SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Janssen Paul W A) "

Search: WFRF:(Janssen Paul W A)

  • Result 1-50 of 61
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bravo, L, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Tabiri, S, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Aaron, F. D., et al. (author)
  • Multi-leptons with high transverse momentum at HERA
  • 2009
  • In: Journal of High Energy Physics. - : Springer Science and Business Media LLC. - 1029-8479. ; :10
  • Journal article (peer-reviewed)abstract
    • Events with at least two high transverse momentum leptons (electrons or muons) are studied using the H1 and ZEUS detectors at HERA with an integrated luminosity of 0.94 fb(-1). The observed numbers of events are in general agreement with the Standard Model predictions. Seven di- and tri-lepton events are observed in e(+)p collision data with a scalar sum of the lepton transverse momenta above 100 GeV while 1.94 +/- 0.17 events are expected. Such events are not observed in e(-)p collisions for which 1.19 +/- 0.12 are predicted. Total visible and differential di-electron and di-muon photoproduction cross sections are extracted in a restricted phase space dominated by photon-photon collisions.
  •  
7.
  • Aaron, F. D., et al. (author)
  • Combined measurement and QCD analysis of the inclusive e(+/-)p scattering cross sections at HERA
  • 2010
  • In: Journal of High Energy Physics. - 1029-8479. ; :1
  • Journal article (peer-reviewed)abstract
    • A combination is presented of the inclusive deep inelastic cross sections measured by the H1 and ZEUS Collaborations in neutral and charged current unpolarised e(+/-)p scattering at HERA during the period 1994-2000. The data span six orders of magnitude in negative four-momentum-transfer squared, Q(2), and in Bjorken x. The combination method used takes the correlations of systematic uncertainties into account, resulting in an improved accuracy. The combined data are the sole input in a NLO QCD analysis which determines a new set of parton distributions, HERAPDF1.0, with small experimental uncertainties. This set includes an estimate of the model and parametrisation uncertainties of the fit result.
  •  
8.
  • Aaron, F. D., et al. (author)
  • Events with an isolated lepton and missing transverse momentum and measurement of W production at HERA
  • 2010
  • In: Journal of High Energy Physics. - 1029-8479. ; 2010:3, s. 1-19
  • Journal article (peer-reviewed)abstract
    • A search for events containing an isolated electron or muon and missing trans verse momentum produced in e(+/-)p collisions is performed with the H1 and ZEUS detectors at HERA. The data were taken in the period 1994-2007 and correspond to an integrated luminosity of 0.98 fb(-1). The observed event yields are in good overall agreement with the Standard Model prediction, which is dominated by single W production. In the e(+)p data, at large hadronic transverse momentum P-T(X) > 25GeV, a total of 23 events are observed compared to a prediction of 14.0 +/- 1.9. The total single W boson production cross section is measured as 1.06 +/- 0.16 (stat.) +/- 0.07 (sys.) pb, in agreement with an Standard Model (SM) expectation of 1.26 +/- 0.19 pb.
  •  
9.
  • Aaron, F. D., et al. (author)
  • Combined inclusive diffractive cross sections measured with forward proton spectrometers in deep inelastic ep scattering at HERA
  • 2012
  • In: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 72:10
  • Journal article (peer-reviewed)abstract
    • A combination of the inclusive diffractive cross section measurements made by the H1 and ZEUS Collaborations at HERA is presented. The analysis uses samples of diffractive deep inelastic ep scattering data at a centre-of-mass energy root s = 318 GeV where leading protons are detected by dedicated spectrometers. Correlations of systematic uncertainties are taken into account, resulting in an improved precision of the cross section measurement which reaches 6 % for the most precise points. The combined data cover the range 2.5 < Q(2) < 200 GeV2 in photon virtuality, 0.00035 < x(P) < 0.09 in proton fractional momentum loss, 0.09 < vertical bar t vertical bar < 0.55 GeV2 in squared four-momentum transfer at the proton vertex and 0.0018 < beta < 0.816 in beta = x/x(P), where x is the Bjorken scaling variable.
  •  
10.
  • Abramowicz, H., et al. (author)
  • Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA
  • 2013
  • In: European Physical Journal C. Particles and Fields. - : Springer Science and Business Media LLC. - 1434-6044. ; 73:2
  • Journal article (peer-reviewed)abstract
    • Measurements of open charm production cross sections in deep-inelastic ep scattering at HERA from the H1 and ZEUS Collaborations are combined. Reduced cross sections sigma(c (c) over bar)(red) for charm production are obtained in the kinematic range of photon virtuality 2.5 <= Q(2) <= 2000 GeV2 and Bjorken scaling variable 3 . 10(-5) <= x <= 5 . 10(-2). The combination method accounts for the correlations of the systematic uncertainties among the different data sets. The combined charm data together with the combined inclusive deep-inelastic scattering cross sections from HERA are used as input for a detailed NLO QCD analysis to study the influence of different heavy flavour schemes on the parton distribution functions. The optimal values of the charm mass as a parameter in these different schemes are obtained. The implications on the NLO predictions for W-+/- and Z production cross sections at the LHC are investigated. Using the fixed flavour number scheme, the running mass of the charm quark is determined.
