstrate their applicability using both synthetic RNA and clinical patient samples. Finally, we validate the optimized RT-LAMP assay for the detection of SARS-CoV-2 in unextracted heat-inactivated nasopharyngeal samples from 184 patients. We anticipate that optimized and affordable reagents for RT-LAMP will facilitate the expansion of SARS-CoV-2 testing globally, especially in sites and settings where the need for large scale testing cannot be met by commercial alternatives.
  •  
20.
  •  
21.
  • Ygberg, Sofia, et al. (author)
  • A missense mutation converts the Na+,K+-ATPase into an ion channel and causes therapy-resistant epilepsy.
  • 2021
  • In: Journal of Biological Chemistry. - : Elsevier. - 0021-9258 .- 1083-351X. ; 297:6
  • Journal article (peer-reviewed)abstract
    • The ion pump Na+,K+-ATPase is a critical determinant of neuronal excitability; however, its role in the etiology of diseases of the central nervous system (CNS) is largely unknown. We describe here the molecular phenotype of a Trp931Arg mutation of the Na+,K+-ATPase catalytic α1 subunit in an infant diagnosed with therapy-resistant lethal epilepsy. In addition to the pathological CNS phenotype, we also detected renal wasting of Mg2+. We found that membrane expression of the mutant α1 protein was low, and ion pumping activity was lost. Arginine insertion into membrane proteins can generate water-filled pores in the plasma membrane, and our molecular dynamic (MD) simulations of the principle states of Na+,K+-ATPase transport demonstrated massive water inflow into mutant α1 and destabilization of the ion-binding sites. MD simulations also indicated that a water pathway was created between the mutant arginine residue and the cytoplasm, and analysis of oocytes expressing mutant α1 detected a nonspecific cation current. Finally, neurons expressing mutant α1 were observed to be depolarized compared with neurons expressing wild-type protein, compatible with a lowered threshold for epileptic seizures. The results imply that Na+,K+-ATPase should be considered a neuronal locus minoris resistentia in diseases associated with epilepsy and with loss of plasma membrane integrity.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  • Bergh, Cathrine, et al. (author)
  • Discovery of lipid binding sites in a ligand-gated ion channel by integrating simulations and cryo-EM
  • 2024
  • In: eLife. - : eLife Sciences Publications, Ltd. - 2050-084X. ; 12, s. 2023-01
  • Journal article (peer-reviewed)abstract
    • Ligand-gated ion channels transduce electrochemical signals in neurons and other excitable cells. Aside fromcanonical ligands, phospholipids are thought to bind specifically to the transmembrane domain of several ionchannels. However, structural details of such lipid contacts remain elusive, partly due to limited resolution ofthese regions in experimental structures. Here, we discovered multiple lipid interactions in the channel GLICby integrating cryo-electron microscopy and large-scale molecular simulations. We identified 25 bound lipidsin the GLIC closed state, a conformation where none, to our knowledge, were previously known. Three lipidswere associated with each subunit in the inner leaflet, including a buried interaction disrupted in mutantsimulations. In the outer leaflet, two intrasubunit sites were evident in both closed and open states, whilea putative intersubunit site was preferred in open-state simulations. This work offers molecular details ofGLIC-lipid contacts particularly in the ill-characterized closed state, testable hypotheses for state-dependentbinding, and a multidisciplinary strategy for modeling protein-lipid interactions.
  •  
26.
