SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jackson KE) "

Search: WFRF:(Jackson KE)

  • Result 1-50 of 51
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Niemi, MEK, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
4.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • In: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Research review (peer-reviewed)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
5.
  • Law, PJ, et al. (author)
  • Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia
  • 2017
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8, s. 14175-
  • Journal article (peer-reviewed)abstract
    • Several chronic lymphocytic leukaemia (CLL) susceptibility loci have been reported; however, much of the heritable risk remains unidentified. Here we perform a meta-analysis of six genome-wide association studies, imputed using a merged reference panel of 1,000 Genomes and UK10K data, totalling 6,200 cases and 17,598 controls after replication. We identify nine risk loci at 1p36.11 (rs34676223, P=5.04 × 10−13), 1q42.13 (rs41271473, P=1.06 × 10−10), 4q24 (rs71597109, P=1.37 × 10−10), 4q35.1 (rs57214277, P=3.69 × 10−8), 6p21.31 (rs3800461, P=1.97 × 10−8), 11q23.2 (rs61904987, P=2.64 × 10−11), 18q21.1 (rs1036935, P=3.27 × 10−8), 19p13.3 (rs7254272, P=4.67 × 10−8) and 22q13.33 (rs140522, P=2.70 × 10−9). These new and established risk loci map to areas of active chromatin and show an over-representation of transcription factor binding for the key determinants of B-cell development and immune response.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Khatri, C, et al. (author)
  • Outcomes after perioperative SARS-CoV-2 infection in patients with proximal femoral fractures: an international cohort study
  • 2021
  • In: BMJ open. - : BMJ. - 2044-6055. ; 11:11, s. e050830-
  • Journal article (peer-reviewed)abstract
    • Studies have demonstrated high rates of mortality in people with proximal femoral fracture and SARS-CoV-2, but there is limited published data on the factors that influence mortality for clinicians to make informed treatment decisions. This study aims to report the 30-day mortality associated with perioperative infection of patients undergoing surgery for proximal femoral fractures and to examine the factors that influence mortality in a multivariate analysis.SettingProspective, international, multicentre, observational cohort study.ParticipantsPatients undergoing any operation for a proximal femoral fracture from 1 February to 30 April 2020 and with perioperative SARS-CoV-2 infection (either 7 days prior or 30-day postoperative).Primary outcome30-day mortality. Multivariate modelling was performed to identify factors associated with 30-day mortality.ResultsThis study reports included 1063 patients from 174 hospitals in 19 countries. Overall 30-day mortality was 29.4% (313/1063). In an adjusted model, 30-day mortality was associated with male gender (OR 2.29, 95% CI 1.68 to 3.13, p<0.001), age >80 years (OR 1.60, 95% CI 1.1 to 2.31, p=0.013), preoperative diagnosis of dementia (OR 1.57, 95% CI 1.15 to 2.16, p=0.005), kidney disease (OR 1.73, 95% CI 1.18 to 2.55, p=0.005) and congestive heart failure (OR 1.62, 95% CI 1.06 to 2.48, p=0.025). Mortality at 30 days was lower in patients with a preoperative diagnosis of SARS-CoV-2 (OR 0.6, 95% CI 0.6 (0.42 to 0.85), p=0.004). There was no difference in mortality in patients with an increase to delay in surgery (p=0.220) or type of anaesthetic given (p=0.787).ConclusionsPatients undergoing surgery for a proximal femoral fracture with a perioperative infection of SARS-CoV-2 have a high rate of mortality. This study would support the need for providing these patients with individualised medical and anaesthetic care, including medical optimisation before theatre. Careful preoperative counselling is needed for those with a proximal femoral fracture and SARS-CoV-2, especially those in the highest risk groups.Trial registration numberNCT04323644
  •  
12.