  •  
11.
  • Algaba, Juan-Carlos, et al. (author)
  • Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Research review (peer-reviewed)abstract
    • In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
  •  
12.
  • Brown, A. G. A., et al. (author)
  • Gaia Data Release 2 Summary of the contents and survey properties
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 616
  • Journal article (peer-reviewed)abstract
    • Context. We present the second Gaia data release, Gaia DR2, consisting of astrometry, photometry, radial velocities, and information on astrophysical parameters and variability, for sources brighter than magnitude 21. In addition epoch astrometry and photometry are provided for a modest sample of minor planets in the solar system. Aims. A summary of the contents of Gaia DR2 is presented, accompanied by a discussion on the differences with respect to Gaia DR1 and an overview of the main limitations which are still present in the survey. Recommendations are made on the responsible use of Gaia DR2 results. Methods. The raw data collected with the Gaia instruments during the first 22 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into this second data release, which represents a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products. Results. Gaia DR2 contains celestial positions and the apparent brightness in G for approximately 1.7 billion sources. For 1.3 billion of those sources, parallaxes and proper motions are in addition available. The sample of sources for which variability information is provided is expanded to 0 : 5 million stars. This data release contains four new elements: broad-band colour information in the form of the apparent brightness in the G(BP) (330-680 nm) and G(RP) (630-1050 nm) bands is available for 1.4 billion sources; median radial velocities for some 7 million sources are presented; for between 77 and 161 million sources estimates are provided of the stellar effective temperature, extinction, reddening, and radius and luminosity; and for a pre-selected list of 14 000 minor planets in the solar system epoch astrometry and photometry are presented. Finally, Gaia DR2 also represents a new materialisation of the celestial reference frame in the optical, the Gaia-CRF2, which is the first optical reference frame based solely on extragalactic sources. There are notable changes in the photometric system and the catalogue source list with respect to Gaia DR1, and we stress the need to consider the two data releases as independent. Conclusions. Gaia DR2 represents a major achievement for the Gaia mission, delivering on the long standing promise to provide parallaxes and proper motions for over 1 billion stars, and representing a first step in the availability of complementary radial velocity and source astrophysical information for a sample of stars in the Gaia survey which covers a very substantial fraction of the volume of our galaxy.
  •  
13.
  • Katz, D., et al. (author)
  • Gaia Data Release 2 Mapping the Milky Way disc kinematics
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 616
  • Journal article (peer-reviewed)abstract
    • Context. The second Gaia data release (Gaia DR2) contains high-precision positions, parallaxes, and proper motions for 1.3 billion sources as well as line-of-sight velocities for 7.2 million stars brighter than G(RVS) = 12 mag. Both samples provide a full sky coverage. Aims. To illustrate the potential of Gaia DR2, we provide a first look at the kinematics of the Milky Way disc, within a radius of several kiloparsecs around the Sun. Methods. We benefit for the first time from a sample of 6.4 million F-G-K stars with full 6D phase-space coordinates, precise parallaxes (sigma((omega) over bar)/(omega) over bar <= 20%), and precise Galactic cylindrical velocities (median uncertainties of 0.9-1.4 km s(-1) and 20% of the stars with uncertainties smaller than 1 km s(-1) on all three components). From this sample, we extracted a sub-sample of 3.2 million giant stars to map the velocity field of the Galactic disc from similar to 5 kpc to similar to 13 kpc from the Galactic centre and up to 2 kpc above and below the plane. We also study the distribution of 0.3 million solar neighbourhood stars (r < 200 pc), with median velocity uncertainties of 0.4 km s(-1), in velocity space and use the full sample to examine how the over-densities evolve in more distant regions. Results. Gaia DR2 allows us to draw 3D maps of the Galactocentric median velocities and velocity dispersions with unprecedented accuracy, precision, and spatial resolution. The maps show the complexity and richness of the velocity field of the galactic disc. We observe streaming motions in all the components of the velocities as well as patterns in the velocity dispersions. For example, we confirm the previously reported negative and positive galactocentric radial velocity gradients in the inner and outer disc, respectively. Here, we see them as part of a non-axisymmetric kinematic oscillation, and we map its azimuthal and vertical behaviour. We also witness a new global arrangement of stars in the velocity plane of the solar neighbourhood and in distant regions in which stars are organised in thin substructures with the shape of circular arches that are oriented approximately along the horizontal direction in the U - V plane. Moreover, in distant regions, we see variations in the velocity substructures more clearly than ever before, in particular, variations in the velocity of the Hercules stream. Conclusions. Gaia DR2 provides the largest existing full 6D phase-space coordinates catalogue. It also vastly increases the number of available distances and transverse velocities with respect to Gaia DR1. Gaia DR2 offers a great wealth of information on the Milky Way and reveals clear non-axisymmetric kinematic signatures within the Galactic disc, for instance. It is now up to the astronomical community to explore its full potential.