  • Bergh, Cathrine, et al. (author)
  • Discovery of lipid binding sites in a ligand-gated ion channel by integrating simulations and cryo-EM
  • 2024
  • Other publication (other academic/artistic)abstract
    • Ligand-gated ion channels transduce electrochemical signals in neurons and other excitable cells. Aside from canonical ligands, phospholipids are thought to bind specifically to the transmembrane domain of several ion channels. However, structural details of such lipid contacts remain elusive, partly due to limited resolution of these regions in experimental structures. Here, we discovered multiple lipid interactions in the channel GLIC by integrating cryo-electron microscopy and large-scale molecular simulations. We identified 25 bound lipids in the GLIC closed state, a conformation where none, to our knowledge, were previously known.Three lipids were associated with each subunit in the inner leaflet, including a buried interaction disrupted in mutant simulations. In the outer leaflet, two intrasubunit sites were evident in both closed and open states, while a putative intersubunit site was preferred in open-state simulations. This work offers molecular details of GLIC-lipid contacts particularly in the ill-characterized closed state, testable hypotheses for state-dependent binding, and a multidisciplinary strategy for modeling protein-lipid interactions.
  •  
27.
  •  
28.
  •  
29.
  • Bergh, Cathrine, et al. (author)
  • Markov state models of proton- and pore-dependent activation in a pentameric ligand-gated ion channel
  • 2021
  • In: eLIFE. - : eLife Sciences Publications, Ltd. - 2050-084X. ; 10
  • Journal article (peer-reviewed)abstract
    • Ligand-gated ion channels conduct currents in response to chemical stimuli, mediating electrochemical signaling in neurons and other excitable cells. For many channels, the details of gating remain unclear, partly due to limited structural data and simulation timescales. Here, we used enhanced sampling to simulate the pH-gated channel GLIC, and construct Markov state models (MSMs) of gating. Consistent with new functional recordings, we report in oocytes, our analysis revealed differential effects of protonation and mutation on free-energy wells. Clustering of closed- versus open-like states enabled estimation of open probabilities and transition rates, while higher-order clustering affirmed conformational trends in gating. Furthermore, our models uncovered state- and protonation-dependent symmetrization. This demonstrates the applicability of MSMs to map energetic and conformational transitions between ion-channel functional states, and how they reproduce shifts upon activation or mutation, with implications for modeling neuronal function and developing state-selective drugs.
  •  
30.
  •  
31.
  •  
32.
  • Brömstrup, Torben, et al. (author)
  • Inhibition versus Potentiation of Ligand-Gated Ion Channels Can Be Altered by a Single Mutation that Moves Ligands between Intra- and Intersubunit Sites
  • 2013
  • In: Structure. - : Elsevier BV. - 0969-2126 .- 1878-4186. ; 21:8, s. 1307-1316
  • Journal article (peer-reviewed)abstract
    • Pentameric ligand-gated ion channels (pLGICs) are similar in structure but either inhibited or potentiated by alcohols and anesthetics. This dual modulation has previously not been understood, but the determination of X-ray structures of prokaryotic GLIC provides an ideal model system. Here, we show that a single-site mutation at the F14' site in the GLIC transmembrane domain turns desflurane and chloroform from inhibitors to potentiators, and that this is explained by competing allosteric sites. The F14'A mutation opens an intersubunit site lined by N239 (15'), 1240 (16'), and Y263. Free energy calculations confirm this site is the preferred binding location for desflurane and chloroform in GLIC F14'A. In contrast, both anesthetics prefer an intrasubunit site in wild-type GLIC. Modulation is therefore the net effect of competitive binding between the intersubunit potentiating site and an intrasubunit inhibitory site. This provides direct evidence for a dual-site model of allosteric regulation of pLGICs.
  •  
33.
  • Carnevale, Vincenzo, et al. (author)
  • Molecular Dynamics Simulations of Ion Channels
  • 2021
  • In: TIBS -Trends in Biochemical Sciences. Regular ed.. - : Elsevier BV. - 0968-0004 .- 1362-4326. ; 46:7, s. 621-622
  • Journal article (other academic/artistic)
  •  
34.
