SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jack Clifford R.) "

Search: WFRF:(Jack Clifford R.)

  • Result 1-23 of 23
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Hibar, Derrek P., et al. (author)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
2.
  • Satizabal, Claudia L., et al. (author)
  • Genetic architecture of subcortical brain structures in 38,851 individuals
  • 2019
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:11, s. 1624-
  • Journal article (peer-reviewed)abstract
    • Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  •  
3.
  • Thompson, Paul M., et al. (author)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • In: BRAIN IMAGING BEHAV. - : Springer Science and Business Media LLC. - 1931-7557 .- 1931-7565. ; 8:2, s. 153-182
  • Journal article (peer-reviewed)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  •  
4.
  •  
5.
  • Ferreira, Daniel, et al. (author)
  • β-Amyloid and tau biomarkers and clinical phenotype in dementia with Lewy bodies
  • 2020
  • In: Neurology. - 1526-632X. ; 95:24, s. 3257-3268
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: In a multicenter cohort of probable dementia with Lewy bodies (DLB), we tested the hypothesis that β-amyloid and tau biomarker positivity increases with age, which is modified by APOE genotype and sex, and that there are isolated and synergistic associations with the clinical phenotype. METHODS: We included 417 patients with DLB (age 45-93 years, 31% women). Positivity on β-amyloid (A+) and tau (T+) biomarkers was determined by CSF β-amyloid1-42 and phosphorylated tau in the European cohort and by Pittsburgh compound B and AV-1451 PET in the Mayo Clinic cohort. Patients were stratified into 4 groups: A-T-, A+T-, A-T+, and A+T+. RESULTS: A-T- was the largest group (39%), followed by A+T- (32%), A+T+ (15%), and A-T+ (13%). The percentage of A-T- decreased with age, and A+ and T+ increased with age in both women and men. A+ increased more in APOE ε4 carriers with age than in noncarriers. A+ was the main predictor of lower cognitive performance when considered together with T+. T+ was associated with a lower frequency of parkinsonism and probable REM sleep behavior disorder. There were no significant interactions between A+ and T+ in relation to the clinical phenotype. CONCLUSIONS: Alzheimer disease pathologic changes are common in DLB and are associated with the clinical phenotype. β-Amyloid is associated with cognitive impairment, and tau pathology is associated with lower frequency of clinical features of DLB. These findings have important implications for diagnosis, prognosis, and disease monitoring, as well as for clinical trials targeting disease-specific proteins in DLB. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that in patients with probable DLB, β-amyloid is associated with lower cognitive performance and tau pathology is associated with lower frequency of clinical features of DLB.
  •  
6.
  • Ikram, M. Arfan, et al. (author)
  • Common variants at 6q22 and 17q21 are associated with intracranial volume
  • 2012
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:5, s. 539-544
  • Journal article (peer-reviewed)abstract
    • During aging, intracranial volume remains unchanged and represents maximally attained brain size, while various interacting biological phenomena lead to brain volume loss. Consequently, intracranial volume and brain volume in late life reflect different genetic influences. Our genome-wide association study (GWAS) in 8,175 community-dwelling elderly persons did not reveal any associations at genome-wide significance (P < 5 x 10(-8)) for brain volume. In contrast, intracranial volume was significantly associated with two loci: rs4273712 (P = 3.4 x 10(-11)), a known height-associated locus on chromosome 6q22, and rs9915547 (P = 1.5 x 10(-12)), localized to the inversion on chromosome 17q21. We replicated the associations of these loci with intracranial volume in a separate sample of 1,752 elderly persons (P = 1.1 x 10(-3) for 6q22 and 1.2 x 10(-3) for 17q21). Furthermore, we also found suggestive associations of the 17q21 locus with head circumference in 10,768 children (mean age of 14.5 months). Our data identify two loci associated with head size, with the inversion at 17q21 also likely to be involved in attaining maximal brain size.
  •  
7.
  • Lewczuk, Piotr, et al. (author)
  • Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the Consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry.