  • McMaster, ML, et al. (author)
  • Two high-risk susceptibility loci at 6p25.3 and 14q32.13 for Waldenström macroglobulinemia
  • 2018
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1, s. 4182-
  • Journal article (peer-reviewed)abstract
    • Waldenström macroglobulinemia (WM)/lymphoplasmacytic lymphoma (LPL) is a rare, chronic B-cell lymphoma with high heritability. We conduct a two-stage genome-wide association study of WM/LPL in 530 unrelated cases and 4362 controls of European ancestry and identify two high-risk loci associated with WM/LPL at 6p25.3 (rs116446171, near EXOC2 and IRF4; OR = 21.14, 95% CI: 14.40–31.03, P = 1.36 × 10−54) and 14q32.13 (rs117410836, near TCL1; OR = 4.90, 95% CI: 3.45–6.96, P = 8.75 × 10−19). Both risk alleles are observed at a low frequency among controls (~2–3%) and occur in excess in affected cases within families. In silico data suggest that rs116446171 may have functional importance, and in functional studies, we demonstrate increased reporter transcription and proliferation in cells transduced with the 6p25.3 risk allele. Although further studies are needed to fully elucidate underlying biological mechanisms, together these loci explain 4% of the familial risk and provide insights into genetic susceptibility to this malignancy.
  •  
13.
  • Mishra, A, et al. (author)
  • Diminishing benefits of urban living for children and adolescents' growth and development
  • 2023
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 615:7954, s. 874-883
  • Journal article (peer-reviewed)abstract
    • Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was <1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified.
  •  
14.
  •  
15.
  •  
16.
  • Bravo, L, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
17.
  • 2021
  • swepub:Mat__t
  •  
18.
  • Tabiri, S, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
19.
  • Ahmad, Amais, et al. (author)
  • IMI – Oral biopharmaceutics tools project – Evaluation of bottom-up PBPK prediction success part 4 : Prediction accuracy and software comparisons with improved data and modelling strategies
  • 2020
  • In: European journal of pharmaceutics and biopharmaceutics. - : Elsevier BV. - 0939-6411 .- 1873-3441. ; 156, s. 50-63
  • Journal article (peer-reviewed)abstract
    • Oral drug absorption is a complex process depending on many factors, including the physicochemical properties of the drug, formulation characteristics and their interplay with gastrointestinal physiology and biology. Physiological-based pharmacokinetic (PBPK) models integrate all available information on gastro-intestinal system with drug and formulation data to predict oral drug absorption. The latter together with in vitro-in vivo extrapolation and other preclinical data on drug disposition can be used to predict plasma concentration-time profiles in silico. Despite recent successes of PBPK in many areas of drug development, an improvement in their utility for evaluating oral absorption is much needed. Current status of predictive performance, within the confinement of commonly available in vitro data on drugs and formulations alongside systems information, were tested using 3 PBPK software packages (GI-Sim (ver.4.1), Simcyp® Simulator (ver.15.0.86.0), and GastroPlusTM (ver.9.0.00xx)). This was part of the Innovative Medicines Initiative (IMI) Oral Biopharmaceutics Tools (OrBiTo) project.Fifty eight active pharmaceutical ingredients (APIs) were qualified from the OrBiTo database to be part of the investigation based on a priori set criteria on availability of minimum necessary information to allow modelling exercise. The set entailed over 200 human clinical studies with over 700 study arms. These were simulated using input parameters which had been harmonised by a panel of experts across different software packages prior to conduct of any simulation. Overall prediction performance and software packages comparison were evaluated based on performance indicators (Fold error (FE), Average fold error (AFE) and absolute average fold error (AAFE)) of pharmacokinetic (PK) parameters.On average, PK parameters (Area Under the Concentration-time curve (AUC0-tlast), Maximal concentration (Cmax), half-life (t1/2)) were predicted with AFE values between 1.11 and 1.97. Variability in FEs of these PK parameters was relatively high with AAFE values ranging from 2.08 to 2.74. Around half of the simulations were within the 2-fold error for AUC0-tlast and around 90% of the simulations were within 10-fold error for AUC0-tlast. Oral bioavailability (Foral) predictions, which were limited to 19 APIs having intravenous (i.v.) human data, showed AFE and AAFE of values 1.37 and 1.75 respectively. Across different APIs, AFE of AUC0-tlast predictions were between 0.22 and 22.76 with 70% of the APIs showing an AFE > 1. When compared across different formulations and routes of administration, AUC0-tlast for oral controlled release and i.v. administration were better predicted than that for oral immediate release formulations. Average predictive performance did not clearly differ between software packages but some APIs showed a high level of variability in predictive performance across different software packages. This variability could be related to several factors such as compound specific properties, the quality and availability of information, and errors in scaling from in vitro and preclinical in vivo data to human in vivo behaviour which will be explored further. Results were compared with previous similar exercise when the input data selection was carried by the modeller rather than a panel of experts on each in vitro test. Overall, average predictive performance was increased as reflected in smaller AAFE value of 2.8 as compared to AAFE value of 3.8 in case of previous exercise.
