SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jacq T.) "

Search: WFRF:(Jacq T.)

  • Result 1-23 of 23
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bergin, E. A., et al. (author)
  • Sensitive limits on the abundance of cold water vapor in the DM Tauri protoplanetary disk
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L33-
  • Journal article (peer-reviewed)abstract
    • We performed a sensitive search for the ground-state emission lines of ortho-and para-water vapor in the DM Tau protoplanetary disk using the Herschel/HIFI instrument. No strong lines are detected down to 3 sigma levels in 0.5 km s(-1) channels of 4.2 mK for the 1(10)-1(01) line and 12.6 mK for the 1(11)-0(00) line. We report a very tentative detection, however, of the 1(10)-1(01) line in the wide band spectrometer, with a strength of T-mb = 2.7 mK, a width of 5.6 km s(-1) and an integrated intensity of 16.0 mK km s(-1). The latter constitutes a 6 sigma detection. Regardless of the reality of this tentative detection, model calculations indicate that our sensitive limits on the line strengths preclude efficient desorption of water in the UV illuminated regions of the disk. We hypothesize that more than 95-99% of the water ice is locked up in coagulated grains that have settled to the midplane.
  •  
2.
  • Caselli, P., et al. (author)
  • Water vapor toward starless cores : The Herschel view
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L29-
  • Journal article (peer-reviewed)abstract
    • Aims: Previous studies by the satellites SWAS and Odin provided stringent upper limits on the gas phase water abundance of dark clouds (x(H2O) < 7 × 10-9). We investigate the chemistry of water vapor in starless cores beyond the previous upper limits using the highly improved angular resolution and sensitivity of Herschel and measure the abundance of water vapor during evolutionary stages just preceding star formation. Methods: High spectral resolution observations of the fundamental ortho water (o-H2O) transition (557 GHz) were carried out with the Heterodyne Instrument for the Far Infrared onboard Herschel toward two starless cores: Barnard 68 (hereafter B68), a Bok globule, and LDN 1544 (L1544), a prestellar core embedded in the Taurus molecular cloud complex. Detailed radiative transfer and chemical codes were used to analyze the data. Results: The RMS in the brightness temperature measured for the B68 and L1544 spectra is 2.0 and 2.2 mK, respectively, in a velocity bin of 0.59 km s-1. The continuum level is 3.5 ± 0.2 mK in B68 and 11.4 ± 0.4 mK in L1544. No significant feature is detected in B68 and the 3σ upper limit is consistent with a column density of o-H2O N(o-H2O) < 2.5 × 1013 cm-2, or a fractional abundance x(o-H2O) < 1.3 × 10-9, more than an order of magnitude lower than the SWAS upper limit on this source. The L1544 spectrum shows an absorption feature at a 5σ level from which we obtain the first value of the o-H2O column density ever measured in dark clouds: N(o-H2O) = (8 ± 4) × 1012 cm-2. The corresponding fractional abundance is x(o-H2O) ≃ 5 × 10-9 at radii >7000 AU and ≃2 × 10-10 toward the center. The radiative transfer analysis shows that this is consistent with a x(o-H2O) profile peaking at ≃10-8, 0.1 pc away from the core center, where both freeze-out and photodissociation are negligible. Conclusions: Herschel has provided the first measurement of water vapor in dark regions. Column densities of o-H2O are low, but prestellar cores such as L1544 (with their high central densities, strong continuum, and large envelopes) appear to be very promising tools to finally shed light on the solid/vapor balance of water in molecular clouds and oxygen chemistry in the earliest stages of star formation. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
  •  
3.
  • Ceccarelli, C., et al. (author)
  • Herschel spectral surveys of star- forming regions Overview of the 555-636 GHz range
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L22-
  • Journal article (peer-reviewed)abstract
    • High resolution line spectra of star-forming regions are mines of information: they provide unique clues to reconstruct the chemical, dynamical, and physical structure of the observed source. We present the first results from the Herschel key project " Chemical HErschel Surveys of Star forming regions", CHESS. We report and discuss observations towards five CHESS targets, one outflow shock spot and four protostars with luminosities bewteen 20 and 2 x 105 L similar to : L1157-B1, IRAS 16293-2422, OMC2-FIR4, AFGL 2591, and NGC 6334I. The observations were obtained with the heterodyne spectrometer HIFI on board Herschel, with a spectral resolution of 1 MHz. They cover the frequency range 555-636 GHz, a range largely unexplored before the launch of the Herschel satellite. A comparison of the five spectra highlights spectacular differences in the five sources, for example in the density of methanol lines, or the presence./absence of lines from S-bearing molecules or deuterated species. We discuss how these differences can be attributed to the different star-forming mass or evolutionary status.