  • 2018
  • In: The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry. - : Informa UK Limited. - 1814-1412. ; 19:4, s. 244-328
  • Journal article (peer-reviewed)abstract
    • In the 12 years since the publication of the first Consensus Paper of the WFSBP on biomarkers of neurodegenerative dementias, enormous advancement has taken place in the field, and the Task Force takes now the opportunity to extend and update the original paper. New concepts of Alzheimer's disease (AD) and the conceptual interactions between AD and dementia due to AD were developed, resulting in two sets for diagnostic/research criteria. Procedures for pre-analytical sample handling, biobanking, analyses and post-analytical interpretation of the results were intensively studied and optimised. A global quality control project was introduced to evaluate and monitor the inter-centre variability in measurements with the goal of harmonisation of results. Contexts of use and how to approach candidate biomarkers in biological specimens other than cerebrospinal fluid (CSF), e.g. blood, were precisely defined. Important development was achieved in neuroimaging techniques, including studies comparing amyloid-β positron emission tomography results to fluid-based modalities. Similarly, development in research laboratory technologies, such as ultra-sensitive methods, raises our hopes to further improve analytical and diagnostic accuracy of classic and novel candidate biomarkers. Synergistically, advancement in clinical trials of anti-dementia therapies energises and motivates the efforts to find and optimise the most reliable early diagnostic modalities. Finally, the first studies were published addressing the potential of cost-effectiveness of the biomarkers-based diagnosis of neurodegenerative disorders.
  •  
8.
  • Nelson, Peter T., et al. (author)
  • Limbic-predominant age-related TDP-43 encephalopathy (LATE) : consensus working group report
  • 2019
  • In: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 142, s. 1503-1527
  • Research review (peer-reviewed)abstract
    • We describe a recently recognized disease entity, limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE neuropathological change (LATE-NC) is defined by a stereotypical TDP-43 proteinopathy in older adults, with or without coexisting hippocampal sclerosis pathology. LATE-NC is a common TDP-43 proteinopathy, associated with an amnestic dementia syndrome that mimicked Alzheimer's-type dementia in retrospective autopsy studies. LATE is distinguished from frontotemporal lobar degeneration with TDP-43 pathology based on its epidemiology (LATE generally affects older subjects), and relatively restricted neuroanatomical distribution of TDP-43 proteinopathy. In community-based autopsy cohorts, similar to 25% of brains had sufficient burden of LATE-NC to be associated with discernible cognitive impairment. Many subjects with LATE-NC have comorbid brain pathologies, often including amyloid-beta plaques and tauopathy. Given that the oldest-old' are at greatest risk for LATE-NC, and subjects of advanced age constitute a rapidly growing demographic group in many countries, LATE has an expanding but under-recognized impact on public health. For these reasons, a working group was convened to develop diagnostic criteria for LATE, aiming both to stimulate research and to promote awareness of this pathway to dementia. We report consensus-based recommendations including guidelines for diagnosis and staging of LATE-NC. For routine autopsy workup of LATE-NC, an anatomically-based preliminary staging scheme is proposed with TDP-43 immunohistochemistry on tissue from three brain areas, reflecting a hierarchical pattern of brain involvement: amygdala, hippocampus, and middle frontal gyrus. LATE-NC appears to affect the medial temporal lobe structures preferentially, but other areas also are impacted. Neuroimaging studies demonstrated that subjects with LATE-NC also had atrophy in the medial temporal lobes, frontal cortex, and other brain regions. Genetic studies have thus far indicated five genes with risk alleles for LATE-NC: GRN, TMEM106B, ABCC9, KCNMB2, and APOE. The discovery of these genetic risk variants indicate that LATE shares pathogenetic mechanisms with both frontotemporal lobar degeneration and Alzheimer's disease, but also suggests disease-specific underlying mechanisms. Large gaps remain in our understanding of LATE. For advances in prevention, diagnosis, and treatment, there is an urgent need for research focused on LATE, including in vitro and animal models. An obstacle to clinical progress is lack of diagnostic tools, such as biofluid or neuroimaging biomarkers, for ante-mortem detection of LATE. Development of a disease biomarker would augment observational studies seeking to further define the risk factors, natural history, and clinical features of LATE, as well as eventual subject recruitment for targeted therapies in clinical trials.
  •  
9.
