SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Janson Markus) "

Search: WFRF:(Janson Markus)

  • Result 1-50 of 171
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Boccaletti, Anthony, et al. (author)
  • Fast-moving features in the debris disk around AU Microscopii
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 526:7572, s. 230-
  • Journal article (peer-reviewed)abstract
    • In the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source(1). These 'debris disks' were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the beta Pictoris system, in which the known planet generates an observable warp in the disk(2-5). The nearby, young, unusually active late-type star AU Microscopii hosts a well-studied edge-on debris disk; earlier observations in the visible and near-infrared found asymmetric localized structures in the form of intensity variations along the midplane of the disk beyond a distance of 20 astronomical units(6-9). Here we report high-contrast imaging that reveals a series of five large-scale features in the southeast side of the disk, at projected separations of 10-60 astronomical units, persisting over intervals of 1-4 years. All these features appear to move away from the star at projected speeds of 4-10 kilometres per second, suggesting highly eccentric or unbound trajectories if they are associated with physical entities. The origin, localization, morphology and rapid evolution of these features are difficult to reconcile with current theories.
  •  
2.
  • Akiyama, Eiji, et al. (author)
  • SPIRAL STRUCTURE AND DIFFERENTIAL DUST SIZE DISTRIBUTION IN THE LkH alpha 330 DISK
  • 2016
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 152:6
  • Journal article (peer-reviewed)abstract
    • Dust trapping accelerates the coagulation of dust particles, and, thus, it represents an initial step toward the formation of planetesimals. We report H-band (1.6 mu m) linear polarimetric observations and 0.87 mm interferometric continuum observations toward a transitional disk around LkH alpha 330. As a. result, a pair of spiral arms were detected in the H-band emission, and an asymmetric (potentially arm-like) structure was detected in the 0.87 mm continuum emission. We discuss the origin of the spiral arm and the asymmetric structure. and suggest that a massive unseen planet is the most plausible explanation. The possibility of dust trapping and grain growth causing the asymmetric structure was also investigated through the opacity index (beta) by plotting the observed spectral energy distribution slope between 0.87 mm from our Submillimeter Array observation and 1.3 mm from literature. The results imply that grains are indistinguishable from interstellar medium-like dust in the east side (beta = 2.0 +/- 0.5) but are much smaller in the west side beta = 0.7(-0.4)(+0.5), indicating differential dust size distribution between the two sides of the disk. Combining the results of near-infrared and submillimeter observations, we conjecture that the spiral arms exist at the upper surface and an asymmetric structure resides in the disk interior. Future observations at centimeter wavelengths and differential polarization imaging in other bands (Y-K) with extreme AO imagers are required to understand how large dust grains form and to further explore the dust distribution in the disk.
  •  
3.
  • Calissendorff, Per, 1989-, et al. (author)
  • Updated orbital monitoring and dynamical masses for nearby M-dwarf binaries
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Journal article (peer-reviewed)abstract
    • Young M-type binaries are particularly useful for precise isochronal dating by taking advantage of their extended pre-main sequence evolution. Orbital monitoring of these low-mass objects becomes essential in constraining their fundamental properties, as dynamical masses can be extracted from their Keplerian motion. Here, we present the combined efforts of the AstraLux Large Multiplicity Survey, together with a filler sub-programme from the SpHere INfrared Exoplanet (SHINE) project and previously unpublished data from the FastCam lucky imaging camera at the Nordical Optical Telescope (NOT) and the NaCo instrument at the Very Large Telescope (VLT). Building on previous work, we use archival and new astrometric data to constrain orbital parameters for 20 M-type binaries. We identify that eight of the binaries have strong Bayesian probabilities and belong to known young moving groups (YMGs). We provide a first attempt at constraining orbital parameters for 14 of the binaries in our sample, with the remaining six having previously fitted orbits for which we provide additional astrometric data and updated Gaia parallaxes. The substantial orbital information built up here for four of the binaries allows for direct comparison between individual dynamical masses and theoretical masses from stellar evolutionary model isochrones, with an additional three binary systems with tentative individual dynamical mass estimates likely to be improved in the near future. We attained an overall agreement between the dynamical masses and the theoretical masses from the isochrones based on the assumed YMG age of the respective binary pair. The two systems with the best orbital constrains for which we obtained individual dynamical masses, J0728 and J2317, display higher dynamical masses than predicted by evolutionary models.
  •  
4.
  • de Leon, Jerome, et al. (author)
  • NEAR-IR HIGH-RESOLUTION IMAGING POLARIMETRY OF THE SU Aur DISK : CLUES FOR TIDAL TAILS?
  • 2015
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 806:1
  • Journal article (peer-reviewed)abstract
    • We present new high-resolution (similar to 0.09) H-band imaging observations of the circumstellar disk around the T Tauri star SU Aur. Our observations with Subaru-HiCIAO have revealed the presence of scattered light as close as 0.15 (similar to 20 AU) to the star. Within our image, we identify bright emission associated with a disk with a minimum radius of similar to 90 AU, an inclination of similar to 35 degrees from the plane of the sky, and an approximate PA of 15 degrees for the major axis. We find a brightness asymmetry between the northern and southern sides of the disk due to a non-axisymmetric disk structure. We also identify a pair of asymmetric tail structures extending east and west from the disk. The western tail extends at least 2.5 (350 AU) from the star, and is probably associated with a reflection nebula previously observed at optical and near-IR wavelengths. The eastern tail extends at least 1. (140 AU) at the present signal-to-noise. These tails are likely due to an encounter with an unseen brown dwarf, but our results do not exclude the explanation that these tails are outflow cavities or jets.
  •  
5.
  • Follette, Katherine B., et al. (author)
  • SEEDS ADAPTIVE OPTICS IMAGING OF THE ASYMMETRIC TRANSITION DISK OPH IRS 48 IN SCATTERED LIGHT
  • 2015
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 798:2
  • Journal article (peer-reviewed)abstract
    • We present the first resolved near-infrared imagery of the transition disk Oph IRS 48 (WLY 2-48), which was recently observed with ALMA to have a strongly asymmetric submillimeter flux distribution. H-band polarized intensity images show a similar to 60 AU radius scattered light cavity with two pronounced arcs of emission, one from northeast to southeast and one smaller, fainter, and more distant arc in the northwest. K-band scattered light imagery reveals a similar morphology, but with a clear third arc along the southwestern rim of the disk cavity. This arc meets the northwestern arc at nearly a right angle, revealing the presence of a spiral arm or local surface brightness deficit in the disk, and explaining the east-west brightness asymmetry in the H-band data. We also present 0.8-5.4 mu m IRTF SpeX spectra of this object, which allow us to constrain the spectral class to A0 +/- 1 and measure a low mass accretion rate of 10(-8.5) M-circle dot yr(-1), both consistent with previous estimates. We investigate a variety of reddening laws in order to fit the multiwavelength spectral energy distribution of Oph IRS 48 and find a best fit consistent with a younger, higher luminosity star than previous estimates.
  •  
6.
  • Konishi, Mihoko, et al. (author)
  • A substellar companion to Pleiades HII 3441
  • 2016
  • In: Publications of the Astronomical Society of Japan. - : Oxford University Press (OUP). - 0004-6264 .- 2053-051X. ; 68:6
  • Journal article (peer-reviewed)abstract
    • We find a new substellar companion to the Pleiades member star, Pleiades HII 3441, using the Subaru telescope with adaptive optics. The discovery is made as part of the high-contrast imaging survey to search for planetary-mass and substellar companions in the Pleiades and young moving groups. The companion has a projected separation of 0.'' 49 +/- 0.'' 02 (66 +/- 2 au) and a mass of 68 +/- 5 M-J based on three observations in the J-, H-, and K-s-bands. The spectral type is estimated to be M7 (similar to 2700 K), and thus no methane absorption is detected in the H band. Our Pleiades observations result in the detection of two substellar companions including one previously reported among 20 observed Pleiades stars, and indicate that the fraction of substellar companions in the Pleiades is about 10.0(-8.8)(+26.1)%. This is consistent with multiplicity studies of both the Pleiades stars and other open clusters.
  •  
7.
  • Kooistra, Robin, et al. (author)
  • Radial decoupling of small and large dust grains in the transitional disk RX J1615.3-3255
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 597
  • Journal article (peer-reviewed)abstract
    • We present H-band (1.6 mu m) scattered light observations of the transitional disk RX J1615.3-3255, located in the similar to 1 Myr old Lupus association. From a polarized intensity image, taken with the HiCIAO instrument of the Subaru Telescope, we deduce the position angle and the inclination angle of the disk. The disk is found to extend out to 68 +/- 12 AU in scattered light and no clear structure is observed. Our inner working angle of 24 AU does not allow us to detect a central decrease in intensity similar to that seen at 30 AU in the 880 mu m continuum observations. We compare the observations with multiple disk models based on the spectral energy distribution (SED) and submm interferometry and find that an inner rim of the outer disk at 30 AU containing small silicate grains produces a polarized intensity signal which is an order of magnitude larger than observed. We show that a model in which the small dust grains extend smoothly into the cavity found for large grains is closer to the actual H-band observations. A comparison of models with di ff erent dust size distributions suggests that the dust in the disk might have undergone significant processing compared to the interstellar medium.
  •  
8.