  •  
4.
  • Fich, M., et al. (author)
  • Herschel-PACS spectroscopy of the intermediate mass protostar NGC 7129 FIRS 2
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L86
  • Journal article (peer-reviewed)abstract
    • Aims. We present preliminary results of the first Herschel spectroscopic observations of NGC 7129 FIRS2, an intermediate mass star-forming region. We attempt to interpret the observations in the framework of an in-falling spherical envelope. Methods. The PACS instrument was used in line spectroscopy mode ( R = 1000-5000) with 15 spectral bands between 63 and 185 mu m. This provided good detections of 26 spectral lines seen in emission, including lines of H2O, CO, OH, O I, and C II. Results. Most of the detected lines, particularly those of H2O and CO, are substantially stronger than predicted by the spherical envelope models, typically by several orders of magnitude. In this paper we focus on what can be learned from the detected CO emission lines. Conclusions. It is unlikely that the much stronger than expected line emission arises in the (spherical) envelope of the YSO. The region hot enough to produce such high excitation lines within such an envelope is too small to produce the amount of emission observed. Virtually all of this high excitation emission must arise in structures such as as along the walls of the outflow cavity with the emission produced by a combination of UV photon heating and/or non-dissociative shocks.
  •  
5.
  • Lefloch, B., et al. (author)
  • The CHESS spectral survey of star forming regions : Peering into the protostellar shock L1157-B1. II. Shock dynamics
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L113-
  • Journal article (peer-reviewed)abstract
    • Context. The outflow driven by the low-mass class 0 protostar L1157 is the prototype of the so-called chemically active outflows. The bright bowshock B1 in the southern outflow lobe is a privileged testbed of magneto-hydrodynamical (MHD) shock models, for which dynamical and chemical processes are strongly interdependent. Aims: We present the first results of the unbiased spectral survey of the L1157-B1 bowshock, obtained in the framework of the key program “Chemical HErschel Surveys of star forming regions” (CHESS). The main aim is to trace the warm and chemically enriched gas and to infer the excitation conditions in the shock region. Methods: The CO 5-4 and o-H2O 110-101 lines have been detected at high-spectral resolution in the unbiased spectral survey of the HIFI-band 1b spectral window (555-636 GHz), presented by Codella et al. in this volume. Complementary ground-based observations in the submm window help establish the origin of the emission detected in the main-beam of HIFI and the physical conditions in the shock. Results: Both lines exhibit broad wings, which extend to velocities much higher than reported up to now. We find that the molecular emission arises from two regions with distinct physical conditions : an extended, warm (100 K), dense (3 × 105 cm-3) component at low-velocity, which dominates the water line flux in Band 1; a secondary component in a small region of B1 (a few arcsec) associated with high-velocity, hot (>400 K) gas of moderate density ((1.0-3.0) × 104 cm-3), which appears to dominate the flux of the water line at 179μm observed with PACS. The water abundance is enhanced by two orders of magnitude between the low- and the high-velocity component, from 8 × 10-7 up to 8 × 10-5. The properties of the high-velocity component agree well with the predictions of steady-state C-shock models. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
  •  
6.
  • Marseille, M. G., et al. (author)
  • Water abundances in high-mass protostellar envelopes : Herschel observations with HIFI
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L32-
  • Journal article (peer-reviewed)abstract
    • Aims: We derive the dense core structure and the water abundance in four massive star-forming regions in the hope of understanding the earliest stages of massive star formation. Methods: We present Herschel/HIFI observations of the para-H2O 111-000 and 202-111 and the para-H_218O 111-000 transitions. The envelope contribution to the line profiles is separated from contributions by outflows and foreground clouds. The envelope contribution is modeled with Monte-Carlo radiative transfer codes for dust and molecular lines (MC3D and RATRAN), and the water abundance and the turbulent velocity width as free parameters. Results: While the outflows are mostly seen in emission in high-J lines, envelopes are seen in absorption in ground-state lines, which are almost saturated. The derived water abundances range from 5×10-10 to 4×10-8 in the outer envelopes. We detect cold clouds surrounding the protostar envelope, thanks to the very high quality of the Herschel/HIFI data and the unique ability of water to probe them. Several foreground clouds are also detected along the line of sight. Conclusions: The low H2O abundances in massive dense cores are in accordance with the expectation that high densities and low temperatures lead to freeze-out of water on dust grains. The spread in abundance values is not clearly linked to physical properties of the sources. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation of NASA.Appendix (pages 6 to 7) is only available in electronic form at http://www.aanda.org
  •  
7.