  • Rhodes, Emma, et al. (author)
  • The impact of amyloid burden and APOE on rates of cognitive impairment in late life depression
  • 2021
  • In: Journal of Alzheimer's Disease. - 1387-2877. ; 80:3, s. 991-1002
  • Journal article (peer-reviewed)abstract
    • Background: Cognitive impairment (CI) is a key feature of late life depression (LLD), but the contribution of underlying neurodegenerative pathology remains unclear. Objective: To evaluate cognitive dysfunction in LLD relative to a sample of nondepressed (ND) older adults with matched levels of memory impairment and amyloid-β (Aβ) burden. Methods: Participants included 120 LLD and 240 ND older adults matched on age, education, sex, Mini-Mental State Exam, mild cognitive impairment diagnosis, and PET Aβ burden. Results: LLD showed higher rates of impairment relative to ND with 54.6% of the LLD sample demonstrating impairment in at least one cognitive domain compared to 42.9% of controls (H = 7.13, p = 0.008). LLD had poorer performance and higher rates of impairment on Rey Auditory Verbal Learning Test learning and memory compared to controls. In the overall sample, Aβ positivity was associated with worse performance on Logical Memory I (p = 0.044), Logical Memory II (p = 0.011), and Trail Making Test -B (p = 0.032), and APOE ϵ4 genotype was associated with worse performance on Logical Memory I (p =0.022); these relationships did not differ between LLD and ND. Conclusion: LLD showed higher rates of CI driven by focal deficits in verbal learning and memory. Alzheimer's disease (AD) biomarkers were associated with worse performance on timed set-shifting and story learning and memory, and these relationships were not impacted by depression status. These findings suggest that AD may account for a portion of previously reported multi-domain CI in LLD and highlight the potential for AD to confound studies of cognition in LLD.
  •  
10.
  • Taal, H. Rob, et al. (author)
  • Common variants at 12q15 and 12q24 are associated with infant head circumference
  • 2012
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 44:5, s. 532-538
  • Journal article (peer-reviewed)abstract
    • To identify genetic variants associated with head circumference in infancy, we performed a meta-analysis of seven genome-wide association studies (GWAS) (N = 10,768 individuals of European ancestry enrolled in pregnancy and/or birth cohorts) and followed up three lead signals in six replication studies (combined N = 19,089). rs7980687 on chromosome 12q24 (P = 8.1 x 10(-9)) and rs1042725 on chromosome 12q15 (P = 2.8 x 10(-10)) were robustly associated with head circumference in infancy. Although these loci have previously been associated with adult height(1), their effects on infant head circumference were largely independent of height (P = 3.8 x 10(-7) for rs7980687 and P = 1.3 x 10(-7) for rs1042725 after adjustment for infant height). A third signal, rs11655470 on chromosome 17q21, showed suggestive evidence of association with head circumference (P = 3.9 x 10(-6)). SNPs correlated to the 17q21 signal have shown genome-wide association with adult intracranial volume(2), Parkinson's disease and other neurodegenerative diseases(3-5), indicating that a common genetic variant in this region might link early brain growth with neurological disease in later life.
  •  
11.
  •  
12.
  • Deming, Yuetiva, et al. (author)
  • Sex-specific genetic predictors of Alzheimer’s disease biomarkers
  • 2018
  • In: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 136:6, s. 857-872
  • Journal article (peer-reviewed)abstract
    • Cerebrospinal fluid (CSF) levels of amyloid-β 42 (Aβ42) and tau have been evaluated as endophenotypes in Alzheimer’s disease (AD) genetic studies. Although there are sex differences in AD risk, sex differences have not been evaluated in genetic studies of AD endophenotypes. We performed sex-stratified and sex interaction genetic analyses of CSF biomarkers to identify sex-specific associations. Data came from a previous genome-wide association study (GWAS) of CSF Aβ42 and tau (1527 males, 1509 females). We evaluated sex interactions at previous loci, performed sex-stratified GWAS to identify sex-specific associations, and evaluated sex interactions at sex-specific GWAS loci. We then evaluated sex-specific associations between prefrontal cortex (PFC) gene expression at relevant loci and autopsy measures of plaques and tangles using data from the Religious Orders Study and Rush Memory and Aging Project. In Aβ42, we observed sex interactions at one previous and one novel locus: rs316341 within SERPINB1 (p = 0.04) and rs13115400 near LINC00290 (p = 0.002). These loci showed stronger associations among females (β = − 0.03, p = 4.25 × 10−8; β = 0.03, p = 3.97 × 10−8) than males (β = − 0.02, p = 0.009; β = 0.01, p = 0.20). Higher levels of expression of SERPINB1, SERPINB6, and SERPINB9 in PFC was associated with higher levels of amyloidosis among females (corrected p values < 0.02) but not males (p > 0.38). In total tau, we observed a sex interaction at a previous locus, rs1393060 proximal to GMNC (p = 0.004), driven by a stronger association among females (β = 0.05, p = 4.57 × 10−10) compared to males (β = 0.02, p = 0.03). There was also a sex-specific association between rs1393060 and tangle density at autopsy (pfemale = 0.047; pmale = 0.96), and higher levels of expression of two genes within this locus were associated with lower tangle density among females (OSTN p = 0.006; CLDN16 p = 0.002) but not males (p ≥ 0.32). Results suggest a female-specific role for SERPINB1 in amyloidosis and for OSTN and CLDN16 in tau pathology. Sex-specific genetic analyses may improve understanding of AD’s genetic architecture.