  •  
20.
  • Bayley, PJ, et al. (author)
  • 2013 SYR Accepted Poster Abstracts
  • 2013
  • In: International journal of yoga therapy. - 1531-2054. ; 23:1, s. 32-53
  • Journal article (peer-reviewed)
  •  
21.
  • Beal, Jacob, et al. (author)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
22.
  •  
23.
  •  
24.
  • Dimas, Antigone S, et al. (author)
  • Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity.
  • 2014
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 63:6, s. 2158-2171
  • Journal article (peer-reviewed)abstract
    • Patients with established type 2 diabetes display both beta-cell dysfunction and insulin resistance. To define fundamental processes leading to the diabetic state, we examined the relationship between type 2 diabetes risk variants at 37 established susceptibility loci and indices of proinsulin processing, insulin secretion and insulin sensitivity. We included data from up to 58,614 non-diabetic subjects with basal measures, and 17,327 with dynamic measures. We employed additive genetic models with adjustment for sex, age and BMI, followed by fixed-effects inverse variance meta-analyses. Cluster analyses grouped risk loci into five major categories based on their relationship to these continuous glycemic phenotypes. The first cluster (PPARG, KLF14, IRS1, GCKR) was characterized by primary effects on insulin sensitivity. The second (MTNR1B, GCK) featured risk alleles associated with reduced insulin secretion and fasting hyperglycemia. ARAP1 constituted a third cluster characterized by defects in insulin processing. A fourth cluster (including TCF7L2, SLC30A8, HHEX/IDE, CDKAL1, CDKN2A/2B) was defined by loci influencing insulin processing and secretion without detectable change in fasting glucose. The final group contained twenty risk loci with no clear-cut associations to continuous glycemic traits. By assembling extensive data on continuous glycemic traits, we have exposed the diverse mechanisms whereby type 2 diabetes risk variants impact disease predisposition.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  • Ingelsson, Erik, et al. (author)
  • Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans
  • 2010
  • In: Diabetes. - 0012-1797 .- 1939-327X. ; 59:5, s. 1266-1275
  • Conference paper (peer-reviewed)abstract
    • OBJECTIVE-Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS-We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS-The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 x 10(-71)). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS-Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes. Diabetes 59:1266-1275, 2010
  •  
29.
  • Ingelsson, Erik, et al. (author)
  • Detailed physiologic characterization reveals diverse mechanisms for novel genetic Loci regulating glucose and insulin metabolism in humans
  • 2010
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 59:5, s. 1266-1275
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 x 10(-71)). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes.
  •  
30.
  • Jackson, Victoria E, et al. (author)
  • Meta-analysis of exome array data identifies six novel genetic loci for lung function.