  • van Dishoeck, E. F., et al. (author)
  • Water in star-forming regions: Physics and chemistry from clouds to disks as probed by Herschel spectroscopy
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 648
  • Journal article (peer-reviewed)abstract
    • Context. Water is a key molecule in the physics and chemistry of star and planet formation, but it is difficult to observe from Earth. The Herschel Space Observatory provided unprecedented sensitivity as well as spatial and spectral resolution to study water. The Water In Star-forming regions with Herschel (WISH) key program was designed to observe water in a wide range of environments and provide a legacy data set to address its physics and chemistry. Aims. The aim of WISH is to determine which physical components are traced by the gas-phase water lines observed with Herschel and to quantify the excitation conditions and water abundances in each of these components. This then provides insight into how and where the bulk of the water is formed in space and how it is transported from clouds to disks, and ultimately comets and planets. Methods. Data and results from WISH are summarized together with those from related open time programs. WISH targeted ∼80 sources along the two axes of luminosity and evolutionary stage: from low- to high-mass protostars (luminosities from <1 to > 10Lpdbl) and from pre-stellar cores to protoplanetary disks. Lines of H2O and its isotopologs, HDO, OH, CO, and [O I], were observed with the HIFI and PACS instruments, complemented by other chemically-related molecules that are probes of ultraviolet, X-ray, or grain chemistry. The analysis consists of coupling the physical structure of the sources with simple chemical networks and using non-LTE radiative transfer calculations to directly compare models and observations. Results. Most of the far-infrared water emission observed with Herschel in star-forming regions originates from warm outflowing and shocked gas at a high density and temperature (> 10cm-3, 300-1000 K, v ∼ 25 km s-1), heated by kinetic energy dissipation. This gas is not probed by single-dish low-J CO lines, but only by CO lines with Jup > 14. The emission is compact, with at least two different types of velocity components seen. Water is a significant, but not dominant, coolant of warm gas in the earliest protostellar stages. The warm gas water abundance is universally low: orders of magnitude below the H2O/H2 abundance of 4 × 10-4 expected if all volatile oxygen is locked in water. In cold pre-stellar cores and outer protostellar envelopes, the water abundance structure is uniquely probed on scales much smaller than the beam through velocity-resolved line profiles. The inferred gaseous water abundance decreases with depth into the cloud with an enhanced layer at the edge due to photodesorption of water ice. All of these conclusions hold irrespective of protostellar luminosity. For low-mass protostars, a constant gaseous HDO/H2O ratio of ∼0.025 with position into the cold envelope is found. This value is representative of the outermost photodesorbed ice layers and cold gas-phase chemistry, and much higher than that of bulk ice. In contrast, the gas-phase NH3 abundance stays constant as a function of position in low-mass pre- and protostellar cores. Water abundances in the inner hot cores are high, but with variations from 5 × 10-6 to a few × 10-4 for low- and high-mass sources. Water vapor emission from both young and mature disks is weak. Conclusions. The main chemical pathways of water at each of the star-formation stages have been identified and quantified. Low warm water abundances can be explained with shock models that include UV radiation to dissociate water and modify the shock structure. UV fields up to 102-10times the general interstellar radiation field are inferred in the outflow cavity walls on scales of the Herschel beam from various hydrides. Both high temperature chemistry and ice sputtering contribute to the gaseous water abundance at low velocities, with only gas-phase (re-)formation producing water at high velocities. Combined analyses of water gas and ice show that up to 50% of the oxygen budget may be missing. In cold clouds, an elegant solution is that this apparently missing oxygen is locked up in larger μm-sized grains that do not contribute to infrared ice absorption. The fact that even warm outflows and hot cores do not show H2O at full oxygen abundance points to an unidentified refractory component, which is also found in diffuse clouds. The weak water vapor emission from disks indicates that water ice is locked up in larger pebbles early on in the embedded Class I stage and that these pebbles have settled and drifted inward by the Class II stage. Water is transported from clouds to disks mostly as ice, with no evidence for strong accretion shocks. Even at abundances that are somewhat lower than expected, many oceans of water are likely present in planet-forming regions. Based on the lessons for galactic protostars, the low-J H2O line emission (Eup < 300 K) observed in extragalactic sources is inferred to be predominantly collisionally excited and to originate mostly from compact regions of current star formation activity. Recommendations for future mid- to far-infrared missions are made.
  •  
8.