  •  
13.
  • Jack, Clifford R, et al. (author)
  • A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers.
  • 2016
  • In: Neurology. - 1526-632X. ; 87:5, s. 539-47
  • Journal article (peer-reviewed)abstract
    • Biomarkers have become an essential component of Alzheimer disease (AD) research and because of the pervasiveness of AD pathology in the elderly, the same biomarkers are used in cognitive aging research. A number of current issues suggest that an unbiased descriptive classification scheme for these biomarkers would be useful. We propose the "A/T/N" system in which 7 major AD biomarkers are divided into 3 binary categories based on the nature of the pathophysiology that each measures. "A" refers to the value of a β-amyloid biomarker (amyloid PET or CSF Aβ42); "T," the value of a tau biomarker (CSF phospho tau, or tau PET); and "N," biomarkers of neurodegeneration or neuronal injury ([(18)F]-fluorodeoxyglucose-PET, structural MRI, or CSF total tau). Each biomarker category is rated as positive or negative. An individual score might appear as A+/T+/N-, or A+/T-/N-, etc. The A/T/N system includes the new modality tau PET. It is agnostic to the temporal ordering of mechanisms underlying AD pathogenesis. It includes all individuals in any population regardless of the mix of biomarker findings and therefore is suited to population studies of cognitive aging. It does not specify disease labels and thus is not a diagnostic classification system. It is a descriptive system for categorizing multidomain biomarker findings at the individual person level in a format that is easy to understand and use. Given the present lack of consensus among AD specialists on terminology across the clinically normal to dementia spectrum, a biomarker classification scheme will have broadest acceptance if it is independent from any one clinically defined diagnostic scheme.
  •  
14.
  •  
15.
  • Kern, Silke, et al. (author)
  • Association of Cerebrospinal Fluid Neurofilament Light Protein With Risk of Mild Cognitive Impairment Among Individuals Without Cognitive Impairment.