  • Lomax, Jamie R., et al. (author)
  • CONSTRAINING THE MOVEMENT OF THE SPIRAL FEATURES AND THE LOCATIONS OF PLANETARY BODIES WITHIN THE AB AUR SYSTEM
  • 2016
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 828:1
  • Journal article (peer-reviewed)abstract
    • We present a new analysis of multi-epoch, H-band, scattered light images of the AB Aur system. We use a Monte Carlo radiative transfer code to simultaneously model the system's spectral energy distribution (SED) and H-band polarized intensity (PI) imagery. We find that a disk-dominated model, as opposed to one that is envelope-dominated, can plausibly reproduce AB Aur's SED and near-IR imagery. This is consistent with previous modeling attempts presented in the literature and supports the idea that at least a subset of AB Aur's spirals originate within the disk. In light of this, we also analyzed the movement of spiral structures in multi-epoch H-band total light and PI imagery of the disk. We detect no significant rotation or change in spatial location of the spiral structures in these data, which span a 5.8-year baseline. If such structures are caused by disk-planet interactions, the lack of observed rotation constrains the location of the orbit of planetary perturbers to be >47 au.
  •  
9.
  • Mayama, Satoshi, et al. (author)
  • Subaru Near-infrared Imaging Polarimetry of Misaligned Disks around the SR 24 Hierarchical Triple System
  • 2020
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 159:1
  • Journal article (peer-reviewed)abstract
    • The SR 24 multistar system hosts both circumprimary and circumsecondary disks, which are strongly misaligned with each other. The circumsecondary disk is circumbinary in nature. Interestingly, both disks are interacting, and they possibly rotate in opposite directions. To investigate the nature of this unique twin disk system, we present 01 resolution near-infrared polarized intensity images of the circumstellar structures around SR 24, obtained with HiCIAO mounted on the Subaru 8.2 m telescope. Both the circumprimary disk and the circumsecondary disk are resolved and have elongated features. While the position angle of the major axis and radius of the near-IR (NIR) polarization disk around SR 24S are 55° and 137 au, respectively, those around SR 24N are 110° and 34 au, respectively. With regard to overall morphology, the circumprimary disk around SR 24S shows strong asymmetry, whereas the circumsecondary disk around SR 24N shows relatively strong symmetry. Our NIR observations confirm the previous claim that the circumprimary and circumsecondary disks are misaligned from each other. Both the circumprimary and circumsecondary disks show similar structures in 12CO observations in terms of its size and elongation direction. This consistency is because both NIR and 12CO are tracing surface layers of the flared disks. As the radius of the polarization disk around SR 24N is roughly consistent with the size of the outer Roche lobe, it is natural to interpret the polarization disk around SR 24N as a circumbinary disk surrounding the SR 24Nb–Nc system.
  •  
10.
  • Momose, Munetake, et al. (author)
  • Detailed structure of the outer disk around HD169142 with polarized light in H-band
  • 2015
  • In: Nippon Tenmon Gakkai obun kenkyu hokoku. - : Oxford University Press (OUP). - 0004-6264. ; 67:5
  • Journal article (peer-reviewed)abstract
    • Coronagraphic imagery of the circumstellar disk around HD 169142 in H-band polarized intensity (PI) with Subaru/HiCIAO is presented. The emission scattered by dust particles at the disk surface in 0.2 <= r <= 1.2, or 29 <= r <= 174 AU, is successfully detected. The azimuthally-averaged radial profile of the PI shows a double power-law distribution, in which the PIs in r=29-52 AU and r=81.2-145 AU respectively show r(-3)-dependence. These two power-law regions are connected smoothly with a transition zone (TZ), exhibiting an apparent gap in r=40-70 AU. The PI in the inner power-law region shows a deep minimum whose location seems to coincide with the point source at lambda = 7 mm. This can be regarded as another sign of a protoplanet in TZ. The observed radial profile of the PI is reproduced by a minimally flaring disk with an irregular surface density distribution or with an irregular temperature distribution or with the combination of both. The depletion factor of surface density in the inner power-law region (r<50 AU) is derived to be >= 0.16 from a simple model calculation. The obtained PI image also shows small scale asymmetries in the outer power-law region. Possible origins for these asymmetries include corrugation of the scattering surface in the outer region, and shadowing effect by a puffed up structure in the inner power-law region.
  •  
11.
  • Oh, Daehyeon, et al. (author)
  • A RESOLVED NEAR-INFRARED IMAGE OF THE INNER CAVITY IN THE GM Aur TRANSITIONAL DISK
  • 2016
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 831:1
  • Journal article (peer-reviewed)abstract
    • We present high-contrast H-band polarized intensity (PI) images of the transitional disk around the young solar-like star GM Aur. The near-infrared direct imaging of the disk was derived by polarimetric differential imaging using the Subaru 8.2 m Telescope and HiCIAO. An angular resolution and an inner working angle of 0 ''.07 and r similar to 0 ''.05, respectively, were obtained. We clearly resolved a large inner cavity, with a measured radius of 18 +/- 2 au, which is smaller than that of a submillimeter interferometric image (28 au). This discrepancy in the cavity radii at near-infrared and submillimeter wavelengths may be caused by a 3-4M(Jup) planet about 20 au away from the star, near the edge of the cavity. The presence of a near-infrared inner cavity is a strong constraint on hypotheses for inner cavity formation in a transitional disk. A dust filtration mechanism has been proposed to explain the large cavity in the submillimeter image, but our results suggest that this mechanism must be combined with an additional process. We found that the PI slope of the outer disk is significantly different from the intensity slope obtained from HST/NICMOS, and this difference may indicate the grain growth process in the disk.
  •  
12.
  • Ohta, Yurina, et al. (author)
  • Extreme asymmetry in the polarized disk of V1247 Orionis
  • 2016
  • In: Nippon Tenmon Gakkai obun kenkyu hokoku. - : Oxford University Press (OUP). - 0004-6264. ; 68:4
  • Journal article (peer-reviewed)abstract
    • We present the first near-infrared scattered-light detection of the transitional disk around V1247 Ori, which was obtained using high-resolution polarimetric differential imaging observations with Subaru/HiCIAO. Our imaging in the H band reveals the disk morphology at separations of similar to 0.'' 14-0.'' 86 (54-330 au) from the central star. The polarized intensity image shows a remarkable arc-like structure toward the southeast of the star, whereas the fainter northwest region does not exhibit any notable features. The shape of the arm is consistent with an arc of 0.'' 28 +/- 0.'' 09 in radius (108 au from the star), although the possibility of a spiral arm with a small pitch angle cannot be excluded. V1247 Ori features an exceptionally large azimuthal contrast in scattered, polarized light; the radial peak of the southeastern arc is about three times brighter than the northwestern disk measured at the same distance from the star. Combined with the previous indication of an inhomogeneous density distribution in the gap at less than or similar to 46 au, the notable asymmetry in the outer disk suggests the presence of unseen companions and/or planet-forming processes ongoing in the arc.
  •  
13.
  • Rich, Evan A., et al. (author)
  • Multi-epoch Direct Imaging and Time-variable Scattered Light Morphology of the HD 163296 Protoplanetary Disk
  • 2019
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 875:1
  • Journal article (peer-reviewed)abstract
    • We present H-band polarized scattered light imagery and JHK high-contrast spectroscopy of the protoplanetary disk around HD 163296 observed with the High-Contrast Coronographic Imager for Adaptive Optics (HiCIAO) and Subaru Coronagraphic Extreme Adaptive Optics (SCExAO)/Coronagraphic High Angular Resolution Imaging Spectrograph (CHARTS) instruments at Subaru Observatory. The polarimetric imagery resolve a broken ring structure surrounding HD 163296 that peaks at a distance along the major axis of 0 ''.65 (66 au) and extends out to 0 ''.98 (100 au) along the major axis. Our 2011 H-band data exhibit clear axisymmetry, with the NW and SE side of the disk exhibiting similar intensities. Our data are clearly different from 2016 epoch H-band observations of the Very Large Telescope (VLT)/Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE), which found a strong 2.7 x asymmetry between the NW and SE side of the disk. Collectively, these results indicate the presence of time-variable, non-azimuthally symmetric illumination of the outer disk. While our SCExAO/CHARIS data are sensitive enough to recover the planet candidate identified from NIRC2 in the thermal infrared (IR), we fail to detect an object with JHK brightness nominally consistent with this object. This suggests that the candidate is either fainter in JHK bands than model predictions, possibly due to extinction from the disk or atmospheric dust/clouds, or that it is an artifact of the data set/data processing, such as a residual speckle or partially subtracted disk feature. Assuming standard hot-start evolutionary models and a system age of 5 Myr, we set new, direct mass limits for the inner (outer) Atacama Large Millimeter/submillimeter Array (ALMA)-predicted protoplanet candidate along the major (minor) disk axis of of 1.5 (2) M-J.
  •  
14.
  • Rich, Evan A., et al. (author)
  • NEAR-IR POLARIZED SCATTERED LIGHT IMAGERY OF THE DoAr 28 TRANSITIONAL DISK
  • 2015
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 150:3
  • Journal article (peer-reviewed)abstract
    • We present the first spatially resolved polarized scattered light H-band detection of the DoAr 28 transitional disk. Our two epochs of imagery detect the scattered light disk from our effective inner working angle of 0.10 (13 AU) out to 0.50 (65 AU). This inner working angle is interior to the location of the system's gap inferred by previous studies using spectral energy distribution modeling (15 AU). We detected a candidate point source companion 1.08 northwest of the system; however, our second epoch of imagery strongly suggests that this object is a background star. We constructed a grid of Monte Carlo Radiative Transfer models of the system, and our best fit models utilize a modestly inclined (50 degrees), 0.01 M-circle dot disk that has a partially depleted inner gap from the dust sublimation radius out to similar to 8 AU. Subtracting this best fit, axi-symmetric model from our polarized intensity data reveals evidence for two small asymmetries in the disk, which could be attributable to a variety of mechanisms.
  •  
15.