  • van Dishoeck, E. F., et al. (author)
  • Water in Star-forming Regions with the Herschel Space Observatory (WISH). I. Overview of Key Program and First Results
  • 2011
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 123:900, s. 138-170
  • Journal article (peer-reviewed)abstract
    • Water In Star-forming regions with Herschel (WISH) is a key program on the Herschel Space Observatory designed to probe the physical and chemical structures of young stellar objects using water and related molecules and to follow the water abundance from collapsing clouds to planet-forming disks. About 80 sources are targeted, covering a wide ranee of luminosities-from low ( 10(5) L-circle dot)-and a wide range of evolutionary stages-from cold prestellar cores to warm protostellar envelopes and outflows to disks around young stars. Both the HIFI and PACS instruments are used to observe a variety of lines of H2O, (H2O)-O-18 and chemically related species at the source position and in small maps around the protostars and selected outflow positions. In addition, high-frequency lines of CO, (CO)-C-13, and (CO)-O-18 are obtained with Herschel and are complemented by ground-based observations of dust continuum, HDO, CO and its isotopologs, and other molecules to ensure a self-consistent data set for analysis. An overview of the scientific motivation and observational strategy of the program is given, together with the modeling approach and analysis tools that have been developed. Initial science results are presented. These include a lack of water in cold gas at abundances that are lower than most predictions, strong water emission from shocks in protostellar environments, the importance of UV radiation in heating the gas along outflow walls across the full range of luminosities, and surprisingly widespread detection of the chemically related hydrides OH+ and H2O+ in outflows and foreground gas. Quantitative estimates of the energy budget indicate that H2O is generally not the dominant coolant in the warm dense gas associated with protostars. Very deep limits on the cold gaseous water reservoir in the outer regions of protoplanetary disks are obtained that have profound implications for our understanding of grain growth and mixing in disks.
  •  
9.
  • van Kempen, T. A., et al. (author)
  • Origin of the hot gas in low-mass protostars Herschel-PACS spectroscopy of HH 46
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L121
  • Journal article (peer-reviewed)abstract
    • Aims. "Water In Star-forming regions with Herschel" (WISH) is a Herschel key programme aimed at understanding the physical and chemical structure of young stellar objects (YSOs) with a focus on water and related species. Methods. The low-mass protostar HH 46 was observed with the Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory to measure emission in H2O, CO, OH, [O I], and [C II] lines located between 63 and 186 mu m. The excitation and spatial distribution of emission can disentangle the different heating mechanisms of YSOs, with better spatial resolution and sensitivity than previously possible. Results. Far-IR line emission is detected at the position of the protostar and along the outflow axis. The OH emission is concentrated at the central position, CO emission is bright at the central position and along the outflow, and H2O emission is concentrated in the outflow. In addition, [O I] emission is seen in low-velocity gas, assumed to be related to the envelope, and is also seen shifted up to 170 km s(-1) in both the red-and blue-shifted jets. Envelope models are constructed based on previous observational constraints. They indicate that passive heating of a spherical envelope by the protostellar luminosity cannot explain the high-excitation molecular gas detected with PACS, including CO lines with upper levels at >2500 K above the ground state. Instead, warm CO and H2O emission is probably produced in the walls of an outflow-carved cavity in the envelope, which are heated by UV photons and non-dissociative C-type shocks. The bright OH and [O I] emission is attributed to J-type shocks in dense gas close to the protostar. In the scenario described here, the combined cooling by far-IR lines within the central spatial pixel is estimated to be 2 x 10(-2) L-circle dot, with 60-80% attributed to J- and C-type shocks produced by interactions between the jet and the envelope.
  •  
10.
  • Vastel, C., et al. (author)
  • Ortho-to-para ratio of interstellar heavy water
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L31 -
  • Journal article (peer-reviewed)abstract
    • Context. Despite the low elemental deuterium abundance in the Galaxy, enhanced molecular D/H ratios have been found in the environments of low-mass star-forming regions, and in particular the Class 0 protostar IRAS 16293-2422. Aims. The CHESS (Chemical HErschel Surveys of Star forming regions) key program aims to study the molecular complexity of the interstellar medium. The high sensitivity and spectral resolution of the Herschel/HIFI instrument provide a unique opportunity to observe the fundamental 1(1,1)-0(0,0) transition of the ortho-D2O molecule, which is inaccessible from the ground, and determine the ortho-to-para D2O ratio. Methods. We detected the fundamental transition of the ortho-D2O molecule at 607.35 GHz towards IRAS 16293-2422. The line is seen in absorption with a line opacity of 0.62 +/- 0.11 (1 sigma). From the previous ground-based observations of the fundamental 1(1,0)-1(0,1) transition of para-D2O seen in absorption at 316.80 GHz, we estimate a line opacity of 0.26 +/- 0.05 (1 sigma). Results. We show that the observed absorption is caused by the cold gas in the envelope of the protostar. Using these new observations, we estimate for the first time the ortho-to-para D2O ratio to be lower than 2.6 at a 3 sigma level of uncertainty, which should be compared with the thermal equilibrium value of 2:1.