  • Choudhury, Koushik, et al. (author)
  • An alpha-pi transition in S6 shapes the conformational cycle of the bacterial sodium channel NavAb
  • 2022
  • In: The Journal of General Physiology. - : Rockefeller University Press. - 0022-1295 .- 1540-7748. ; 155:2
  • Journal article (peer-reviewed)abstract
    • Voltage-gated sodium channels play an important role in electrical signaling in excitable cells. In response to changes in membrane potential, they cycle between nonconducting and conducting conformations. With recent advances in structural biology, structures of sodium channels have been captured in several distinct conformations, which are thought to represent different functional states. However, it has been difficult to capture the intrinsically transient open state. We recently showed that a proposed open state of the bacterial sodium channel NavMs was not conductive and that a conformational change involving a transition to a pi-helix in the pore-lining S6 helix converted this structure into a conducting state. However, the relevance of this structural feature in other sodium channels, and its implications for the broader gating cycle, remained unclear. Here, we propose a comparable open state of another class of bacterial channel from Aliarcobacter butzleri (NavAb) with characteristic pore hydration, ion permeation, and drug binding properties. Furthermore, we show that a pi-helix transition can lead to pore opening and that such a conformational change blocks fenestrations in the inner helix bundle. We also discover that a region in the C-terminal domain can undergo a disordering transition proposed to be important for pore opening. These results support a role for a pi-helix transition in the opening of NavAb, enabling new proposals for the structural annotation and drug modulation mechanisms in this important sodium channel model. We propose a new conformational cycle for NavAb wherein an alpha- to pi-helix transition in S6 and disordering of the neck region of the C-terminal domain is important for pore opening.
  •  
35.
  • Choudhury, Koushik, et al. (author)
  • An open state of a voltage-gated sodium channel involving a p-helix and conserved pore-facing asparagine
  • 2022
  • In: Biophysical Journal. - : Elsevier BV. - 0006-3495 .- 1542-0086. ; 121:1, s. 11-22
  • Journal article (peer-reviewed)abstract
    • Voltage-gated sodium (Nav) channels play critical roles in propagating action potentials and otherwise manipulating ionic gradients in excitable cells. These channels open in response to membrane depolarization, selectively permeating sodium ions until rapidly inactivating. Structural characterization of the gating cycle in this channel family has proved challenging, particularly due to the transient nature of the open state. A structure from the bacterium Magnetococcus marinus Nav (NavMs) was initially proposed to be open, based on its pore diameter and voltage-sensor conformation. However, the functional annotation of this model, and the structural details of the open state, remain disputed. In this work, we used molecular modeling and simulations to test possible open-state models of NavMs. The full-length experimental structure, termed here the cc-model, was consistently dehydrated at the activation gate, indicating an inability to conduct ions. Based on a spontaneous transition observed in extended simulations, and sequence/structure comparison to other Nav channels, we built an alternative p-model featuring a helix transition and the rotation of a conserved asparagine residue into the activation gate. Pore hydration, ion permeation, and state-dependent drug binding in this model were consistent with an open functional state. This work thus offers both a functional annotation of the full-length NavMs structure and a detailed model for a stable Nav open state, with potential conservation in diverse ion-channel families.
  •  
36.
  •  
37.
  •  
38.
  • Cowgill, John, et al. (author)
  • Structure and dynamics of differential ligand binding in the human ρ-type GABAA receptor
  • 2023
  • In: Neuron. - : Elsevier BV. - 0896-6273 .- 1097-4199. ; 111:21, s. 5-3450
  • Journal article (peer-reviewed)abstract
    • The neurotransmitter γ-aminobutyric acid (GABA) drives critical inhibitory processes in and beyond the nervous system, partly via ionotropic type-A receptors (GABAARs). Pharmacological properties of ρ-type GABAARs are particularly distinctive, yet the structural basis for their specialization remains unclear. Here, we present cryo-EM structures of a lipid-embedded human ρ1 GABAAR, including a partial intracellular domain, under apo, inhibited, and desensitized conditions. An apparent resting state, determined first in the absence of modulators, was recapitulated with the specific inhibitor (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid and blocker picrotoxin and provided a rationale for bicuculline insensitivity. Comparative structures, mutant recordings, and molecular simulations with and without GABA further explained the sensitized but slower activation of ρ1 relative to canonical subtypes. Combining GABA with picrotoxin also captured an apparent uncoupled intermediate state. This work reveals structural mechanisms of gating and modulation with applications to ρ-specific pharmaceutical design and to our biophysical understanding of ligand-gated ion channels.