  • 2019
  • In: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 76:2, s. 187-193
  • Journal article (peer-reviewed)abstract
    • Accumulating data suggest that elevated cerebrospinal fluid (CSF) neurofilament light (NfL) and neurogranin (Ng) levels are associated with cognitive decline and may be useful markers of neurodegeneration. However, to our knowledge, previous studies have not assessed these CSF markers in the community, evaluated them with regards to risk of mild cognitive impairment (MCI), or compared their prognostic value with CSF total tau (T-tau) or phosphorylated tau (P-tau).To determine (1) whether CSF NfL and Ng levels were associated with risk of MCI, (2) the effect size of these markers compared with CSF T-tau or P-tau for risk of MCI, and (3) whether CSF amyloid-β (Aβ42) modified these associations.The analyses included 648 participants without cognitive impairment who were enrolled into the prospective population-based Mayo Clinic Study of Aging between January 2004 and December 2015 with available CSF data and at least 1 follow-up visit. Participants were followed up for a median of 3.8 years (interquartile range, 2.6-5.4 years). The CSF NfL and Ng levels were measured using an in-house sandwich enzyme-linked immunosorbent assay. The CSF Aβ42, T-tau, and P-tau levels were measured with automated electrochemiluminescence immunoassays. Cox proportional hazards models, with age as the timescale, were used to assess the association between CSF NfL, Ng, Aβ42, T-tau, or P-tau with risk of MCI after adjusting for sex, education, apolipoprotein E genotype, and the Charlson comorbidity index. To examine CSF Aβ42 as an effect modifier, it was categorized into tertiles; the bottom tertile was defined as having elevated brain amyloid.Risk of MCI.At baseline, the median age of the 648 participants without cognitive impairment was 72.3 years (range, 50.7-95.3 years) and 366 (56.5%) were men; 96 (14.8%) developed incident MCI. Compared with the bottom quartile, the top quartile of CSF NfL was associated with a 3.1-fold increased risk of MCI (hazard ratio, 3.13; 95% CI, 1.36-7.18) in multivariate models. Neither CSF T-tau, P-tau, nor Ng was associated with risk of MCI. There was no interaction between Aβ42 and CSF NfL for risk of MCI.Elevated CSF NfL levels but not CSF T-tau, P-tau or Ng are a risk factor for MCI in a community population and are independent of brain amyloid.
  •  
16.
  • Knopman, David S., et al. (author)
  • The National Institute on Aging and the Alzheimer's Association Research Framework for Alzheimer's disease : Perspectives from the Research Roundtable
  • 2018
  • In: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 14:4, s. 563-575
  • Research review (peer-reviewed)abstract
    • The Alzheimer's Association's Research Roundtable met in November 2017 to explore the new National Institute on Aging and the Alzheimer's Association Research Framework for Alzheimer's disease. The meeting allowed experts in the field from academia, industry, and government to provide perspectives on the new National Institute on Aging and the Alzheimer's Association Research Framework. This review will summarize the “A, T, N System” (Amyloid, Tau, and Neurodegeneration) using biomarkers and how this may be applied to clinical research and drug development. In addition, challenges and barriers to the potential adoption of this new framework will be discussed. Finally, future directions for research will be proposed.
  •  
17.
  • Mackin, R. Scott, et al. (author)
  • Late-Life Depression Is Associated With Reduced Cortical Amyloid Burden : Findings From the Alzheimer's Disease Neuroimaging Initiative Depression Project
  • 2021
  • In: Biological Psychiatry. - : Elsevier BV. - 0006-3223. ; 89:8, s. 757-765
  • Journal article (peer-reviewed)abstract
    • Background: We evaluated the role of cortical amyloid deposition as a factor contributing to memory dysfunction and increased risk of dementia associated with late-life depression (LLD). Methods: A total of 119 older adult participants with a current diagnosis of major depression (LLD) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) Depression Project study and 119 nondepressed (ND) cognitively unimpaired participants matched on age, sex, and APOE genotype were obtained from the ADNI database. Results: Thirty-three percent of LLD participants met ADNI criteria for mild cognitive impairment. Compared with ND individuals, the LLD group exhibited less global amyloid beta (Aβ) accumulation (p = .05). The proportion of amyloid positivity in the LLD group was 19.3% compared with 31.1% for the ND participants (p = .02). Among LLD participants, global Aβ was not associated with lifetime number of depressive episodes, lifetime length of depression, length of lifetime selective serotonin reuptake inhibitor use, or lifetime length of untreated depression (p >. 21 for all). Global Aβ was associated with worse memory performance (p = .05). Similar results were found in secondary analyses restricting comparisons to the cognitively unimpaired LLD participants as well as when comparing the LLD group with an ND group that included participants with mild cognitive impairment. Conclusions: Contrary to expectation, the LLD group showed less Aβ deposition than the ND group and Aβ deposition was not associated with depression history characteristics. Aβ was associated with memory, but this relationship did not differ between LLD and ND. Our results suggest that memory deficits and accelerated cognitive decline reported in previous studies of LLD are not due to greater cortical Aβ accumulation.
  •  
18.
  • Mielke, Michelle M, et al. (author)
  • Comparison of variables associated with cerebrospinal fluid neurofilament, total-tau, and neurogranin.