  •  
11.
  • Benz, A. O., et al. (author)
  • Hydrides in young stellar objects : Radiation tracers in a protostar-disk-outflow system
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L35-
  • Journal article (peer-reviewed)abstract
    • Context. Hydrides of the most abundant heavier elements are fundamental molecules in cosmic chemistry. Some of them trace gas irradiated by UV or X-rays. Aims: We explore the abundances of major hydrides in W3 IRS5, a prototypical region of high-mass star formation. Methods: W3 IRS5 was observed by HIFI on the Herschel Space Observatory with deep integration (≃2500 s) in 8 spectral regions. Results: The target lines including CH, NH, H3O+, and the new molecules SH+, H2O+, and OH+ are detected. The H2O+ and OH+ J = 1-0 lines are found mostly in absorption, but also appear to exhibit weak emission (P-Cyg-like). Emission requires high density, thus originates most likely near the protostar. This is corroborated by the absence of line shifts relative to the young stellar object (YSO). In addition, H2O+ and OH+ also contain strong absorption components at a velocity shifted relative to W3 IRS5, which are attributed to foreground clouds. Conclusions: The molecular column densities derived from observations correlate well with the predictions of a model that assumes the main emission region is in outflow walls, heated and irradiated by protostellar UV radiation. Herschel is an ESA space observatory with science instruments provided by a European-led Principal Investigator consortia and with important participation from NASA.Appendix (page 5) is only available in electronic form at http://www.aanda.org
  •  
12.
  • Bruderer, S., et al. (author)
  • Herschel/HIFI detections of hydrides towards AFGL 2591. Envelope emission versus tenuous cloud absorption
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L44-
  • Journal article (peer-reviewed)abstract
    • The Heterodyne Instrument for the Far Infrared (HIFI) onboard the Herschel Space Observatory allows the first observations of light diatomic molecules at high spectral resolution and in multiple transitions. Here, we report deep integrations using HIFI in different lines of hydrides towards the high-mass star forming region AFGL 2591. Detected are CH, CH+, NH, OH+, H2O+, while NH+ and SH+ have not been detected. All molecules except for CH and CH+ are seen in absorption with low excitation temperatures and at velocities different from the systemic velocity of the protostellar envelope. Surprisingly, the CH(JF,P = 3/22,- - 1/21,+ ) and CH+(J = 1-0, J = 2-1) lines are detected in emission at the systemic velocity. We can assign the absorption features to a foreground cloud and an outflow lobe, while the CH and CH+ emission stems from the envelope. The observed abundance and excitation of CH and CH+ can be explained in the scenario of FUV irradiated outflow walls, where a cavity etched out by the outflow allows protostellar FUV photons to irradiate and heat the envelope at larger distances driving the chemical reactions that produce these molecules. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Apppendices and Table 1 (pages 6 to 7) are only available in electronic form at http://www.aanda.org
  •  
13.
  • Chavarria, L., et al. (author)
  • Water in massive star-forming regions : HIFI observations of W3 IRS5
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L37-
  • Journal article (peer-reviewed)abstract
    • We present Herschel observations of the water molecule in the massive star-forming region W3 IRS5. The o-(H2O)-O-17 1(10)-1(01), p-(H2O)-O-18 1(11)-0(00), p-H2O 2(02)-1(11), p-H2O 1(11)-0(00), o-H2O 2(21)-2(12), and o-H2O 2(12)-1(01) lines, covering a frequency range from 552 up to 1669 GHz, have been detected at high spectral resolution with HIFI. The water lines in W3 IRS5 show well-defined high-velocity wings that indicate a clear contribution by outflows. Moreover, the systematically blue-shifted absorption in the H2O lines suggests expansion, presumably driven by the outflow. No infall signatures are detected. The p-H2O 1(11)-0(00) and o-H2O 2(12)-1(01) lines show absorption from the cold material (T similar to 10 K) in which the high-mass protostellar envelope is embedded. One-dimensional radiative transfer models are used to estimate water abundances and to further study the kinematics of the region. We show that the emission in the rare isotopologues comes directly from the inner parts of the envelope (T greater than or similar to 100 K) where water ices in the dust mantles evaporate and the gas-phase abundance increases. The resulting jump in the water abundance (with a constant inner abundance of 10(-4)) is needed to reproduce the o-(H2O)-O-17 1(10)-1(01) and p-(H2O)-O-18 1(11)-0(00) spectra in our models. We estimate water abundances of 10(-8) to 10(-9) in the outer parts of the envelope (T less than or similar to 100 K). The possibility of two protostellar objects contributing to the emission is discussed.
  •  
14.