  • Rich, Evan A., et al. (author)
  • The fundamental stellar parameters of FGK stars in the SEEDS survey Norman, OK 73071, USA
  • 2017
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 472:2, s. 1736-1752
  • Journal article (peer-reviewed)abstract
    • Large exoplanet surveys have successfully detected thousands of exoplanets to-date. Utilizing these detections and non-detections to constrain our understanding of the formation and evolution of planetary systems also requires a detailed understanding of the basic properties of their host stars. We have determined the basic stellar properties of F, K and G stars in the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey from Echelle spectra taken at the Apache Point Observatory's 3.5m telescope. Using ROBOSPECT to extract line equivalent widths and TemperatureGravity microtrubulentVelocity ITerations to calculate the fundamental parameters, we have computed T-eff, log(g), v(t), [Fe/H], chromospheric activity and the age for our sample. Our methodology was calibrated against previously published results for a portion of our sample. The distribution of [Fe/H] in our sample is consistent with that typical of the Solar neighbourhood. Additionally, we find the ages of most of our sample are < 500 Myr, but note that we cannot determine robust ages from significantly older stars via chromospheric activity age indicators. The futuremeta-analysis of the frequency ofwide stellar and sub-stellar companions imaged via the SEEDS survey will utilize our results to constrain the occurrence of detected comoving companions with the properties of their host stars.
  •  
16.
  • Ryu, Tsuguru, et al. (author)
  • HIGH-CONTRAST IMAGING OF INTERMEDIATE-MASS GIANTS WITH LONG-TERM RADIAL VELOCITY TRENDS
  • 2016
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 825:2
  • Journal article (peer-reviewed)abstract
    • A radial velocity (RV) survey for intermediate-mass giants has been in operation for over a decade at Okayama Astrophysical Observatory (OAO). The OAO survey has revealed that some giants show long-term linear RV accelerations (RV trends), indicating the presence of outer companions. Direct-imaging observations can help clarify what objects generate these RV trends. We present the results of high-contrast imaging observations of six intermediate-mass giants with long-term RV trends using the Subaru Telescope and HiCIAO camera. We detected co-moving companions to gamma Hya B (0.61(-0.14)(+0.12)M(circle dot)), HD 5608 B (0.10 +/- 0.01M(circle dot)), and HD 109272 B (0.28 +/- 0.06M(circle dot)). For the remaining targets (iota Dra, 18 Del, and HD 14067), we exclude companions more massive than 30-60 M-Jup at projected separations of 1 ''-7 ''. We examine whether these directly imaged companions or unidentified long-period companions can account for the RV trends observed around the six giants. We find that the Kozai mechanism can explain the high eccentricity of the inner planets iota Dra b, HD 5608 b, and HD 14067 b.
  •  
17.
  • Viswanath, Gayathri, et al. (author)
  • Constraints on the nearby exoplanet ϵ Indi Ab from deep near- and mid-infrared imaging limits
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 651
  • Journal article (peer-reviewed)abstract
    • The past decade has seen increasing efforts in detecting and characterising exoplanets using high-contrast imaging in the near- and mid-infrared, which is the optimal wavelength domain for studying old, cold planets. In this work, we present deep adaptive optics imaging observations of the nearby Sun-like star E Ind A with the NaCo (L ') and NEAR (10-12.5 microns) instruments at VLT in an attempt to directly detect its planetary companion, whose presence has been indicated from radial velocity (RV) and astrometric trends. We derive brightness limits from the non-detection of the companion with both instruments and interpret the corresponding sensitivity in mass based on both cloudy and cloud-free atmospheric and evolutionary models. For an assumed age of 5 Gyr for the system, we get detectable mass limits as low as 4.4 M-J in NaCo L ' and 8.2 M-J in NEAR bands at 1.5 ' ' from the central star. If the age assumed is 1 Gyr, we reach even lower mass limits of 1.7 M-J in NaCo L ' and 3.5 M-J in NEAR bands at the same separation. However, based on the dynamical mass estimate (3.25 M-J) and ephemerides from astrometry and RV, we find that the non-detection of the planet in these observations puts a constraint of 2 Gyr on the lower age limit of the system. NaCo offers the highest sensitivity to the planetary companion in these observations, but the combination with the NEAR wavelength range adds a considerable degree of robustness against uncertainties in the atmospheric models. This underlines the benefits of including a broad set of wavelengths for the detection and characterisation of exoplanets in direct imaging studies.
  •  
18.
  • Yang, Yi, et al. (author)
  • High-contrast Polarimetry Observation of the T Tau Circumstellar Environment
  • 2018
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 861:2
  • Journal article (peer-reviewed)abstract
    • We conducted high-contrast polarimetry observations of T Tau in the H-band, using the High Contrast Instrument for the Subaru Next Generation Adaptive Optics instrument mounted on the Subaru Telescope, revealing structures as near as 0 1 from the stars T Tau N and T Tau S. The whole T Tau system is found to be surrounded by nebulalike envelopes, and several outflow-related structures are detected in these envelopes. We analyzed the detailed polarization patterns of the circumstellar structures near each component of this triple young star system and determined constraints on the circumstellar disks and outflow structures. We suggest that the nearly face-on circumstellar disk of T Tau N is no larger than 0.''8, or 117 au, in the northwest, based on the existence of a hole in this direction, and no larger than 0.''27, or 40 au, in the south. A new structure, N5, extends to about 0.''42, or 59 au, southwest of the star, and is believed to be part of the disk. We suggest that T Tau S is surrounded by a highly inclined circumbinary disk with a radius of about 0.''3, or 44 au, with a position angle of about 30 degrees, that is misaligned with the orbit of the T Tau S binary. After analyzing the positions and polarization vector patterns of the outflow-related structures, we suggest that T Tau S should trigger the well-known E-W outflow, and is also likely to be responsible for a southwest precessing outflow coil and a possible south outflow.
  •  
19.
  • Yang, Yi, et al. (author)
  • High-resolution Near-infrared Polarimetry and Submillimeter Imaging of FS Tau A : Possible Streamers in Misaligned Circumbinary Disk System
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 889:2
  • Journal article (peer-reviewed)abstract
    • We analyzed the young (2.8 Myr-old) binary system FS Tau A using near-infrared (H-band) high -contrast polarimetry data from Subaru/HiCIAO and submillimeter CO (J = 2-1) line emission data from Atacama Large Millimeter/submillimeter Array (ALMA). Both the near-infrared and submillimeter observations reveal several clear structures extending to similar to 240 au from the stars. Based on these observations at different wavelengths, we report the following discoveries. One arm-like structure detected in the near-infrared band initially extends from the south of the binary with a subsequent turn to the northeast, corresponding to two bar-like structures detected in ALMA observations with an local standard of rest kinematic (LSRK) velocity of 1.19-5.64 km s(-1). Another feature detected in the near-infrared band extends initially from the north of the binary, relating to an arm-like structure detected in ALMA observations with an LSRK velocity of 8.17-16.43 km s(-1). From their shapes and velocities, we suggest that these structures can mostly be explained by two streamers that connect the outer circumbinary disk and the central binary components. These discoveries will be helpful for understanding the evolution of streamers and circumstellar disks in young binary systems.
  •  
20.
  • Yang, Yi, et al. (author)
  • NEAR-INFRARED IMAGING POLARIMETRY OF INNER REGION OF GG TAU A DISK
  • 2017
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 153:1
  • Journal article (peer-reviewed)abstract
    • By performing non-masked polarization imaging with Subaru/HiCIAO, polarized scattered light from the inner region of the disk around the GG Tau A system was successfully detected in the H band, with a spatial resolution of approximately 0 07, revealing the complicated inner disk structures around this young binary. This paper reports the observation of an arc-like structure to the north of GG Tau Ab, and part of a circumstellar structure that is noticeable around GG Tau Aa, extending to a distance of approximately 28 au from the primary star. The speckle noise around GG Tau Ab constrains its disk radius to < 13 au. Based on the size of the circumbinary ring and the circumstellar disk around GG Tau Aa, the semimajor axis of the binary's orbit is likely to be 62 au. A comparison of the present observations with previous Atacama Large Millimeter Array and near-infrared H-2 emission observations suggests that the north arc could be part of a large streamer flowing from the circumbinary ring to sustain the circumstellar disks. According to the previous studies, the circumstellar disk around GG Tau Aa has enough mass and can sustain itself for a duration sufficient for planet formation; thus, our study indicates that planets can form within close (separation. 100 au) young binary systems.
  •  
21.
  • Akiyama, E., et al. (author)
  • DISCOVERY OF A DISK GAP CANDIDATE AT 20 AU IN TW HYDRAE
  • 2015
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 802:2
  • Journal article (peer-reviewed)abstract
    • We present a new Subaru/HiCIAO high-contrast H-band polarized intensity (PI) image of a nearby transitional disk associated with TW Hydrae. The scattered light from the disk was detected from 0 ''.2 to 1 ''.5 (11-81 AU) and the PI image shows a clear axisymmetric depression in PI at similar to 0 ''.4 (similar to 20 AU) from the central star, similar to the similar to 80 AU gap previously reported from Hubble Space Telescope images. The azimuthal PI profile also shows that the disk beyond 0 ''.2 is almost axisymmetric. We discuss two possible scenarios explaining the origin of the PI depression: (1) a gap structure may exist at similar to 20 AU from the central star because of a shallow slope seen in the PI profile, and (2) grain growth may be occurring in the inner region of the disk. Multi-band observations at near-infrared and millimeter/submillimeter wavelengths play a complementary role in investigating dust opacity and may help reveal the origin of the gap more precisely.
  •  
22.