  • 2019
  • In: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 15:11, s. 1437-1447
  • Journal article (peer-reviewed)abstract
    • Three cerebrospinal fluid (CSF) markers of neurodegeneration (N) (neurofilament light [NfL], total-tau [T-tau], and neurogranin [Ng]) have been proposed under the AT(N) scheme of the National Institute on Aging-Alzheimer's Association Research Framework.We examined, in a community-based population (N=777, aged 50-95) (1) what variables were associated with each of the CSF (N) markers, and (2) whether the variables associated with each marker differed by increased brain amyloid. CSF T-tau was measured with an automated electrochemiluminescence Elecsys immunoassay; NfL and Ng were measured with in-house enzyme-linked immunosorbent assays.Multiple variables were differentially associated with CSF NfL and T-tau levels, but not Ng. Most associations were attenuated after adjustment for age and sex. T-tau had the strongest association with cognition in the presence of amyloidosis, followed by Ng. Variables associations with NfL did not differ by amyloid status.Understanding factors that influence CSF (N) markers will assist in the interpretation and utility of these markers in clinical practice.
  •  
19.
  • Nelson, Peter T., et al. (author)
  • Reply : LATE to the PART-y
  • 2019
  • In: Brain. - : Oxford University Press. - 0006-8950 .- 1460-2156. ; 142
  • Journal article (other academic/artistic)
  •  
20.
  • Ossenkoppele, Rik, et al. (author)
  • Amyloid and tau PET-positive cognitively unimpaired individuals are at high risk for future cognitive decline
  • 2022
  • In: Nature Medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 28:11, s. 2381-2387
  • Journal article (peer-reviewed)abstract
    • A major unanswered question in the dementia field is whether cognitively unimpaired individuals who harbor both Alzheimer's disease neuropathological hallmarks (that is, amyloid-β plaques and tau neurofibrillary tangles) can preserve their cognition over time or are destined to decline. In this large multicenter amyloid and tau positron emission tomography (PET) study (n = 1,325), we examined the risk for future progression to mild cognitive impairment and the rate of cognitive decline over time among cognitively unimpaired individuals who were amyloid PET-positive (A+) and tau PET-positive (T+) in the medial temporal lobe (A+TMTL+) and/or in the temporal neocortex (A+TNEO-T+) and compared them with A+T- and A-T- groups. Cox proportional-hazards models showed a substantially increased risk for progression to mild cognitive impairment in the A+TNEO-T+ (hazard ratio (HR) = 19.2, 95% confidence interval (CI) = 10.9-33.7), A+TMTL+ (HR = 14.6, 95% CI = 8.1-26.4) and A+T- (HR = 2.4, 95% CI = 1.4-4.3) groups versus the A-T- (reference) group. Both A+TMTL+ (HR = 6.0, 95% CI = 3.4-10.6) and A+TNEO-T+ (HR = 7.9, 95% CI = 4.7-13.5) groups also showed faster clinical progression to mild cognitive impairment than the A+T- group. Linear mixed-effect models indicated that the A+TNEO-T+ (β = -0.056 ± 0.005, T = -11.55, P < 0.001), A+TMTL+ (β = -0.024 ± 0.005, T = -4.72, P < 0.001) and A+T- (β = -0.008 ± 0.002, T = -3.46, P < 0.001) groups showed significantly faster longitudinal global cognitive decline compared to the A-T- (reference) group (all P < 0.001). Both A+TNEO-T+ (P < 0.001) and A+TMTL+ (P = 0.002) groups also progressed faster than the A+T- group. In summary, evidence of advanced Alzheimer's disease pathological changes provided by a combination of abnormal amyloid and tau PET examinations is strongly associated with short-term (that is, 3-5 years) cognitive decline in cognitively unimpaired individuals and is therefore of high clinical relevance.
  •  
21.
  • Therriault, Joseph, et al. (author)
  • Biomarker-based staging of Alzheimer disease: rationale and clinical applications.