  •  
39.
  • Du, Lianlian, et al. (author)
  • Harnessing cognitive trajectory clusterings to examine subclinical decline risk factors
  • 2023
  • In: Brain Communications. - 2632-1297. ; 5:6
  • Journal article (peer-reviewed)abstract
    • Cognitive decline in Alzheimer's disease and other dementias typically begins long before clinical impairment. Identifying people experiencing subclinical decline may facilitate earlier intervention. This study developed cognitive trajectory clusters using longitudinally based random slope and change point parameter estimates from a Preclinical Alzheimer's disease Cognitive Composite and examined how baseline and most recently available clinical/health-related characteristics, cognitive statuses and biomarkers for Alzheimer's disease and vascular disease varied across these cognitive clusters. Data were drawn from the Wisconsin Registry for Alzheimer's Prevention, a longitudinal cohort study of adults from late midlife, enriched for a parental history of Alzheimer's disease and without dementia at baseline. Participants who were cognitively unimpaired at the baseline visit with ≥3 cognitive visits were included in trajectory modelling (n = 1068). The following biomarker data were available for subsets: positron emission tomography amyloid (amyloid: n = 367; [11C]Pittsburgh compound B (PiB): global PiB distribution volume ratio); positron emission tomography tau (tau: n = 321; [18F]MK-6240: primary regions of interest meta-temporal composite); MRI neurodegeneration (neurodegeneration: n = 581; hippocampal volume and global brain atrophy); T2 fluid-attenuated inversion recovery MRI white matter ischaemic lesion volumes (vascular: white matter hyperintensities; n = 419); and plasma pTau217 (n = 165). Posterior median estimate person-level change points, slopes' pre- and post-change point and estimated outcome (intercepts) at change point for cognitive composite were extracted from Bayesian Bent-Line Regression modelling and used to characterize cognitive trajectory groups (K-means clustering). A common method was used to identify amyloid/tau/neurodegeneration/vascular biomarker thresholds. We compared demographics, last visit cognitive status, health-related factors and amyloid/tau/neurodegeneration/vascular biomarkers across the cognitive groups using ANOVA, Kruskal-Wallis, χ2, and Fisher's exact tests. Mean (standard deviation) baseline and last cognitive assessment ages were 58.4 (6.4) and 66.6 (6.6) years, respectively. Cluster analysis identified three cognitive trajectory groups representing steep, n = 77 (7.2%); intermediate, n = 446 (41.8%); and minimal, n = 545 (51.0%) cognitive decline. The steep decline group was older, had more females, APOE e4 carriers and mild cognitive impairment/dementia at last visit; it also showed worse self-reported general health-related and vascular risk factors and higher amyloid, tau, neurodegeneration and white matter hyperintensity positive proportions at last visit. Subtle cognitive decline was consistently evident in the steep decline group and was associated with generally worse health. In addition, cognitive trajectory groups differed on aetiology-informative biomarkers and risk factors, suggesting an intimate link between preclinical cognitive patterns and amyloid/tau/neurodegeneration/vascular biomarker differences in late middle-aged adults. The result explains some of the heterogeneity in cognitive performance within cognitively unimpaired late middle-aged adults.
  •  
40.