  • Asensio Torres, Ruben, 1990- (author)
  • High-contrast imaging of low-mass companions and debris disks
  • 2019
  • Doctoral thesis (other academic/artistic)abstract
    • The search for exoplanets, i.e., planets orbiting other stars than the Sun, is a relatively new research field, but has already established itself as one of the most prolific and intriguing areas of astronomy. By now we are in a situation where the focus is not only on finding companions to stars, but also on characterising their atmospheres and physical properties, which overall allows us to put our Solar System into context. In the near future, these efforts could potentially lead to the first confirmation of a life-bearing planet besides the Earth. The great majority of these exoplanet studies have been carried out indirectly, where the presence and characterisation of the companions are inferred solely from the observation of the host star. In the last decade, however, high-contrast direct imaging has been continuously developed to get rid of the starlight and reveal the existence of low-mass companions. Although this technique is currently limited to giant planets orbiting at large separations, it is able to directly detect the light emitted or scattered off the planet’s atmosphere at high signal to noise, which makes it the most promising planet-hunting method to characterise new worlds. Moreover, its capability to image faint objects close to the parent star allows for not only the detection of planetary-mass companions, but also low-mass stars, brown dwarfs, and circumstellar disks where planet formation takes place. This opens up a broad range of science cases where direct observations can be used to understand planet formation, atmospheric physics and stellar evolution.      In this PhD thesis I provide an up-to-date introduction to the basis of the direct imaging technique, and explain the star and planet formation mechanisms. Three publications are attached to this introduction, each of them dealing with distinct science cases that can be  assessed with high-contrast observations. In Paper I we resolve and model the aftermath of star formation, the so-called debris disk phase analogue to the asteroid and Kuiper belts in our Solar System, around the HD 32297 star with Subaru/HiCIAO.  We reveal an edge-on disk and find the first indications of a double-ring scenario. We also present the first polarimetric study of this system, constraining the properties of the dust around the star.  In Paper II we focus on the planetary-mass regime, and conduct the first direct imaging survey searching for circumbinary planets orbiting tight binary systems (SPOTS: Search for Planets Orbiting Two Stars). We present the results of the observations of 62 targets with VLT/NaCo and VLT/SPHERE, and perform a statistical analysis on the findings, placing constraints on the population of giant planets and brown dwarfs on wide orbits. Finally, in Paper III we resolve a triple stellar system with the newly-commissioned SCExAO/CHARIS integral field spectrograph. Taking advantage of the coeval nature of the system and the different range of masses involved, we use the data to reaffirm a previously suggested isochronal age discrepancy between the low- and the intermediate-mass population of stars.
  •  
23.
  • Asensio-Torres, Ruben, et al. (author)
  • Isochronal age-mass discrepancy of young stars : SCExAO/CHARIS integral field spectroscopy of the HIP 79124 triple system
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 622
  • Journal article (peer-reviewed)abstract
    • We present SCExAO/CHARIS 1.1--2.4 micron integral field direct spectroscopy of the young HIP 79124 triple system. HIP 79124 is a member of the Scorpius-Centaurus association, consisting of an A0V primary with two low-mass companions at a projected separation of <1 arcsecond. Thanks to the high quality wavefront corrections provided by SCExAO, both companions are decisively detected without the employment of any PSF-subtraction algorithm to eliminate quasi-static noise. The spectrum of the outer C object is very well matched by Upper Scorpius M4 pm 0.5 standard spectra, with a Teff = 2945 pm 100 and a mass of 350 MJup. HIP 79124 B is detected at a separation of only 180 mas in a highly-correlated noise regime, and it falls in the spectral range M6 pm 0.5 with Teff = 2840 pm 190 and 100 MJup. Previous studies of stellar populations in Sco-Cen have highlighted a discrepancy in isochronal ages between the lower-mass and higher-mass populations. This could be explained either by an age spread in the region, or by conventional isochronal models failing to reproduce the evolution of low-mass stars. The HIP 79124 system should be coeval, and therefore it provides an ideal laboratory to test these scenarios. We place the three components in a color-magnitude diagram and find that the models predict a younger age for the two low-mass companions (3 Myr) than for the primary star (6 Myr). These results imply that the omission of magnetic effects in conventional isochronal models inhibit them from reproducing early low-mass stellar evolution, which is further supported by the fact that new models that include such effects provide more consistent ages in the HIP 79124 system.
  •  
24.
  • Asensio-Torres, R., et al. (author)
  • Perturbers : SPHERE detection limits to planetary-mass companions in protoplanetary disks
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 652
  • Journal article (peer-reviewed)abstract
    • The detection of a wide range of substructures such as rings, cavities, and spirals has become a common outcome of high spatial resolution imaging of protoplanetary disks, both in the near-infrared scattered light and in the thermal millimetre continuum emission. The most frequent interpretation of their origin is the presence of planetary-mass companions perturbing the gas and dust distribution in the disk (perturbers), but so far the only bona fide detection has been the two giant planets carving the disk around PDS 70. Here, we present a sample of 15 protoplanetary disks showing substructures in SPHERE scattered-light images and a homogeneous derivation of planet detection limits in these systems. To obtain mass limits we rely on different post-formation luminosity models based on distinct formation conditions, which are critical in the first million years of evolution. We also estimate the mass of these perturbers through a Hill radius prescription and a comparison to ALMA data. Assuming that one single planet carves each substructure in scattered light, we find that more massive perturbers are needed to create gaps within cavities than rings, and that we might be close to a detection in the cavities of RX J1604.3-2130A, RX J1615.3-3255, Sz Cha, HD 135344B, and HD 34282. We reach typical mass limits in these cavities of 3–10 MJup. For planets in the gaps between rings, we find that the detection limits of SPHERE high-contrast imaging are about an order of magnitude away in mass, and that the gaps of PDS 66 and HD 97048 seem to be the most promising structures for planet searches. The proposed presence of massive planets causing spiral features in HD 135344B and HD 36112 are also within SPHERE’s reach assuming hot-start models. These results suggest that the current detection limits are able to detect hot-start planets in cavities, under the assumption that they are formed by a single perturber located at the centre of the cavity. More realistic planet mass constraints would help to clarify whether this is actually the case, which might indicate that perturbers are not the only way of creating substructures.
  •  
25.
  • Asensio-Torres, Ruben, et al. (author)
  • Polarimetry and flux distribution in the debris disk around HD 32297
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 593
  • Journal article (peer-reviewed)abstract
    • We present high-contrast angular differential imaging (ADI) observations of the debris disk around HD32297 in H-band, as well as the first polarimetric images for this system in polarized differential imaging (PDI) mode with Subaru/HICIAO. In ADI, we detect the nearly edge-on disk at > 5 sigma levels from similar to 0.45 '' to similar to 1.7 '' (50-192AU) from the star and recover the spine deviation from the midplane already found in previous works. We also find for the first time imaging and surface brightness (SB) indications for the presence of a gapped structure on both sides of the disk at distances of similar to 0.75 '' (NE side) and similar to 0.65 '' (SW side). Global forward-modelling work delivers a best-fit model disk and well-fitting parameter intervals that essentially match previous results, with high-forward scattering grains and a ring located at 110AU. However, this single ring model cannot account for the gapped structure seen in our SB profiles. We create simple double ring models and achieve a satisfactory fit with two rings located at 60 and 95AU, respectively, low-forward scattering grains and very sharp inner slopes. In polarized light we retrieve the disk extending from similar to 0.25-1.6 '', although the central region is quite noisy and high S/N are only found in the range similar to 0.75-1.2 ''. The disk is polarized in the azimuthal direction, as expected, and the departure from the midplane is also clearly observed. Evidence for a gapped scenario is not found in the PDI data. We obtain a linear polarization degree of the grains that increases from similar to 10% at 0.55 '' to similar to 25% at 1.6 ''. The maximum is found at scattering angles of similar to 90 degrees, either from the main components of the disk or from dust grains blown out to larger radii.
  •  
26.
  • Asensio-Torres, Ruben, et al. (author)
  • SPOTS : The Search for Planets Orbiting Two Stars III. Complete sample and statistical analysis
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 619
  • Journal article (peer-reviewed)abstract
    • Binary stars constitute a large percentage of the stellar population, yet relatively little is known about the planetary systems orbiting them. Most constraints on circumbinary planets (CBPs) so far come from transit observations with the Kepler telescope, which is sensitive to close-in exoplanets but does not constrain planets on wider orbits. However, with continuous developments in high-contrast imaging techniques, this population can now be addressed through direct imaging. We present the full survey results of the Search for Planets Orbiting Two Stars (SPOTS) survey, which is the first direct imaging survey targeting CBPs. The SPOTS observational program comprises 62 tight binaries that are young and nearby, and thus suitable for direct imaging studies, with VLT/NaCo and VLT/SPHERE. Results from SPOTS include the resolved circumbinary disk around AK Sco, the discovery of a low-mass stellar companion in a triple packed system, the relative astrometry of up to 9 resolved binaries, and possible indications of non-background planetary-mass candidates around HIP 77911. We did not find any CBP within 300 AU, which implies a frequency upper limit on CBPs (1-15 M-Jup) of 6-10% between 30-300 AU. Coupling these observations with an archival dataset for a total of 163 stellar pairs, we find a best-fit CBP frequency of 1.9% (2-15 M-Jup) between 1 and 300 AU with a 10.5% upper limit at a 95% confidence level. This result is consistent with the distribution of companions around single stars.
  •  
27.
  • Baron, Frédérique, et al. (author)
  • WEIRD : Wide-orbit Exoplanet Search with InfraRed Direct Imaging
  • 2018
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 156:3
  • Journal article (peer-reviewed)abstract
    • We report results from the Wide-orbit Exoplanet search with InfraRed Direct imaging, or WEIRD, a survey designed to search for Jupiter-like companions on very wide orbits (1000-5000 au) around young stars (<120 Myr) that are known members of moving groups in the solar neighborhood (<70 pc). Companions that share the same age, distance, and metallicity as their host while being on large enough orbits to be studied as isolated objects make prime targets for spectroscopic observations, and they are valuable benchmark objects for exoplanet atmosphere models. The search strategy is based on deep imaging in multiple bands across the near-infrared domain For all 177 objects of our sample, z(ab)', J, [3.6], and [4.5] images were obtained with CFHT/MegaCam, GEMINI/GMOS, CFHT/WIRCam, GEMINI/Flamingos-2, and Spitzer IIRAC. Using this set of four images per target, we searched for sources with red z(ab)' and [3.6]-[4.5] colors, typically reaching good completeness down to 2 M-J(up) companions, while going down to 1 M-J(up) for some targets, at separations of 1000-5000 au. The search yielded four candidate companions with the expected colors, but they were all rejected through follow-up proper motion observations. Our results constrain the occurrence of 1-13 M(J)(u)p planetary-mass companions on orbits with a semimajor axis between 1000 and 5000 au at less than 0.03, with a 95% confidence level.