  • 2024
  • In: Nature reviews. Neurology. - 1759-4766. ; 20:4, s. 232-244
  • Journal article (peer-reviewed)abstract
    • Disease staging, whereby the spatial extent and load of brain pathology are used to estimate the severity ofAlzheimer disease (AD), is pivotal to the gold-standard neuropathological diagnosis of AD. Current in vivo diagnostic frameworks for AD are based on abnormal concentrations of amyloid-β and tau in the cerebrospinal fluid or on PET scans, and breakthroughs in molecular imaging have opened up the possibility of in vivo staging of AD. Focusing on the key principles of disease staging shared across several areas of medicine, this Review highlights the potential for in vivo staging of AD to transform our understanding of preclinical AD, refine enrolment criteria for trials of disease-modifying therapies and aid clinical decision-making in the era of anti-amyloid therapeutics. We provide a state-of-the-art review of recent biomarker-based AD staging systems and highlight their contributions to the understanding of the natural history of AD. Furthermore, we outline hypothetical frameworks to stage AD severity using more accessible fluid biomarkers. In addition, by applying amyloid PET-based staging to recently published anti-amyloid therapeutic trials, we highlight how biomarker-based disease staging frameworks could illustrate the numerous pathological changes that have already taken place in individuals with mildly symptomatic AD. Finally, we discuss challenges related to the validation and standardization of disease staging and provide a forward-looking perspective on potential clinical applications.
  •  
22.
  • Tosun, Duygu, et al. (author)
  • Detection of β-amyloid positivity in Alzheimer's Disease Neuroimaging Initiative participants with demographics, cognition, MRI and plasma biomarkers.
  • 2021
  • In: Brain communications. - : Oxford University Press (OUP). - 2632-1297. ; 3:2
  • Journal article (peer-reviewed)abstract
    • In vivo gold standard for the ante-mortem assessment of brain β-amyloid pathology is currently β-amyloid positron emission tomography or cerebrospinal fluid measures of β-amyloid42 or the β-amyloid42/β-amyloid40 ratio. The widespread acceptance of a biomarker classification scheme for the Alzheimer's disease continuum has ignited interest in more affordable and accessible approaches to detect Alzheimer's disease β-amyloid pathology, a process that often slows down the recruitment into, and adds to the cost of, clinical trials. Recently, there has been considerable excitement concerning the value of blood biomarkers. Leveraging multidisciplinary data from cognitively unimpaired participants and participants with mild cognitive impairment recruited by the multisite biomarker study of Alzheimer's Disease Neuroimaging Initiative, here we assessed to what extent plasma β-amyloid42/β-amyloid40, neurofilament light and phosphorylated-tau at threonine-181 biomarkers detect the presence of β-amyloid pathology, and to what extent the addition of clinical information such as demographic data, APOE genotype, cognitive assessments and MRI can assist plasma biomarkers in detecting β-amyloid-positivity. Our results confirm plasma β-amyloid42/β-amyloid40 as a robust biomarker of brain β-amyloid-positivity (area under curve, 0.80-0.87). Plasma phosphorylated-tau at threonine-181 detected β-amyloid-positivity only in the cognitively impaired with a moderate area under curve of 0.67, whereas plasma neurofilament light did not detect β-amyloid-positivity in either group of participants. Clinical information as well as MRI-score independently detected positron emission tomography β-amyloid-positivity in both cognitively unimpaired and impaired (area under curve, 0.69-0.81). Clinical information, particularly APOE ε4 status, enhanced the performance of plasma biomarkers in the detection of positron emission tomography β-amyloid-positivity by 0.06-0.14 units of area under curve for cognitively unimpaired, and by 0.21-0.25 units for cognitively impaired; and further enhancement of these models with an MRI-score of β-amyloid-positivity yielded an additional improvement of 0.04-0.11 units of area under curve for cognitively unimpaired and 0.05-0.09 units for cognitively impaired. Taken together, these multi-disciplinary results suggest that when combined with clinical information, plasma phosphorylated-tau at threonine-181 and neurofilament light biomarkers, and an MRI-score could effectively identify β-amyloid+ cognitively unimpaired and impaired (area under curve, 0.80-0.90). Yet, when the MRI-score is considered in combination with clinical information, plasma phosphorylated-tau at threonine-181 and plasma neurofilament light have minimal added value for detecting β-amyloid-positivity. Our systematic comparison of β-amyloid-positivity detection models identified effective combinations of demographics, APOE, global cognition, MRI and plasma biomarkers. Promising minimally invasive and low-cost predictors such as plasma biomarkers of β-amyloid42/β-amyloid40 may be improved by age and APOE genotype.