  • Codella, C., et al. (author)
  • The CHESS spectral survey of star forming regions : Peering into the protostellar shock L1157-B1. I. Shock chemical complexity
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L112-
  • Journal article (peer-reviewed)abstract
    • We present the first results of the unbiased survey of the L1157-B1 bow shock, obtained with HIFI in the framework of the key program Chemical HErschel Survey of Star forming regions (CHESS). The L1157 outflow is driven by a low-mass Class 0 protostar and is considered the prototype of the so-called chemically active outflows. The bright blue-shifted bow shock B1 is the ideal laboratory for studying the link between the hot (~1000-2000 K) component traced by H2 IR-emission and the cold (~10-20 K) swept-up material. The main aim is to trace the warm gas chemically enriched by the passage of a shock and to infer the excitation conditions in L1157-B1. A total of 27 lines are identified in the 555-636 GHz region, down to an average 3σ level of 30 mK. The emission is dominated by CO(5-4) and H2O(110-101) transitions, as discussed by Lefloch et al. in this volume. Here we report on the identification of lines from NH3, H2CO, CH3OH, CS, HCN, and HCO+. The comparison between the profiles produced by molecules released from dust mantles (NH3, H2CO, CH3OH) and that of H2O is consistent with a scenario in which water is also formed in the gas-phase in high-temperature regions where sputtering or grain-grain collisions are not efficient. The high excitation range of the observed tracers allows us to infer, for the first time for these species, the existence of a warm (≥200 K) gas component coexisting in the B1 bow structure with the cold and hot gas detected from ground. Herschel is an ESA space observatory with science instruments provided by European-led principal Investigator consortia and with important participation from NASA.Table 1 is only available in electronic form at http://www.aanda.org
  •  
15.
  • Johnstone, D., et al. (author)
  • Herschel/HIFI spectroscopy of the intermediate mass protostar NGC7129 FIRS 2
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L41-
  • Journal article (peer-reviewed)abstract
    • Herschel/HIFI observations of water from the intermediate mass protostar NGC 7129 FIRS 2 provide a powerful diagnostic of the physical conditions in this star formation environment. Six spectral settings, covering four (H2O)-O-16 and two (H2O)-O-18 lines, were observed and all but one (H2O)-O-18 line were detected. The four (H2O)-O-16 lines discussed here share a similar morphology: a narrower, approximate to 6kms(-1), component centered slightly redward of the systemic velocity of NGC7129 FIRS 2 and a much broader, approximate to 25 km s(-1) component centered blueward and likely associated with powerful outflows. The narrower components are consistent with emission from water arising in the envelope around the intermediate mass protostar, and the abundance of H2O is constrained to approximate to 10(-7) for the outer envelope. Additionally, the presence of a narrow self-absorption component for the lowest energy lines is likely due to self-absorption from colder water in the outer envelope. The broader component, where the H2O/CO relative abundance is found to be approximate to 0.2, appears to be tracing the same energetic region that produces strong CO emission at high J.
  •  
16.
  • Kristensen, L. E., et al. (author)
  • Water in low-mass star-forming regions with Herschel . HIFI spectroscopy of NGC 1333
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L30-
  • Journal article (peer-reviewed)abstract
    • “Water In Star-forming regions with Herschel” (WISH) is a key programme dedicated to studying the role of water and related species during the star-formation process and constraining the physical and chemical properties of young stellar objects. The Heterodyne Instrument for the Far-Infrared (HIFI) on the Herschel Space Observatory observed three deeply embedded protostars in the low-mass star-forming region NGC 1333 in several H_216O, H_218O, and CO transitions. Line profiles are resolved for five H_216O transitions in each source, revealing them to be surprisingly complex. The line profiles are decomposed into broad (>20 km s-1), medium-broad (~5-10 km s-1), and narrow (<5 km s-1) components. The H_218O emission is only detected in broad 110-101 lines (>20 km s-1), indicating that its physical origin is the same as for the broad H_216O component. In one of the sources, IRAS4A, an inverse P Cygni profile is observed, a clear sign of infall in the envelope. From the line profiles alone, it is clear that the bulk of emission arises from shocks, both on small (⪉1000 AU) and large scales along the outflow cavity walls (~10 000 AU). The H2O line profiles are compared to CO line profiles to constrain the H2O abundance as a function of velocity within these shocked regions. The H2O/CO abundance ratios are measured to be in the range of ~0.1-1, corresponding to H2O abundances of ~10-5-10-4 with respect to H2. Approximately 5-10% of the gas is hot enough for all oxygen to be driven into water in warm post-shock gas, mostly at high velocities. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Tables 2 and 3 (page 6) are only available in electronic form at http://www.aanda.org
  •  
17.