  • 2018
  • In: Wellcome open research. - : F1000 Research Ltd. - 2398-502X. ; 3
  • Journal article (peer-reviewed)abstract
    • Background: Over 90 regions of the genome have been associated with lung function to date, many of which have also been implicated in chronic obstructive pulmonary disease. Methods: We carried out meta-analyses of exome array data and three lung function measures: forced expiratory volume in one second (FEV 1), forced vital capacity (FVC) and the ratio of FEV 1 to FVC (FEV 1/FVC). These analyses by the SpiroMeta and CHARGE consortia included 60,749 individuals of European ancestry from 23 studies, and 7,721 individuals of African Ancestry from 5 studies in the discovery stage, with follow-up in up to 111,556 independent individuals. Results: We identified significant (P<2·8x10 -7) associations with six SNPs: a nonsynonymous variant in RPAP1, which is predicted to be damaging, three intronic SNPs ( SEC24C, CASC17 and UQCC1) and two intergenic SNPs near to LY86 and FGF10. Expression quantitative trait loci analyses found evidence for regulation of gene expression at three signals and implicated several genes, including TYRO3 and PLAU. Conclusions: Further interrogation of these loci could provide greater understanding of the determinants of lung function and pulmonary disease.
  •  
31.
  •  
32.
  • Kilpelainen, TO, et al. (author)
  • Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity
  • 2019
  • In: Nature communications. - London : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 376-
  • Journal article (peer-reviewed)abstract
    • Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels.
  •  
33.
  •  
34.
  • Lango Allen, Hana, et al. (author)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height.
  • 2010
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 467:7317, s. 832-8
  • Journal article (peer-reviewed)abstract
    • Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
  •  
35.
  •  
36.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  •  
42.
  •  
43.
  • Shrine, Nick, et al. (author)
  • New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries
  • 2019
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 51:3, s. 481-493
  • Journal article (peer-reviewed)abstract
    • Reduced lung function predicts mortality and is key to the diagnosis of chronic obstructive pulmonary disease (COPD). In a genome-wide association study in 400,102 individuals of European ancestry, we define 279 lung function signals, 139 of which are new. In combination, these variants strongly predict COPD in independent populations. Furthermore, the combined effect of these variants showed generalizability across smokers and never smokers, and across ancestral groups. We highlight biological pathways, known and potential drug targets for COPD and, in phenome-wide association studies, autoimmune-related and other pleiotropic effects of lung function-associated variants. This new genetic evidence has potential to improve future preventive and therapeutic strategies for COPD.
  •  
44.
  • Thun, Gian Andri, et al. (author)
  • Causal and Synthetic Associations of Variants in the SERPINA Gene Cluster with Alpha1-antitrypsin Serum Levels
  • 2013
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 9:8, s. e1003585-
  • Journal article (peer-reviewed)abstract
    • Several infrequent genetic polymorphisms in the SERPINA1 gene are known to substantially reduce concentration of alpha1-antitrypsin (AAT) in the blood. Since low AAT serum levels fail to protect pulmonary tissue from enzymatic degradation these polymorphisms also increase the risk for early onset chronic obstructive pulmonary disease (COPD). The role of more common SERPINA1 single nucleotide polymorphisms (SNPs) in respiratory health remains poorly understood. We present here an agnostic investigation of genetic determinants of circulating AAT levels in a general population sample by performing a genome-wide association study (GWAS) in 1392 individuals of the SAPALDIA cohort. Five common SNPs defined by showing minor allele frequencies (MAFs) >5% reached genome-wide significance all located in the SERPINA gene cluster at 14q32.13. The top-ranking genotyped SNP rs4905179 was associated with an estimated effect of beta = 20.068 g/L per minor allele (P = 1.20*10(-12)). But denser SERPINA1 locus genotyping in 5569 participants with subsequent stepwise conditional analysis as well as exon-sequencing in a subsample (N = 410) suggested that AAT serum level is causally determined at this locus by rare (MAF<1%) and low-frequent (MAF 1-5%) variants only in particular by the well-documented protein inhibitor S and Z (PI S PI Z) variants. Replication of the association of rs4905179 with AAT serum levels in the Copenhagen City Heart Study (N = 8273) was successful (P<0.0001) as was the replication of its synthetic nature (the effect disappeared after adjusting for PI S and Z P = 0.57). Extending the analysis to lung function revealed a more complex situation. Only in individuals with severely compromised pulmonary health (N = 397) associations of common SNPs at this locus with lung function were driven by rarer PI S or Z variants. Overall our meta-analysis of lung function in ever-smokers does not support a functional role of common SNPs in the SERPINA gene cluster in the general population.