  •  
23.
  • Trojanowski, John Q, et al. (author)
  • Update on the biomarker core of the Alzheimer's Disease Neuroimaging Initiative subjects.
  • 2010
  • In: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 6:3, s. 230-8
  • Research review (peer-reviewed)abstract
    • Here, we review progress by the Penn Biomarker Core in the Alzheimer's Disease Neuroimaging Initiative (ADNI) toward developing a pathological cerebrospinal fluid (CSF) and plasma biomarker signature for mild Alzheimer's disease (AD) as well as a biomarker profile that predicts conversion of mild cognitive impairment (MCI) and/or normal control subjects to AD. The Penn Biomarker Core also collaborated with other ADNI Cores to integrate data across ADNI to temporally order changes in clinical measures, imaging data, and chemical biomarkers that serve as mileposts and predictors of the conversion of normal control to MCI as well as MCI to AD, and the progression of AD. Initial CSF studies by the ADNI Biomarker Core revealed a pathological CSF biomarker signature of AD defined by the combination of Abeta1-42 and total tau (T-tau) that effectively delineates mild AD in the large multisite prospective clinical investigation conducted in ADNI. This signature appears to predict conversion from MCI to AD. Data fusion efforts across ADNI Cores generated a model for the temporal ordering of AD biomarkers which suggests that Abeta amyloid biomarkers become abnormal first, followed by changes in neurodegenerative biomarkers (CSF tau, F-18 fluorodeoxyglucose-positron emission tomography, magnetic resonance imaging) with the onset of clinical symptoms. The timing of these changes varies in individual patients due to genetic and environmental factors that increase or decrease an individual's resilience in response to progressive accumulations of AD pathologies. Further studies in ADNI will refine this model and render the biomarkers studied in ADNI more applicable to routine diagnosis and to clinical trials of disease modifying therapies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-23 of 23
Type of publication
journal article (20)
research review (3)
Type of content
peer-reviewed (22)
other academic/artistic (1)
Author/Editor
Blennow, Kaj, 1958 (9)
Trojanowski, John Q (7)
Zetterberg, Henrik, ... (5)
Boomsma, Dorret I. (5)
Hottenga, Jouke-Jan (5)
Ikram, M. Arfan (4)
show more...
van Duijn, Cornelia ... (4)
Shaw, Leslie M (4)
Schmidt, Reinhold (4)
Schmidt, Helena (4)
Fornage, Myriam (4)
Launer, Lenore J (4)
Hofman, Albert (4)
Uitterlinden, André ... (4)
Gudnason, Vilmundur (4)
Murray, Melissa E (4)
Franke, Barbara (3)
Westman, Eric (3)
Ching, Christopher R ... (3)
Agartz, Ingrid (3)
Brouwer, Rachel M (3)
Melle, Ingrid (3)
Westlye, Lars T (3)
Thompson, Paul M (3)
Andreassen, Ole A (3)
Alafuzoff, Irina (3)
Jagust, William J. (3)
Kovacs, Gabor G. (3)
Sperling, Reisa A. (3)
Scheltens, Philip (3)
de Geus, Eco J. C. (3)
Martin, Nicholas G. (3)
Djurovic, Srdjan (3)
Meyer-Lindenberg, An ... (3)
Thalamuthu, Anbupala ... (3)
Cichon, Sven (3)
Rietschel, Marcella (3)
Schofield, Peter R (3)
Deary, Ian J (3)
Mattheisen, Manuel (3)
Montgomery, Grant W. (3)
Keene, C. Dirk (3)
Heinz, Andreas (3)
Le Hellard, Stephani ... (3)
Harris, Tamara B (3)
Homuth, Georg (3)
Francks, Clyde (3)
Smith, George Davey (3)
Hartman, Catharina A ... (3)
Attems, Johannes (3)
show less...
University
University of Gothenburg (11)
Lund University (7)
Uppsala University (5)
Karolinska Institutet (5)
Umeå University (3)
Mid Sweden University (2)
show more...
Stockholm University (1)
show less...
Language
English (23)
Research subject (UKÄ/SCB)
Medical and Health Sciences (23)
Natural sciences (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view