  • Forbes, Ruaridh, et al. (author)
  • Time-resolved site-selective imaging of predissociation and charge transfer dynamics : The CH3I B-band
  • 2020
  • In: Journal of Physics B: Atomic, Molecular and Optical Physics. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 53:22
  • Journal article (peer-reviewed)abstract
    • The predissociation dynamics of the 6s (B2E) Rydberg state of gas-phase CH3I were investigated by time-resolved Coulomb-explosion imaging using extreme ultraviolet (XUV) free-electron laser pulses. Inner-shell ionization at the iodine 4d edge was utilized to provide a site-specific probe of the ensuing dynamics. The combination of a velocity-map imaging (VMI) spectrometer coupled with the pixel imaging mass spectrometry (PImMS) camera permitted three-dimensional ionic fragment momenta to be recorded simultaneously for a wide range of iodine charge states. In accord with previous studies, initial excitation at 201.2 nm results in internal conversion and subsequent dissociation on the lower-lying A-state surface on a picosecond time scale. Examination of the time-dependent yield of low kinetic energy iodine fragments yields mechanistic insights into the predissociation and subsequent charge transfer following multiple ionization of the iodine products. The effect of charge transfer was observed through differing delay-dependencies of the various iodine charge states, from which critical internuclear distances for charge transfer could be inferred and compared to a classical over-the-barrier model. Time-dependent photofragment angular anisotropy parameters were extracted from the central slice of the Newton sphere, without Abel inversion, and highlight the effect of rotation of the parent molecule before dissociation, as observed in previous
  •  
41.
  • Forsberg, Björn, et al. (author)
  • Assembly and symmetry of the fungal E3BP-containing core of the Pyruvate Dehydrogenase Complex
  • Other publication (other academic/artistic)abstract
    • The pyruvate dehydrogenase complex (PDC) is a central component of all aerobic respiration, connecting glycolysis to mitochondrial oxidation of pyruvate. Despite its central metabolic role, its precise composition and means of regulation remain unknown. To explain the variation in stoichiometry reported for the E3-recruiting protein X (PX) in the fungal PDC, we established cryo-EM reconstructions of the native and recombinant PDC from the filamentous fungus and model organism Neurospora crassa. We find that the PX C-terminal domain localizes interior to the E2 core. Critically, we show that two distinct arrangements of a trimeric oligomer exists, which both result in strict tetrahedral symmetry of the PDC core interior. Both oligomerization and volume occlusion of the PDC interior by PX appears to limit its binding stoichiometry, which explains the variety of stoichiometries found previously for S. cerevisiae. This also suggests that the PX oligomer stability and size are potential mechanisms to dynamically adjust PDC compostion in response to external cues. Moreover, we find that the site where PX binds is conserved within fungi but not mammals, suggesting that it could be therapeutically targeted. To this end, we also show that a PX knockout results in loss of activity through dysfunctional E3 recruitment, leading to severely impaired N. crassa growth on sucrose. The fungal PDC is thus shown to be fundamentally similar to the mammalian PDC in function but subject to other conditions of possible regulation, conditioned by a steric restrictions imposed by the symmetry of the PDC and its components.
  •  
42.
  • Forsberg, Björn O., et al. (author)
  • Arrangement and symmetry of the fungal E3BP-containing core of the pyruvate dehydrogenase complex
  • 2020
  • In: Nature Communications. - : Nature Research. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • The pyruvate dehydrogenase complex (PDC) is a multienzyme complex central to aerobic respiration, connecting glycolysis to mitochondrial oxidation of pyruvate. Similar to the E3-binding protein (E3BP) of mammalian PDC, PX selectively recruits E3 to the fungal PDC, but its divergent sequence suggests a distinct structural mechanism. Here, we report reconstructions of PDC from the filamentous fungus Neurospora crassa by cryo-electron microscopy, where we find protein X (PX) interior to the PDC core as opposed to substituting E2 core subunits as in mammals. Steric occlusion limits PX binding, resulting in predominantly tetrahedral symmetry, explaining previous observations in Saccharomyces cerevisiae. The PX-binding site is conserved in (and specific to) fungi, and complements possible C-terminal binding motifs in PX that are absent in mammalian E3BP. Consideration of multiple symmetries thus reveals a differential structural basis for E3BP-like function in fungal PDC.