  •  
28.
  • Bergfors, C., et al. (author)
  • Characterization of close visual binaries from the AstraLux Large M Dwarf Survey
  • 2016
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 456:3, s. 2576-2585
  • Journal article (peer-reviewed)abstract
    • We present Very Large Telescope/Spectrograph for INtegral Field Observations in the Near Infrared (VLT/SINFONI) J, H + K spectra of seven close visual pairs in M dwarf binary/triple systems, discovered or observed by the AstraLux M dwarf survey. We determine the spectral types to within +/- 1.0 subclasses from comparison to template spectra and the strength of K-band water absorption, and derive effective temperatures. The results are compared to optical spectral types of the unresolved binary/multiple systems, and we confirm that our photometric method to derive spectral types in the AstraLux M dwarf survey is accurate. We look for signs of youth such as chromospheric activity and low surface gravity, and find an age in the range 0.25-1 Gyr for the GJ 852 system. Strong Li absorption is detected in optical spectra of the triple system J024902 obtained with the Fiberfed Extended Range Optical Spectrograph (FEROS) at the European Southern Observatory (ESO)-Max-Planck-Gesellschaft (MPG) 2.2 m telescope. The equivalent width of the absorption suggests an age consistent with the beta Pic moving group. However, further observations are needed to establish group membership. Ongoing orbital monitoring will provide dynamical masses and thus calibration of evolutionary models for low mass stars.
  •  
29.
  • Betti, S. K., et al. (author)
  • Near-infrared Accretion Signatures from the Circumbinary Planetary-mass Companion Delorme 1 (AB)b
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 935:1
  • Journal article (peer-reviewed)abstract
    • Accretion signatures from bound brown dwarf and protoplanetary companions provide evidence for ongoing planet formation, and accreting substellar objects have enabled new avenues to study the astrophysical mechanisms controlling the formation and accretion processes. Delorme 1 (AB)b, a ∼30–45 Myr circumbinary planetary-mass companion, was recently discovered to exhibit strong Hα emission. This suggests ongoing accretion from a circumplanetary disk, somewhat surprising given canonical gas disk dispersal timescales of 5–10 Myr. Here, we present the first NIR detection of accretion from the companion in Paβ, Paγ, and Brγ emission lines from SOAR/TripleSpec 4.1, confirming and further informing its accreting nature. The companion shows strong line emission, with Lline ≈ 1–6 × 10−8 L⊙ across lines and epochs, while the binary host system shows no NIR hydrogen line emission (Lline < 0.32–11 × 10−7 L⊙). Observed NIR hydrogen line ratios are more consistent with a planetary accretion shock than with local line excitation models commonly used to interpret stellar magnetospheric accretion. Using planetary accretion shock models, we derive mass accretion rate estimates of Ṁpla∼3–4 × 10−8 MJ yr−1, somewhat higher than expected under the standard star formation paradigm. Delorme 1 (AB)b's high accretion rate is perhaps more consistent with formation via disk fragmentation. Delorme 1 (AB)b is the first protoplanet candidate with clear (signal-to-noise ratio ∼5) NIR hydrogen line emission.
  •  
30.
  • Biller, B. A., et al. (author)
  • Dynamical masses for two M1 + mid-M dwarf binaries monitored during the SPHERE-SHINE survey
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Journal article (peer-reviewed)abstract
    • We present orbital fits and dynamical masses for HIP 113201AB and HIP 36985AB, two M1 + mid-M dwarf binary systems monitored as part of the SPHERE-SHINE survey. To robustly determine the age of both systems via gyrochronology, we undertook a photometric monitoring campaign for HIP 113201 and GJ 282AB, the two wide K star companions to HIP 36985, using the 40 cm Remote Observatory Atacama Desert telescope. Based on this monitoring and gyrochronological relationships, we adopt ages of 1.2 ± 0.1 Gyr for HIP 113201AB and 750 ± 100 Myr for HIP 36985AB. These systems are sufficiently old that we expect that all components of these binaries have reached the main sequence. To derive dynamical masses for all components of the HIP 113201AB and HIP 36985AB systems, we used parallel-tempering Markov chain Monte Carlo sampling to fit a combination of radial velocity, direct imaging, and Gaia and HIPPARCOS astrometry. Fitting the direct imaging and radial velocity data for HIP 113201 yields a primary mass of 0.54 ± 0.03 M⊙, fully consistent with its M1 spectral type, and a secondary mass of 0.145 ± M⊙. The secondary masses derived with and without including HIPPARCOS-Gaia data are all considerably more massive than the 0.1 M⊙ mass estimated from the photometry of the companion. Thus, the dynamical impacts of this companion suggest that it is more massive than expected from its photometry. An undetected brown dwarf companion to HIP 113201B could be a natural explanation for this apparent discrepancy. At an age >1 Gyr, a 30 MJup companion to HIP 113201B would make a negligible (<1%) contribution to the system luminosity but could have strong dynamical impacts. Fitting the direct imaging, radial velocity, and HIPPARCOS-Gaia proper motion anomaly for HIP 36985AB, we find a primary mass of 0.54 ± 0.01 M⊙ and a secondary mass of 0.185 ± 0.001 M⊙, which agree well with photometric estimates of component masses, the masses estimated from MK– mass relationships for M dwarf stars, and previous dynamical masses in the literature.
  •  
31.
  • Boccaletti, A., et al. (author)
  • Observations of fast-moving features in the debris disk of AU Mic on a three-year timescale : Confirmation and new discoveries
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 614
  • Journal article (peer-reviewed)abstract
    • Context. The nearby and young M star AU Mic is surrounded by a debris disk in which we previously identified a series of large-scale arch-like structures that have never been seen before in any other debris disk and that move outward at high velocities. Aims. We initiated a monitoring program with the following objectives: (1) track the location of the structures and better constrain their projected speeds, (2) search for new features emerging closer in, and ultimately (3) understand the mechanism responsible for the motion and production of the disk features. Methods. AU Mic was observed at 11 different epochs between August 2014 and October 2017 with the IR camera and spectrograph of SPHERE. These high-contrast imaging data were processed with a variety of angular, spectral, and polarimetric differential imaging techniques to reveal the faintest structures in the disk. We measured the projected separations of the features in a systematic way for all epochs. We also applied the very same measurements to older observations from the Hubble Space Telescope (HST) with the visible cameras STIS and ACS. Results. The main outcomes of this work are (1) the recovery of the five southeastern broad arch-like structures we identified in our first study, and confirmation of their fast motion (projected speed in the range 4-12 km s(-1) ); (2) the confirmation that the very first structures observed in 2004 with ACS are indeed connected to those observed later with STIS and now SPHERE; (3) the discovery of two new very compact structures at the northwest side of the disk (at 0.40 '' and 0.55 '' in May 2015) that move to the southeast at low speed; and (4) the identification of a new arch-like structure that might be emerging at the southeast side at about 0.4 from the star (as of May 2016). Conclusions. Although the exquisite sensitivity of SPHERE allows one to follow the evolution not only of the projected separation, but also of the specific morphology of each individual feature, it remains difficult to distinguish between possible dynamical scenarios that may explain the observations. Understanding the exact origin of these features, the way they are generated, and their evolution over time is certainly a significant challenge in the context of planetary system formation around M stars.
  •  
32.
  • Bonavita, M., et al. (author)
  • New binaries from the SHINE survey
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 663
  • Journal article (peer-reviewed)abstract
    • We present the multiple stellar systems observed within the SpHere INfrared survey for Exoplanet (SHINE). SHINE searched for sub-stellar companions to young stars using high contrast imaging. Although stars with known stellar companions within the SPHERE field of view (< 5.5 arcsec) were removed from the original target list, we detected additional stellar companions to 78 of the 463 SHINE targets observed so far. Twenty-seven per cent of the systems have three or more components. Given the heterogeneity of the sample in terms of observing conditions and strategy, tailored routines were used for data reduction and analysis, some of which were specifically designed for these datasets. We then combined SPHERE data with literature and archival data, TESS light curves, and Gaia parallaxes and proper motions for an accurate characterisation of the systems. Combining all data, we were able to constrain the orbits of 25 systems. We carefully assessed the completeness of our sample for separations between 50–500 mas (corresponding to periods of a few years to a few decades), taking into account the initial selection biases and recovering part of the systems excluded from the original list due to their multiplicity. This allowed us to compare the binary frequency for our sample with previous studies and highlight interesting trends in the mass ratio and period distribution. We also found that, when such an estimate was possible, the values of the masses derived from dynamical arguments were in good agreement with the model predictions. Stellar and orbital spins appear fairly well aligned for the 12 stars that have enough data, which favours a disk fragmentation origin. Our results highlight the importance of combining different techniques when tackling complex problems such as the formation of binaries and show how large samples can be useful for more than one purpose.
  •  
33.