  •  
45.
  • Wain, Louise V, et al. (author)
  • Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets.
  • 2017
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 49:3, s. 416-425
  • Journal article (peer-reviewed)abstract
    • Chronic obstructive pulmonary disease (COPD) is characterized by reduced lung function and is the third leading cause of death globally. Through genome-wide association discovery in 48,943 individuals, selected from extremes of the lung function distribution in UK Biobank, and follow-up in 95,375 individuals, we increased the yield of independent signals for lung function from 54 to 97. A genetic risk score was associated with COPD susceptibility (odds ratio per 1 s.d. of the risk score (∼6 alleles) (95% confidence interval) = 1.24 (1.20-1.27), P = 5.05 × 10(-49)), and we observed a 3.7-fold difference in COPD risk between individuals in the highest and lowest genetic risk score deciles in UK Biobank. The 97 signals show enrichment in genes for development, elastic fibers and epigenetic regulation pathways. We highlight targets for drugs and compounds in development for COPD and asthma (genes in the inositol phosphate metabolism pathway and CHRM3) and describe targets for potential drug repositioning from other clinical indications.
  •  
46.
  • Wang, Chao, et al. (author)
  • The role of turbulence in high-mass star formation: Subsonic and transonic turbulence are ubiquitously found at early stages
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 681
  • Journal article (peer-reviewed)abstract
    • Context. Traditionally, supersonic turbulence is considered to be one of the most likely mechanisms slowing the gravitational collapse in dense clumps, thereby enabling the formation of massive stars. However, several recent studies have raised differing points of view based on observations carried out with sufficiently high spatial and spectral resolution. These studies call for a re-evaluation of the role turbulence plays in massive star-forming regions. Aims. Our aim is to study the gas properties, especially the turbulence, in a sample of massive star-forming regions with sufficient spatial and spectral resolution, which can both resolve the core fragmentation and the thermal line width. Methods. We observed NH3 metastable lines with the Very Large Array (VLA) to assess the intrinsic turbulence. Results. Analysis of the turbulence distribution histogram for 32 identified NH3 cores reveals the presence of three distinct components. Furthermore, our results suggest that (1) sub-and transonic turbulence is a prevalent (21 of 32) feature of massive star-forming regions and those cold regions are at early evolutionary stage. This investigation indicates that turbulence alone is insufficient to provide the necessary internal pressure required for massive star formation, necessitating further exploration of alternative candidates; and (2) studies of seven multi-core systems indicate that the cores within each system mainly share similar gas properties and masses. However, two of the systems are characterized by the presence of exceptionally cold and dense cores that are situated at the spatial center of each system. Our findings support the hub-filament model as an explanation for this observed distribution.
  •  
47.
  •  
48.
  •  
49.
  •  
50.
  • Yaghootkar, Hanieh, et al. (author)
  • Mendelian randomization studies do not support a causal role for reduced circulating adiponectin levels in insulin resistance and type 2 diabetes.