  •  
43.
  • Fourati, Zaineb, et al. (author)
  • Structural Basis for a Bimodal Allosteric Mechanism of General Anesthetic Modulation in Pentameric Ligand-Gated Ion Channels
  • 2018
  • In: Cell Reports. - : Elsevier BV. - 2211-1247. ; 23:4, s. 993-1004
  • Journal article (peer-reviewed)abstract
    • Ion channel modulation by general anesthetics is a vital pharmacological process with implications for receptor biophysics and drug development. Functional studies have implicated conserved sites of both potentiation and inhibition in pentameric ligand-gated ion channels, but a detailed structural mechanism for these bimodal effects is lacking[1] . The prokaryotic model protein GLIC recapitulates anesthetic modulation of human ion channels, and is accessible to structure determination in both apparent open and closed states. Here, we report ten X-ray structures and electrophysiological characterization of GLIC variants in the presence and absence of general anesthetics, including the surgical agent propofol. We show that general anesthetics can allosterically favor closed channels by binding in the pore, or favor open channels via various subsites in the transmembrane domain. Our results support an integrated, multi-site mechanism for allosteric modulation, and provide atomic details of both potentiation and inhibition by one of the most common general anesthetics.
  •  
44.
  • Gao, Xiaolong, et al. (author)
  • Allosteric inhibition of CFTR gating by CFTRinh-172 binding in the pore
  • 2024
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • Loss-of-function mutations of the CFTR gene cause the life-shortening genetic disease cystic fibrosis (CF), whereas overactivity of CFTR may lead to secretory diarrhea and polycystic kidney disease. While effective drugs targeting the CFTR protein have been developed for the treatment of CF, little progress has been made for diseases caused by hyper-activated CFTR. Here, we solve the cryo-EM structure of CFTR in complex with CFTRinh-172 (Inh-172), a CFTR gating inhibitor with promising potency and efficacy. We find that Inh-172 binds inside the pore of CFTR, interacting with amino acid residues from transmembrane segments (TMs) 1, 6, 8, 9, and 12 through mostly hydrophobic interactions and a salt bridge. Substitution of these residues lowers the apparent affinity of Inh-172. The inhibitor-bound structure reveals re-orientations of the extracellular segment of TMs 1, 8, and 12, supporting an allosteric modulation mechanism involving post-binding conformational changes. This allosteric inhibitory mechanism readily explains our observations that pig CFTR, which preserves all the amino acid residues involved in Inh-172 binding, exhibits a much-reduced sensitivity to Inh-172 and that the apparent affinity of Inh-172 is altered by the CF drug ivacaftor (i.e., VX-770) which enhances CFTR’s activity through binding to a site also comprising TM8.
  •  
45.
  • Gharpure, Anant, et al. (author)
  • Agonist Selectivity and Ion Permeation in the alpha 3 beta 4 Ganglionic Nicotinic Receptor
  • 2019
  • In: Neuron. - : CELL PRESS. - 0896-6273 .- 1097-4199. ; 104:3, s. 501-
  • Journal article (peer-reviewed)abstract
    • Nicotinic acetylcholine receptors are pentameric ion channels that mediate fast chemical neurotransmission. The alpha 3 beta 4 nicotinic receptor subtype forms the principal relay between the central and peripheral nervous systems in the autonomic ganglia. This receptor is also expressed focally in brain areas that affect reward circuits and addiction. Here, we present structures of the alpha 3 beta 4 nicotinic receptor in lipidic and detergent environments, using functional reconstitution to define lipids appropriate for structural analysis. The structures of the receptor in complex with nicotine, as well as the alpha 3 beta 4-selective ligand AT-1001, complemented by molecular dynamics, suggest principles of agonist selectivity. The structures further reveal much of the architecture of the intracellular domain, where mutagenesis experiments and simulations define residues governing ion conductance.
  •  
46.