  • Bonavita, M., et al. (author)
  • Orbiting a binary SPHERE characterisation of the HD 284149 system
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 608
  • Journal article (peer-reviewed)abstract
    • Aims. In this paper we present the results of the SPHERE observation of the HD 284149 system, aimed at a more detailed characterisation of both the primary and its brown dwarf companion.Methods. We observed HD 284149 in the near-infrared with SPHERE, using the imaging mode (IRDIS + IFS) and the long-slit spectroscopy mode (IRDIS-LSS). The data were reduced using the dedicated SPHERE pipeline, and algorithms such as PCA and TLOCI were applied to reduce the speckle pattern.Results. The IFS images revealed a previously unknown low-mass (similar to 0.16 M-circle dot) stellar companion (HD 294149 B) at similar to 0.1 '', compatible with previously observed radial velocity differences, as well as proper motion differences between Gaia and Tycho-2 measurements. The known brown dwarf companion (HD 284149 b) is clearly visible in the IRDIS images. This allowed us to refine both its photometry and astrometry. The analysis of the medium resolution IRDIS long slit spectra also allowed a refinement of temperature and spectral type estimates. A full reassessment of the age and distance of the system was also performed, leading to more precise values of both mass and semi-major axis.Conclusions. As a result of this study, HD 284149 ABb therefore becomes the latest addition to the (short) list of brown dwarfs on wide circumbinary orbits, providing new evidence to support recent claims that object in such configuration occur with a similar frequency to wide companions to single stars.
  •  
34.
  • Bonavita, M., et al. (author)
  • SPOTS : The Search for Planets Orbiting Two Stars II. First constraints on the frequency of sub-stellar companions on wide circumbinary orbits
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 593
  • Journal article (peer-reviewed)abstract
    • A large number of direct imaging surveys for exoplanets have been performed in recent years, yielding the first directly imaged planets and providing constraints on the prevalence and distribution of wide planetary systems. However, like most of the radial velocity ones, these generally focus on single stars, hence binaries and higher-order multiples have not been studied to the same level of scrutiny. This motivated the Search for Planets Orbiting Two Stars (SPOTS) survey, which is an ongoing direct imaging study of a large sample of close binaries, started with VLT / NACO and now continuing with VLT / SPHERE. To complement this survey, we have identified the close binary targets in 24 published direct imaging surveys. Here we present our statistical analysis of this combined body of data. We analysed a sample of 117 tight binary systems, using a combined Monte Carlo and Bayesian approach to derive the expected values of the frequency of companions, for different values of the companion's semi-major axis. Our analysis suggest that the frequency of sub-stellar companions in wide orbit is moderately low (less than or similar to 13% with a best value of 6% at 95% confidence level) and not significantly different between single stars and tight binaries. One implication of this result is that the very high frequency of circumbinary planets in wide orbits around post-common envelope binaries, implied by eclipse timing, cannot be uniquely due to planets formed before the common-envelope phase (first generation planets), supporting instead the second generation planet formation or a non-Keplerian origin of the timing variations.
  •  
35.
  • Bonnefoy, M., et al. (author)
  • First light of the VLT planet finder SPHERE IV. Physical and chemical properties of the planets around HR8799
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 587
  • Journal article (peer-reviewed)abstract
    • Context. The system of four planets discovered around the intermediate-mass star HR8799 offers a unique opportunity to test planet formation theories at large orbital radii and to probe the physics and chemistry at play in the atmospheres of self-luminous young (similar to 30 Myr) planets. We recently obtained new photometry of the four planets and low-resolution (R similar to 30) spectra of HR8799 d and e with the SPHERE instrument (Paper III).Aims. In this paper (Paper IV), we aim to use these spectra and available photometry to determine how they compare to known objects, what the planet physical properties are, and how their atmospheres work.Methods. We compare the available spectra, photometry, and spectral energy distribution (SED) of the planets to field dwarfs and young companions. In addition, we use the extinction from corundum, silicate (enstatite and forsterite), or iron grains likely to form in the atmosphere of the planets to try to better understand empirically the peculiarity of their spectrophotometric properties. To conclude, we use three sets of atmospheric models (BT-SETTL14, Cloud-AE60, Exo-REM) to determine which ingredients are critically needed in the models to represent the SED of the objects, and to constrain their atmospheric parameters (T-eff, log g, M/H).Results. We find that HR8799d and e properties are well reproduced by those of L6-L8 dusty dwarfs discovered in the field, among which some are candidate members of young nearby associations. No known object reproduces well the properties of planets b and c. Nevertheless, we find that the spectra and WISE photometry of peculiar and/or young early-T dwarfs reddened by submicron grains made of corundum, iron, enstatite, or forsterite successfully reproduce the SED of these planets. Our analysis confirms that only the Exo-REM models with thick clouds fit (within 2 sigma) the whole set of spectrophotometric datapoints available for HR8799 d and e for T-eff = 1200 K, log g in the range 3.0-4.5, and M/H = +0.5. The models still fail to reproduce the SED of HR8799c and b. The determination of the metallicity, log g, and cloud thickness are degenerate.Conclusions. Our empirical analysis and atmospheric modelling show that an enhanced content in dust and decreased CIA of H-2 is certainly responsible for the deviation of the properties of the planet with respect to field dwarfs. The analysis suggests in addition that HR8799c and b have later spectral types than the two other planets, and therefore could both have lower masses.
  •  
36.
  • Bonnefoy, M., et al. (author)
  • The GJ 504 system revisited Combining interferometric, radial velocity, and high contrast imaging data
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 618
  • Journal article (peer-reviewed)abstract
    • Context. The G-type star GJ504A is known to host a 3-35 M-Jup companion whose temperature, mass, and projected separation all contribute to making it a test case for planet formation theories and atmospheric models of giant planets and light brown dwarfs. Aims. We aim at revisiting the system age, architecture, and companion physical and chemical properties using new complementary interferometric, radial-velocity, and high-contrast imaging data. Methods. We used the CHARA interferometer to measure GJ504A's angular diameter and obtained an estimation of its radius in combination with the HIPPARCOS parallax. The radius was compared to evolutionary tracks to infer a new independent age range for the system. We collected dual imaging data with IRDIS on VLT/SPHERE to sample the near-infrared (1.02-2.25 mu m) spectral energy distribution (SED) of the companion. The SED was compared to five independent grids of atmospheric models (petitCODE, Exo-REM, BT-SETTL, Morley et al., and ATMO) to infer the atmospheric parameters of GJ 504b and evaluate model-to-model systematic errors. In addition, we used a specific model grid exploring the effect of different C/O ratios. Contrast limits from 2011 to 2017 were combined with radial velocity data of the host star through the MESS2 tool to define upper limits on the mass of additional companions in the system from 0.01 to 100 au. We used an MCMC fitting tool to constrain the companion's orbital parameters based on the measured astrometry, and dedicated formation models to investigate its origin. Results. We report a radius of 1.35 +/- 0.04 R-circle dot for GJ504A. The radius yields isochronal ages of 21 +/- 2 Myr or 4.0 +/- 1.8 Gyr for the system and line-of-sight stellar rotation axis inclination of 162.4(-4.3)(+3.8) degrees or 18.6(-3.8)(+4.3) degrees. We re-detect the companion in the Y2, Y3, J3, H2, and K1 dual-band images. The complete 1-4 mu m SED shape of GJ504b is best reproduced by T8-T9.5 objects with intermediate ages (<= 1.5Gyr), and/or unusual dusty atmospheres and/or super-solar metallicities. All atmospheric models yield T-eff = 550 +/- 50 K for GJ504b and point toward a low surface gravity (3.5-4.0 dex). The accuracy on the metallicity value is limited by model-to-model systematics; it is not degenerate with the C/O ratio. We derive log L/L-circle dot = 6.15 +/- 0.15 dex for the companion from the empirical analysis and spectral synthesis. The luminosity and T-eff yield masses of M = 1.3(-0.3)(+0.6) M-Jup and M = 23(-9)(+10) M-Jup for the young and old age ranges, respectively. The semi-major axis (sma) is above 27.8 au and the eccentricity is lower than 0.55. The posterior on GJ 504b's orbital inclination suggests a misalignment with the rotation axis of GJ 504A. We exclude additional objects (90% prob.) more massive than 2.5 and 30 M-Jup with semi-major axes in the range 0.01-80 au for the young and old isochronal ages, respectively. Conclusions. The mass and semi-major axis of GJ 504b are marginally compatible with a formation by disk-instability if the system is 4 Gyr old. The companion is in the envelope of the population of planets synthesized with our core-accretion model. Additional deep imaging and spectroscopic data with SPHERE and JWST should help to confirm the possible spin-orbit misalignment and refine the estimates on the companion temperature, luminosity, and atmospheric composition.
  •  
37.
  • Brill, Markus, et al. (author)
  • Phragmen's Voting Methods and Justified Representation
  • 2017
  • In: Thirty-First AAAI Conference On Artificial Intelligence. - : Assoc Advancement Artificial Intelligence. ; , s. 406-413
  • Conference paper (peer-reviewed)abstract
    • In the late 19th century, Lars Edvard Phragmen proposed a load-balancing approach for selecting committees based on approval ballots. We consider three committee voting rules resulting from this approach: two optimization variants-one minimizing the maximal load and one minimizing the variance of loads-and a sequential variant. We study Phragmen's methods from an axiomatic point of view, focussing on justified representation and related properties that have recently been introduced by Aziz et al. (2015a) and Sanchez-Fernandez et al. (2017). We show that the sequential variant satisfies proportional justified representation, making it the first known polynomial-time computable method with this property. Moreover, we show that the optimization variants satisfy perfect representation. We also analyze the computational complexity of Phragmen's methods and provide mixed- integer programming based algorithms for computing them.
  •  
38.
  • Brill, Markus, et al. (author)
  • Phragmén's voting methods and justified representation
  • 2024
  • In: Mathematical programming. - : Springer. - 0025-5610 .- 1436-4646. ; 203:1-2, s. 47-76
  • Journal article (peer-reviewed)abstract
    • In the late 19th century, Swedish mathematician Edvard Phragmén proposed a load-balancing approach for selecting committees based on approval ballots. We consider three committee voting rules resulting from this approach: two optimization variants—one minimizing the maximum load and one minimizing the variance of loads—and a sequential variant. We study Phragmén's methods from an axiomatic point of view, focusing on properties capturing proportional representation. We show that the sequential variant satisfies proportional justified representation, which is a rare property for committee monotonic methods. Moreover, we show that the optimization variants satisfy perfect representation. We also analyze the computational complexity of Phragmén's methods and provide mixed-integer programming based algorithms for computing them.