  • Nisini, B., et al. (author)
  • Water cooling of shocks in protostellar outflows. Herschel-PACS map of L1157
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L120-
  • Journal article (peer-reviewed)abstract
    • Context. The far-IR/sub-mm spectral mapping facility provided by the Herschel-PACS and HIFI instruments has made it possible to obtain, for the first time, images of H2O emission with a spatial resolution comparable to ground based mm/sub-mm observations. Aims: In the framework of the Water In Star-forming regions with Herschel (WISH) key program, maps in water lines of several outflows from young stars are being obtained, to study the water production in shocks and its role in the outflow cooling. This paper reports the first results of this program, presenting a PACS map of the o-H2O 179 μm transition obtained toward the young outflow L1157. Methods: The 179 μm map is compared with those of other important shock tracers, and with previous single-pointing ISO, SWAS, and Odin water observations of the same source that allow us to constrain the H2O abundance and total cooling. Results: Strong H2O peaks are localized on both shocked emission knots and the central source position. The H2O 179 μm emission is spatially correlated with emission from H2 rotational lines, excited in shocks leading to a significant enhancement of the water abundance. Water emission peaks along the outflow also correlate with peaks of other shock-produced molecular species, such as SiO and NH3. A strong H2O peak is also observed at the location of the proto-star, where none of the other molecules have significant emission. The absolute 179 μm intensity and its intensity ratio to the H2O 557 GHz line previously observed with Odin/SWAS indicate that the water emission originates in warm compact clumps, spatially unresolved by PACS, having a H2O abundance of the order of 10-4. This testifies that the clumps have been heated for a time long enough to allow the conversion of almost all the available gas-phase oxygen into water. The total H2O cooling is ~10-1 L_ȯ, about 40% of the cooling due to H2 and 23% of the total energy released in shocks along the L1157 outflow. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important partecipation from NASA.
  •  
18.
  • Robinson, N. A., et al. (author)
  • Applying genetic technologies to combat infectious diseases in aquaculture
  • 2022
  • In: Reviews in Aquaculture. - : Wiley. - 1753-5123 .- 1753-5131. ; 15:2, s. 491-535
  • Journal article (peer-reviewed)abstract
    • Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies—sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture. © 2022 The Authors. Reviews in Aquaculture published by John Wiley & Sons Australia, Ltd.
  •  
19.
  • Wampfler, S. F., et al. (author)
  • Herschel observations of the hydroxyl radical (OH) in young stellar objects
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L36-
  • Journal article (peer-reviewed)abstract
    • Aims: “Water In Star-forming regions with Herschel” (WISH) is a Herschel key program investigating the water chemistry in young stellar objects (YSOs) during protostellar evolution. Hydroxyl (OH) is one of the reactants in the chemical network most closely linked to the formation and destruction of H2O. High-temperature (T ⪆ 250 K) chemistry connects OH and H2O through the OH + H2 Leftrightarrow H2O + H reactions. Formation of H2O from OH is efficient in the high-temperature regime found in shocks and the innermost part of protostellar envelopes. Moreover, in the presence of UV photons, OH can be produced from the photo-dissociation of H2O through H2O + γUV Rightarrow OH + H. Methods: High-resolution spectroscopy of the 163.12 μm triplet of OH towards HH 46 and NGC 1333 IRAS 2A was carried out with the Heterodyne Instrument for the Far Infrared (HIFI) on board the Herschel Space Observatory. The low- and intermediate-mass protostars HH 46, TMR 1, IRAS 15398-3359, DK Cha, NGC 7129 FIRS 2, and NGC 1333 IRAS 2A were observed with the Photodetector Array Camera and Spectrometer (PACS) on Herschel in four transitions of OH and two [O i] lines. Results: The OH transitions at 79, 84, 119, and 163 μm and [O i] emission at 63 and 145 μm were detected with PACS towards the class I low-mass YSOs as well as the intermediate-mass and class I Herbig Ae sources. No OH emission was detected from the class 0 YSO NGC 1333 IRAS 2A, though the 119 μm was detected in absorption. With HIFI, the 163.12 μm was not detected from HH 46 and only tentatively detected from NGC 1333 IRAS 2A. The combination of the PACS and HIFI results for HH 46 constrains the line width (FWHM ⪆ 11 km s-1) and indicates that the OH emission likely originates from shocked gas. This scenario is supported by trends of the OH flux increasing with the [O i] flux and the bolometric luminosity, as found in our sample. Similar OH line ratios for most sources suggest that OH has comparable excitation temperatures despite the different physical properties of the sources. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices (page 6) are only available in electronic form at http://www.aanda.org
  •  
20.