  • Haug, Ferdinand M., et al. (author)
  • Functional and structural insights into activation of TRPV2 by weak acids
  • 2024
  • In: EMBO Journal. - 0261-4189 .- 1460-2075. ; 43:11, s. 2264-2290
  • Journal article (peer-reviewed)abstract
    • Transient receptor potential (TRP) ion channels are involved in the surveillance or regulation of the acid-base balance. Here, we demonstrate that weak carbonic acids, including acetic acid, lactic acid, and CO2 activate and sensitize TRPV2 through a mechanism requiring permeation through the cell membrane. TRPV2 channels in cell-free inside-out patches maintain weak acid-sensitivity, but protons applied on either side of the membrane do not induce channel activation or sensitization. The involvement of proton modulation sites for weak acid-sensitivity was supported by the identification of titratable extracellular (Glu495, Glu561) and intracellular (His521) residues on a cryo-EM structure of rat TRPV2 (rTRPV2) treated with acetic acid. Molecular dynamics simulations as well as patch clamp experiments on mutant rTRPV2 constructs confirmed that these residues are critical for weak acid-sensitivity. We also demonstrate that the pore residue Glu609 dictates an inhibition of weak acid-induced currents by extracellular calcium. Finally, TRPV2-expression in HEK293 cells is associated with an increased weak acid-induced cytotoxicity. Together, our data provide new insights into weak acids as endogenous modulators of TRPV2.
  •  
47.
  •  
48.
  • Heusser, Stephanie A., et al. (author)
  • Allosteric potentiation of a ligand-gated ion channel is mediated by access to a deep membrane-facing cavity
  • 2018
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 115:42, s. 10672-10677
  • Journal article (peer-reviewed)abstract
    • Theories of general anesthesia have shifted in focus from bulk lipid effects to specific interactions with membrane proteins. Target receptors include several subtypes of pentameric ligand-gated ion channels; however, structures of physiologically relevant proteins in this family have yet to define anesthetic binding at high resolution. Recent cocrystal structures of the bacterial protein GLIC provide snapshots of state-dependent binding sites for the common surgical agent propofol (PFL), offering a detailed model system for anesthetic modulation. Here, we combine molecular dynamics and oocyte electrophysiology to reveal differential motion and modulation upon modification of a transmembrane binding site within each GLIC subunit. WT channels exhibited net inhibition by PFL, and a contraction of the cavity away from the pore-lining M2 helix in the absence of drug. Conversely, in GLIC variants exhibiting net PFL potentiation, the cavity was persistently expanded and proximal to M2. Mutations designed to favor this deepened site enabled sensitivity even to subclinical concentrations of PFL, and a uniquely prolonged mode of potentiation evident up to similar to 30 min after washout. Dependence of these prolonged effects on exposure time implicated the membrane as a reservoir for a lipid-accessible binding site. However, at the highest measured concentrations, potentiation appeared to be masked by an acute inhibitory effect, consistent with the presence of a discrete, water-accessible site of inhibition. These results support a multisite model of transmembrane allosteric modulation, including a possible link between lipid- and receptor-based theories that could inform the development of new anesthetics.
  •  
49.
  •  
50.