  •  
39.
  • Brown-Sevilla, S. B., et al. (author)
  • Revisiting the atmosphere of the exoplanet 51 Eridani b with VLT/SPHERE
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 673
  • Journal article (peer-reviewed)abstract
    • Aims. We aim to better constrain the atmospheric properties of the directly imaged exoplanet 51 Eri b using a retrieval approach with data of higher signal-to-noise ratio (S/N) than previously reported. In this context, we also compare the results from an atmospheric retrieval to using a self-consistent model to fit atmospheric parameters. Methods. We applied the radiative transfer code petitRADTRANS to our near-infrared SPHERE observations of 51 Eri b in order to retrieve its atmospheric parameters. Additionally, we attempted to reproduce previous results with the retrieval approach and compared the results to self-consistent models using the best-fit parameters from the retrieval as priors. Results. We present a higher S/N YH spectrum of the planet and revised K1K2 photometry (M-K1 = 15.11 +/- 0.04 mag, M-K2 = 17.11 +/- 0.38 mag). The best-fit parameters obtained using an atmospheric retrieval differ from previous results using self-consistent models. In general, we find that our solutions tend towards cloud-free atmospheres (e.g. log tau(clouds) = 5.20 +/- 1.44). For our `nominal' model with new data, we find a lower metallicity ([Fe/H] = 0.26 +/- 0.30 dex) and C/O ratio (0.38 +/- 0.09), and a slightly higher effective temperature (T-eff = 807 +/- 45 K) than previous studies. The surface gravity (log g = 4.05 +/- 0.37) is in agreement with the reported values in the literature within uncertainties. We estimate the mass of the planet to be between 2 and 4 MJup. When comparing with self-consistent models, we encounter a known correlation between the presence of clouds and the shape of the P-T profiles. Conclusions. Our findings support the idea that results from atmospheric retrievals should not be discussed in isolation, but rather along with self-consistent temperature structures obtained using the best-fit parameters of the retrieval. This, along with observations at longer wavelengths, might help to better characterise the atmospheres and determine their degree of cloudiness.
  •  
40.
  • Calissendorff, Per, 1989- (author)
  • Characterising Emblematic Binaries at the Lowest Stellar and Substellar Masses
  • 2020
  • Doctoral thesis (other academic/artistic)abstract
    • Stars are involved in most research fields of astronomy, ranging from studies of faraway galaxies, exploding supernovae, to more nearby exoplanets and even our own Sun. As such, it is paramount that our physical interpretation of stars is accurate. By observing stars at different epochs, we can fashion evolutionary models to predict important events that occur at different phases during their life-cycle. Thus, exemplary stars where properties including mass, age and luminosity can be observed become increasingly valuable as benchmarks for calibrating said models with. Sometimes, all of these essential properties can be measured for a single system. For instance, for a binary star which circles a common centre of mass we can from its orbital motion calculate the dynamical mass of the system. If the stellar system also has a well-determined age we may use it as a benchmark for our models, and hence refer to it as an emblematic binary system.In this thesis we are searching for exactly these emblematic binaries, both among lowmass stars and substellar brown dwarfs. We also show how to measure the different characteristics that make the systems into exemplary touchstones. We provide an overview over the different types of stellar binaries, how mass and age estimates are performed, as well as discuss the implications multiplicity has for the formation and evolution of stars and brown dwarfs. In Paper I we present the results from an orbital fit we constrained for a low-mass binary with a known age, making into a valuable and relatively rare benchmark. We also show in Paper II how long baseline astrometry can be exploited in order to place better constraints for orbital fits and dynamical masses for low-mass companions to stars by measuring the perturbation in proper motion over time. The dynamical masses are sequentially tested against evolutionary models, which at these low masses display several discrepancies compared to the observables, and are thus questioned. We explore more uncharted mass-regimes in Paper III, where we employ laser guide star assisted adaptive optics to search for multiplicity among faint substellar objects in young moving groups, detecting 3 new young brown dwarf binary systems. These new binaries will prove to be highly valuable systems for future research of brown dwarfs, and will be able to be studied further with for instance the Extremely Large Telescope or James Webb Space Telescope, which also makes them into prominent benchmarks for substellar evolutionary models. Furthermore, age estimation typically dominates the error budget for low-mass stars and brown dwarfs, requiring several different approaches for a robust assessment. In Paper IV we test and compare different techniques for age determination of 7 low-mass binary stars. These binaries have had their orbital motion monitored for a longer time, and will soon be constrained well enough that dynamical masses may be procured. As such, these low-mass binaries will extend the so far scarce number of exemplary systems where both mass, luminosity and age can be determined, to later be used to calibrate theoretical evolutionary models.
  •  
41.
  • Calissendorff, Per, 1989- (author)
  • Characterising Young Stellar Binaries
  • 2018
  • Licentiate thesis (other academic/artistic)abstract
    • Stars are dispersed all over the sky within our Galaxy, appearing in large varieties of ages and sizes. How- ever, estimating said traits proves not to always be trivial, but certain circumstances allow us to probe the characteristics of stellar binaries. Fortunately, most stars are found to be part of binary or multiple systems, and through their brightness we can study their sizes, while their dynamical interactions let us derive masses. Although absolute ages are near-impossible to estimate, we posses several methods for constraining age-limits of stars at various evolutionary stages. Theoretical models can provide us with an idea of some of the attributes of stars, but sometimes require assumptions that are not always validated. When fundamental physical laws can be used to deduce individual masses of stellar systems, we procure means to constrain and calibrate those models. As such, the multiplicity of different types of stars is of high importance, which separation and mass distributions can also help us constrain formation scenarios among the different mass-regimes. In this review we compile information regarding the detection of binary and multiple stellar systems, as well as how one can go about to estimate their most fundamental quantities including mass and age. We also compare the different methods and techniques employed throughout the literature, addressing various caveats, examples of usage and the future outlook with coming improvements. In the final part of the review, we present the results from a recent paper about the orbital motions of a triple system, which yield a dynamical mass of the system which shows inconsistencies with the theoretical mass obtained from current low-mass stellar evolutionary models.
  •  
42.
  • Calissendorff, Per, et al. (author)
  • Characterising young visual M-dwarf binaries with near-infrared integral field spectra
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 642
  • Journal article (peer-reviewed)abstract
    • We present the results from an integral field spectroscopy study of seven close visual binary pairs of young M-dwarf multiple systems. The target systems are part of the astrometric monitoring AstraLux programme, surveying hundreds of M-dwarf systems for multiplicity and obtaining astrometric epochs for orbital constraints. Our new VLT/SINFONI data provides resolved spectral type classifications in the J, H, and K bands for seven of these low-mass M-dwarf binaries, which we determine by comparing them to empirical templates and examining the strength of water absorption in the K band. The medium resolution K-band spectra also allows us to derive effective temperatures for the individual components. All targets in the survey display several signs of youth, and some have kinematics similar to young moving groups, or low surface gravities which we determined from measuring equivalent widths of gravity sensitive alkali lines in the J band. Resolved photometry from our targets is also compared with isochrones from theoretical evolutionary models, further implying young ages. Dynamical masses will be provided from continued monitoring of these systems, which can be seen as emblematic binary benchmarks that may be used to calibrate evolutionary models for low-mass stars in the future.
  •  
43.
  • Calissendorff, Per, 1989-, et al. (author)
  • Characterizing Young Visual M-dwarf Binaries with Near IR Integral Field Spectra
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746.
  • Journal article (peer-reviewed)abstract
    • We present the results from an integral field spectroscopy study of seven close visual binary pairs of young M-dwarf multiple systems. The target systems are part of the astrometric monitoring AstraLux program, surveying hundreds of M-dwarf systems for multiplicity and obtaining astrometric epochs for orbital constraints. Our new VLT/SINFONI data provides resolved spectral type classification in the J, H and K bands for seven of these low-mass M-dwarf binaries, which we determine by comparing them to empirical templates and examining the strength of water absorption in the K-band. The medium resolution K-band spectra also allows us to derive effective temperatures for the individual components. All targets in the survey display several signs of youth, and some have kinematics similar to young moving groups, or low surface gravities which we determine from measuring equivalent widths of gravity sensitive alkali lines in the J-band. Resolved photometry from our targets is also compared with isochrones from theoretical evolutionary models, further implying young ages. Dynamical masses will be provided from ongoing monitoring of these systems, which can be seen as emblematic binary benchmarks that may be used to calibrate evolutionary models for low-mass stars in the future.
  •  
44.
  • Calissendorff, Per, et al. (author)
  • Improving dynamical mass constraints for intermediate-period substellar companions using Gaia DR2
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 615
  • Journal article (peer-reviewed)abstract
    • The relationship between luminosity and mass is of fundamental importance for direct imaging studies of brown dwarf and planetary companions to stars. In principle this can be inferred from theoretical mass-luminosity models; however, these relations have not yet been thoroughly calibrated, since there is a lack of substellar companions for which both the brightness and mass have been directly measured. One notable exception is GJ 758 B, a brown dwarf companion in a similar to 20 AU orbit around a nearby Sun-like star, which has been both directly imaged and dynamically detected through a radial velocity trend in the primary. This has enabled a mass constraint for GJ 758 B of 42(-7)(+19) M-Jup. Here, we note that Gaia is ideally suited for further constraining the mass of intermediate-separation companions such as GJ 758 B. A study of the differential proper motion, Delta mu, with regards to HIPPARCOS is particularly useful in this context, as it provides a long time baseline for orbital curvature to occur. By exploiting already determined orbital parameters, we show that the dynamical mass can be further constrained to 42.4(-5.0)(+5.6) M-Jup through the Gaia-HIPPARCOS Delta mu motion. We compare the new dynamical mass estimate with substellar evolutionary models and confirm previous indications that there is significant tension between the isochronal ages of the star and companion, with a preferred stellar age of <= 5 Gyr while the companion is only consistent with very old ages of >= 8 Gyr.