  • Wyrowski, F., et al. (author)
  • Variations in H2O+/H2O ratios toward massive star-forming regions
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L34-
  • Journal article (peer-reviewed)abstract
    • Early results from the Herschel Space Observatory revealed the water cation H2O+ to be an abundant ingredient of the interstellar medium. Here we present new observations of the H2O and H2O+ lines at 1113.3 and 1115.2 GHz using the Herschel Space Observatory toward a sample of high-mass star-forming regions to observationally study the relation between H2O and H2O+. Nine out of ten sources show absorption from H2O+ in a range of environments: the molecular clumps surrounding the forming and newly formed massive stars, bright high-velocity outflows associated with the massive protostars, and unrelated low-density clouds along the line of sight. Column densities per velocity component of H2O+ are found in the range of 10(12) to a few 10(13) cm(-2). The highest N(H2O+) column densities are found in the outflows of the sources. The ratios of H2O+/H2O are determined in a range from 0.01 to a few and are found to differ strongly between the observed environments with much lower ratios in the massive (proto) cluster envelopes (0.01-0.1) than in outflows and diffuse clouds. Remarkably, even for source components detected in H2O in emission, H2O+ is still seen in absorption.
  •  
21.
  • Yildiz, U. A., et al. (author)
  • Herschel/HIFI observations of high-J CO lines in the NGC 1333 low-mass star-forming region
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L40-
  • Journal article (peer-reviewed)abstract
    • Herschel/HIFI observations of high-J lines (up to J(u) = 10) of (CO)-C-12, (CO)-C-13 and (CO)-O-18 are presented toward three deeply embedded low-mass protostars, NGC 1333 IRAS 2A, IRAS 4A, and IRAS 4B, obtained as part of the Water In Star-forming regions with Herschel (WISH) key program. The spectrally-resolved HIFI data are complemented by ground-based observations of lower-J CO and isotopologue lines. The (CO)-C-12 10-9 profiles are dominated by broad (FWHM 25-30 km s(-1)) emission. Radiative transfer models are used to constrain the temperature of this shocked gas to 100-200 K. Several CO and (CO)-C-13 line profiles also reveal a medium-broad component (FWHM5-10 km s(-1)), seen prominently in H2O lines. Column densities for both components are presented, providing a reference for determining abundances of other molecules in the same gas. The narrow (CO)-O-18 9-8 lines probe the warmer part of the quiescent envelope. Their intensities require a jump in the CO abundance at an evaporation temperature around 25 K, thus providing new direct evidence for a CO ice evaporation zone around low-mass protostars.
  •  
22.
  • Beal, Jacob, et al. (author)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
23.
  • Testa, D., et al. (author)
  • LTCC magnetic sensors at EPFL and TCV: Lessons learnt for ITER
  • 2019
  • In: Fusion Engineering and Design. - : Elsevier BV. - 0920-3796. ; 146, s. 1553-1558
  • Journal article (peer-reviewed)abstract
    • Innovative 3D high-frequency magnetic sensors have been designed and manufactured in-house for installation on the Tokamak a Configuration Variable (TCV), and are currently routinely operational. These sensors combine the Low Temperature Co-fired Ceramic (LTCC) and the thick-film technologies, and are in various aspects similar to the majority of the inductive magnetic sensors currently being procured for ITER (290 out of 505 are LTCC-1D). The TCV LTCC-3D magnetic sensors provide measurements in the frequency range up to 1MHz of the perturbations to the toroidal (quasi-parallel: delta B-TOR(similar to)delta B-PAR), vertical (quasi-poloidal: delta B-V(ER)similar to delta B-PO(L)), and radial (delta B-RAD) magnetic field components, the latter being generally different from the component normal to the Last Closed Flux-Surface (delta B-NOR). The LTCC-3D delta B-RAD measurements improve significantly on the corresponding data with the saddle loops, which are mounted onto the wall and have a bandwidth of (similar to)3 kHz (due to the wall penetration time). The LTCC-3D delta B-TOR measurements (not previously available in TCV) provide evidence that certain MHD modes have a finite delta B-P(AR) at the LCFS, as recently calculated for pressure-driven instabilities. The LTCC-3D delta B-PO(L) measurements allow to cross-check the data obtained with the Mirnov coils, and led to the identification of large EM noise pick-up for the Mirnov DAQ. The LTCC-3D data for delta B-POL agree with those obtained with the Mirnov sensors in the frequency range where the respective data acquisition overlap, routinely up to 125kHz, and up to 250kHz in some discharges, when the EM noise pick-up on the Mirnov DAQ is removed. Finally, we look at what lessons can be learnt from our work for the forthcoming procurement, installation and operation of the LTCC-1D sensors in ITER.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-23 of 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view