  • Heusser, Stephanie A., et al. (author)
  • Functional characterization of neurotransmitter activation and modulation in a nematode model ligand-gated ion channel
  • 2016
  • In: Journal of Neurochemistry. - : Wiley. - 0022-3042 .- 1471-4159. ; 138:2, s. 243-253
  • Journal article (peer-reviewed)abstract
    • The superfamily of pentameric ligand-gated ion channels includes neurotransmitter receptors that mediate fast synaptic transmission in vertebrates, and are targets for drugs including alcohols, anesthetics, benzodiazepines, and anticonvulsants. However, the mechanisms of ion channel opening, gating, and modulation in these receptors leave many open questions, despite their pharmacological importance. Subtle conformational changes in both the extracellular and transmembrane domains are likely to influence channel opening, but have been difficult to characterize given the limited structural data available for human membrane proteins. Recent crystal structures of a modified Caenorhabditis elegans glutamate-gated chloride channel (GluCl) in multiple states offer an appealing model system for structure-function studies. However, the pharmacology of the crystallographic GluCl construct is not well established. To establish the functional relevance of this system, we used two-electrode voltage-clamp electrophysiology in Xenopus oocytes to characterize activation of crystallographic and native-like GluCl constructs by L-glutamate and ivermectin. We also tested modulation by ethanol and other anesthetic agents, and used site-directed mutagenesis to explore the role of a region of Loop F which was implicated in ligand gating by molecular dynamics simulations. Our findings indicate that the crystallographic construct functionally models concentration-dependent agonism and allosteric modulation of pharmacologically relevant receptors. Specific substitutions at residue Leu174 in loop F altered direct L-glutamate activation, consistent with computational evidence for this region's role in ligand binding. These insights demonstrate conservation of activation and modulation properties in this receptor family, and establish a framework for GluCl as a model system, including new possibilities for drug discovery. In this study, we elucidate the validity of a modified glutamate-gated chloride channel (GluCl(cryst)) as a structurally accessible model for GABA(A) receptors. In contrast to native-like controls, GluCl(cryst) exhibits classical activation by its neurotransmitter ligand L-glutamate. The modified channel is also sensitive to allosteric modulators associated with human GABA(A) receptors, and to site-directed mutations predicted to alter channel opening.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 88
Type of publication
journal article (80)
other publication (6)
research review (2)
Type of content
peer-reviewed (56)
other academic/artistic (32)
Author/Editor
Howard, Rebecca J. (56)
Lindahl, Erik, 1972- (33)
Lindahl, Erik (19)
Rovšnik, Urška (14)
Heusser, Stephanie A ... (14)
Zhuang, Yuxuan (12)
show more...
Bergh, Cathrine (11)
Lycksell, Marie (10)
Howard, Rebecca J., ... (9)
Delemotte, Lucie (8)
Trudell, James R. (7)
Harris, R. Adron (7)
Murail, Samuel (6)
Blau, Christian (5)
Delarue, Marc (5)
Lindahl, Erik R. (5)
Al-Chalabi, Ammar (4)
McCracken, Lance, 19 ... (4)
Orellana, Laura (4)
Bradburn, Mike (4)
Lawrence, Vanessa (4)
Young, Tracey (4)
Cooper, Cindy (4)
Andersson, Magnus (3)
Howard, Rebecca (3)
Haiman, Christopher ... (3)
Shu, Xiao-Ou (3)
Zheng, Wei (3)
Gross, Myron (3)
Kooperberg, Charles (3)
Risch, Harvey A (3)
McKean-Cowdin, Rober ... (3)
Lan, Qing (3)
Liu, Jianjun (3)
Bertaccini, Edward J ... (3)
Haloi, Nandan (3)
Brömstrup, Torben (3)
White, David (3)
Yuan, Jian-Min (3)
Goldstein, Laura H. (3)
Martel, Anne (3)
Xu, Jun (3)
Sridhar, Akshay (3)
Choudhury, Koushik (3)
Gould, Rebecca L. (3)
Wang, Xueqing (3)
Sauguet, Ludovic (3)
Teng, Jinfeng (3)
Hibbs, Ryan E. (3)
Bursnall, Matt (3)
show less...
University
Royal Institute of Technology (58)
Stockholm University (39)
Uppsala University (14)
Karolinska Institutet (9)
Lund University (8)
University of Gothenburg (7)
show more...
Umeå University (4)
Linköping University (3)
Swedish University of Agricultural Sciences (2)
Halmstad University (1)
Chalmers University of Technology (1)
Swedish Museum of Natural History (1)
show less...
Language
English (88)
Research subject (UKÄ/SCB)
Natural sciences (67)
Medical and Health Sciences (26)
Engineering and Technology (2)
Social Sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view