  •  
45.
  • Calissendorff, Per, et al. (author)
  • Spectral characterization of newly detected young substellar binaries with SINFONI
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 627
  • Journal article (peer-reviewed)abstract
    • We observe 14 young low-mass substellar objects using the VLT/SINFONI integral field spectrograph with laser guide star adaptive optics to detect and characterize three candidate binary systems. All three binary candidates show strong signs of youth, with two of them likely belonging to young moving groups. Together with the adopted young-moving-group ages we employ isochrones from the BT-Settle CIFIST substellar evolutionary models to estimate individual masses for the binary components. We find 2MASS J15104786-2818174 to be part of the approximate to 30-50 Myr Argus moving group and to be composed of a 34-48 M-Jup primary brown dwarf with spectral type M9 gamma and a fainter 15 22 MJup companion, separated by approximate to 100 mas. 2MASS J22025794-5605087 is identified as an almost equal-mass binary in the AB Dor moving group, with a projected separation of approximate to 60 mas. Both components share spectral type M9 gamma/beta, which with the adopted age of 120 200 Myr yields masses in the range of 50 68 M-Jup for each component individually. The observations of 2MASS J15474719-2423493 are of lower quality and we obtain no spectral characterization for the target, but resolve two components separated by approximate to 170 mas which with the predicted young field age of 30 50 Myr yields individual masses below 20 M-Jup. Out of the three candidate binary systems, 2MASS J22025794-5605087 has unambiguous spectroscopic signs of being a bona-fide binary, while the other two will require second-epoch confirmation. The small projected separations between the binary components correspond to physical separations of approximate to 4-7AU, meaning that astrometric monitoring of just a few years would be adequate to generate constrained orbital fits and dynamical masses for the systems. In combination with their young ages, these binaries will prove to be excellent benchmarks for calibrating substellar evolutionary models down to a very low-mass regime.
  •  
46.
  • Calissendorff, Per, et al. (author)
  • The discrepancy between dynamical and theoretical mass in the triplet-system 2MASS J10364483+1521394
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 604
  • Journal article (peer-reviewed)abstract
    • We combine new Lucky Imaging astrometry from New Technology Telescope /AstraLux Sur with already published astrometry from the AstraLux Large M-dwarf Multiplicity Survey to compute orbital elements and individual masses of the 2MASS J10364483 + 1521394 triple system belonging to the Ursa-Major moving group. The system consists of one primary low-mass M-dwarf orbited by two less massive companions, for which we determine a combined dynamical mass of MB+C = 0 : 48 +/- 0 : 14 M-circle dot. We show from the companions' relative motions that they are of equal mass (with a mass ratio of 1 : 00 +/- 0 : 03), thus 0 : 24 +/- 0 : 07 M-circle dot individually, with a separation of 3 : 2 +/- 0 : 3 AU, and we conclude that these masses are significantly higher (30%) than what is predicted by theoretical stellar evolutionary models. The biggest uncertainty remains the distance to the system, here adopted as 20 : 1 +/- 2 : 0 pc based on trigonometric parallax, whose ambiguity has a major impact on the result. With the new observational data we are able to conclude that the orbital period of the BC pair is 8.4(-0.021)(+0.04) yr.
  •  
47.
  • Carter, Aarynn L., et al. (author)
  • The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems I : High-contrast Imaging of the Exoplanet HIP 65426 b from 2 to 16 μm
  • 2023
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 951:1
  • Journal article (peer-reviewed)abstract
    • We present JWST Early Release Science coronagraphic observations of the super-Jupiter exoplanet, HIP 65426b, with the Near-Infrared Camera (NIRCam) from 2 to 5 μm, and with the Mid-Infrared Instrument (MIRI) from 11 to 16 μm. At a separation of ∼0".82 (87+108-31 au), HIP 65426b is clearly detected in all seven of our observational filters, representing the first images of an exoplanet to be obtained by JWST, and the first-ever direct detection of an exoplanet beyond 5 μm. These observations demonstrate that JWST is exceeding its nominal predicted performance by up to a factor of 10, depending on separation and subtraction method, with measured 5σ contrast limits of ∼1 × 10−5 and ∼2 × 10−4 at 1'' for NIRCam at 4.4 μm and MIRI at 11.3 μm, respectively. These contrast limits provide sensitivity to sub-Jupiter companions with masses as low as 0.3MJup beyond separations of ∼100 au. Together with existing ground-based near-infrared data, the JWST photometry are fit well by a BT-SETTL atmospheric model from 1 to 16 μm, and they span ∼97% of HIP 65426b's luminous range. Independent of the choice of model atmosphere, we measure an empirical bolometric luminosity that is tightly constrained between log(Lbol/L☉) = −4.31 and −4.14, which in turn provides a robust mass constraint of 7.1 ± 1.2 MJup. In totality, these observations confirm that JWST presents a powerful and exciting opportunity to characterize the population of exoplanets amenable to high-contrast imaging in greater detail.
  •  
48.
  • Cataldi, Gianni, et al. (author)
  • Primordial or Secondary? Testing Models of Debris Disk Gas with ALMA*
  • 2023
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 951:2
  • Journal article (peer-reviewed)abstract
    • The origin and evolution of gas in debris disks are still not well understood. Secondary gas production from cometary material or a primordial origin have been proposed. So far, observations have mostly concentrated on CO, with only a few C observations available. We overview the C and CO content of debris disk gas and test state-of-the-art models. We use new and archival Atacama Large Millimeter/submillimeter Array (ALMA) observations of CO and C i emission, complemented by C ii data from Herschel, for a sample of 14 debris disks. This expands the number of disks with ALMA measurements of both CO and C i by 10 disks. We present new detections of C i emission toward three disks: HD 21997, HD 121191, and HD 121617. We use a simple disk model to derive gas masses and column densities. We find that current state-of-the-art models of secondary gas production overpredict the C-0 content of debris disk gas. This does not rule out a secondary origin, but might indicate that the models require an additional C removal process. Alternatively, the gas might be produced in transient events rather than a steady-state collisional cascade. We also test a primordial gas origin by comparing our results to a simplified thermochemical model. This yields promising results, but more detailed work is required before a conclusion can be reached. Our work demonstrates that the combination of C and CO data is a powerful tool to advance our understanding of debris disk gas.
  •  
49.
  • Cataldi, Gianni, et al. (author)
  • The Surprisingly Low Carbon Mass in the Debris Disk around HD 32297
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 892:2
  • Journal article (peer-reviewed)abstract
    • Gas has been detected in a number of debris disks. It is likely secondary, i.e., produced by colliding solids. Here, we report ALMA Band 8 observations of neutral carbon in the CO-rich debris disk around the 15-30 Myr old A-type star HD 32297. We find that C-0 is located in a ring at similar to 110 au with an FWHM of similar to 80 au and has a mass of (3.5 0.2) x 10(-3) M-circle plus. Naively, such a surprisingly small mass can be accumulated from CO photodissociation in a time as short as similar to 10(4) yr. We develop a simple model for gas production and destruction in this system, properly accounting for CO self-shielding and shielding by neutral carbon, and introducing a removal mechanism for carbon gas. We find that the most likely scenario to explain both C-0 and CO observations is one where the carbon gas is rapidly removed on a timescale of order a thousand years and the system maintains a very high CO production rate of similar to 15 M-circle plus Myr(-1), much higher than the rate of dust grind-down. We propose a possible scenario to meet these peculiar conditions: the capture of carbon onto dust grains, followed by rapid CO re-formation and rerelease. In steady state, CO would continuously be recycled, producing a CO-rich gas ring that shows no appreciable spreading over time. This picture might be extended to explain other gas-rich debris disks.
  •  
50.
  • Chauvin, G., et al. (author)
  • Discovery of a warm, dusty giant planet around HIP 65426
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 605
  • Journal article (peer-reviewed)abstract
    • Aims. The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high-contrast and high-angular-resolution imaging capabilities. It is also intended to place statistical constraints on the rate, mass and orbital distributions of the giant planet population at large orbits as a function of the stellar host mass and age to test planet-formation theories.Methods. We used the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-contrast coronagraphic differential near-infrared images and spectra of the young A2 star HIP 65426. It is a member of the similar to 17 Myr old Lower Centaurus-Crux association. Results. At a separation of 830 mas (92 au projected) from the star, we detect a faint red companion. Multi-epoch observations confirm that it shares common proper motion with HIP 65426. Spectro-photometric measurements extracted with IFS and IRDIS between 0.95 and 2.2 mu m indicate a warm, dusty atmosphere characteristic of young low-surface-gravity L5-L7 dwarfs. Hot-start evolutionary models predict a luminosity consistent with a 6-12 M-Jup, T-eff = 1300-1600K and R = 1.5 +/- 0.1 R-Jup giant planet. Finally, the comparison with Exo-REM and PHOENIX BT-Settl synthetic atmosphere models gives consistent effective temperatures but with slightly higher surface gravity solutions of log(g) = 4.0-5.0 with smaller radii (1.0-1.3 R-Jup).Conclusions. Given its physical and spectral properties, HIP 65426 b occupies a rather unique placement in terms of age, mass, and spectral-type among the currently known imaged planets. It represents a particularly interesting case to study the presence of clouds as a function of particle size, composition, and location in the atmosphere, to search for signatures of non-equilibrium chemistry, and finally to test the theory of planet formation and evolution.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 171

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view