  • 2013
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 62:10, s. 3589-3598
  • Journal article (peer-reviewed)abstract
    • Adiponectin is strongly inversely associated with insulin resistance and type 2 diabetes, but its causal role remains controversial. We used a Mendelian randomization approach to test the hypothesis that adiponectin causally influences insulin resistance and type 2 diabetes. We used genetic variants at the ADIPOQ gene as instruments to calculate a regression slope between adiponectin levels and metabolic traits (up to 31,000 individuals) and a combination of instrumental variables and summary statistics-based genetic risk scores to test the associations with gold-standard measures of insulin sensitivity (2,969 individuals) and type 2 diabetes (15,960 case subjects and 64,731 control subjects). In conventional regression analyses, a 1-SD decrease in adiponectin levels was correlated with a 0.31-SD (95% CI 0.26-0.35) increase in fasting insulin, a 0.34-SD (0.30-0.38) decrease in insulin sensitivity, and a type 2 diabetes odds ratio (OR) of 1.75 (1.47-2.13). The instrumental variable analysis revealed no evidence of a causal association between genetically lower circulating adiponectin and higher fasting insulin (0.02 SD; 95% CI -0.07 to 0.11; N = 29,771), nominal evidence of a causal relationship with lower insulin sensitivity (-0.20 SD; 95% CI -0.38 to -0.02; N = 1,860), and no evidence of a relationship with type 2 diabetes (OR 0.94; 95% CI 0.75-1.19; N = 2,777 case subjects and 13,011 control subjects). Using the ADIPOQ summary statistics genetic risk scores, we found no evidence of an association between adiponectin-lowering alleles and insulin sensitivity (effect per weighted adiponectin-lowering allele: -0.03 SD; 95% CI -0.07 to 0.01; N = 2,969) or type 2 diabetes (OR per weighted adiponectin-lowering allele: 0.99; 95% CI 0.95-1.04; 15,960 case subjects vs. 64,731 control subjects). These results do not provide any consistent evidence that interventions aimed at increasing adiponectin levels will improve insulin sensitivity or risk of type 2 diabetes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 51
Type of publication
journal article (40)
conference paper (4)
research review (1)
Type of content
peer-reviewed (37)
other academic/artistic (8)
Author/Editor
Peters, A (14)
Hayward, C. (14)
Ridker, PM (14)
Langenberg, C. (13)
Gudnason, V (13)
Chanock, SJ (13)
show more...
Wareham, NJ (13)
Gieger, C (13)
Loos, RJF (12)
Lind, Lars (12)
Laakso, M. (12)
Esko, T (12)
Jackson, AU (12)
Wilson, JF (12)
Metspalu, A (12)
Boehnke, M (12)
Zhao, JH (12)
Chasman, DI (12)
Mahajan, A. (11)
van Duijn, CM (11)
Yang, J. (11)
Feitosa, MF (11)
Kutalik, Z. (11)
Lehtimaki, T. (11)
Snieder, H. (11)
Kuusisto, J. (11)
Mohlke, KL (11)
Salomaa, V (11)
Winkler, TW (11)
Erdmann, J. (10)
Hottenga, JJ (10)
Pedersen, NL (10)
Smith, AV (10)
Teumer, A (10)
Uitterlinden, AG (10)
Launer, LJ (10)
Kanoni, S (10)
Boerwinkle, E (10)
Deloukas, P. (10)
Tuomilehto, J. (10)
Hveem, K (10)
Campbell, H (10)
Berndt, SI (10)
McCarthy, MI (10)
Melbye, M (10)
Wong, A (10)
Polašek, O. (10)
Rudan, I. (10)
Spector, TD (10)
Vitart, V (10)
show less...
University
Karolinska Institutet (40)
Uppsala University (20)
Lund University (17)
University of Gothenburg (12)
Umeå University (11)
Linköping University (3)
show more...
Swedish University of Agricultural Sciences (3)
Stockholm University (2)
Chalmers University of Technology (2)
Royal Institute of Technology (1)
University of Skövde (1)
Högskolan Dalarna (1)
show less...
Language
English (51)
Research subject (UKÄ/SCB)
Medical and Health Sciences (26)
Natural sciences (7)
Engineering and Technology (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view