  •  
14.
  • Mignard, F., et al. (author)
  • Gaia Data Release 2 The celestial reference frame (Gaia-CRF2)
  • 2018
  • In: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 616
  • Journal article (peer-reviewed)abstract
    • Context: The second release of Gaia data (Gaia DR2) contains the astrometric parameters for more than half a million quasars. This set defines a kinematically non-rotating reference frame in the optical domain. A subset of these quasars have accurate VLBI positions that allow the axes of the reference frame to be aligned with the International Celestial Reference System (ICRF) radio frame.Aims: We describe the astrometric and photometric properties of the quasars that were selected to represent the celestial reference frame of Gaia DR2 (Gaia-CRF2), and to compare the optical and radio positions for sources with accurate VLBI positions.Methods: Descriptive statistics are used to characterise the overall properties of the quasar sample. Residual rotation and orientation errors and large-scale systematics are quantified by means of expansions in vector spherical harmonics. Positional differences are calculated relative to a prototype version of the forthcoming ICRF3.Results: Gaia-CRF2 consists of the positions of a sample of 556 869 sources in Gaia DR2, obtained from a positional cross-match with the ICRF3-prototype and AllWISE AGN catalogues. The sample constitutes a clean, dense, and homogeneous set of extragalactic point sources in the magnitude range G similar or equal to 16 to 21 mag with accurately known optical positions. The median positional uncertainty is 0.12 mas for G < 18 mag and 0.5 mas at G = 20 mag. Large-scale systematics are estimated to be in the range 20 to 30 mu as. The accuracy claims are supported by the parallaxes and proper motions of the quasars in Gaia DR2. The optical positions for a subset of 2820 sources in common with the ICRF3-prototype show very good overall agreement with the radio positions, but several tens of sources have significantly discrepant positions.Conclusions: Based on less than 40% of the data expected from the nominal Gaia mission, Gaia-CRF2 is the first realisation of a non-rotating global optical reference frame that meets the ICRS prescriptions, meaning that it is built only on extragalactic sources. Its accuracy matches the current radio frame of the ICRF, but the density of sources in all parts of the sky is much higher, except along the Galactic equator.
  •  
15.
  • Spoto, F., et al. (author)
  • Gaia Data Release 2 : Observations of solar system objects
  • 2018
  • In: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 616
  • Journal article (peer-reviewed)abstract
    • Context: The Gaia spacecraft of the European Space Agency (ESA) has been securing observations of solar system objects (SSOs) since the beginning of its operations. Data Release 2 (DR2) contains the observations of a selected sample of 14,099 SSOs. These asteroids have been already identified and have been numbered by the Minor Planet Center repository. Positions are provided for each Gaia observation at CCD level. As additional information, complementary to astrometry, the apparent brightness of SSOs in the unfiltered G band is also provided for selected observations.Aims: We explain the processing of SSO data, and describe the criteria we used to select the sample published in Gaia DR2. We then explore the data set to assess its quality.Methods: To exploit the main data product for the solar system in Gaia DR2, which is the epoch astrometry of asteroids, it is necessary to take into account the unusual properties of the uncertainty, as the position information is nearly one-dimensional. When this aspect is handled appropriately, an orbit fit can be obtained with post-fit residuals that are overall consistent with the a-priori error model that was used to define individual values of the astrometric uncertainty. The role of both random and systematic errors is described. The distribution of residuals allowed us to identify possible contaminants in the data set (such as stars). Photometry in the G band was compared to computed values from reference asteroid shapes and to the flux registered at the corresponding epochs by the red and blue photometers (RP and BP).Results: The overall astrometric performance is close to the expectations, with an optimal range of brightness G similar to 12 - 17. In this range, the typical transit-level accuracy is well below 1 mas. For fainter asteroids, the growing photon noise deteriorates the performance. Asteroids brighter than G similar to 12 are affected by a lower performance of the processing of their signals. The dramatic improvement brought by Gaia DR2 astrometry of SSOs is demonstrated by comparisons to the archive data and by preliminary tests on the detection of subtle non-gravitational effects.
  •  
16.
  • Babusiaux, C., et al. (author)
  • Observational Hertzsprung-Russell diagrams
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 616
  • Journal article (peer-reviewed)abstract
    • Context. Gaia Data Release 2 provides high-precision astrometry and three-band photometry for about 1.3 billion sources over the full sky. The precision, accuracy, and homogeneity of both astrometry and photometry are unprecedented. Aims. We highlight the power of the Gaia DR2 in studying many fine structures of the Hertzsprung-Russell diagram (HRD). Gaia allows us to present many different HRDs, depending in particular on stellar population selections. We do not aim here for completeness in terms of types of stars or stellar evolutionary aspects. Instead, we have chosen several illustrative examples. Methods. We describe some of the selections that can be made in Gaia DR2 to highlight the main structures of the Gaia HRDs. We select both field and cluster (open and globular) stars, compare the observations with previous classifications and with stellar evolutionary tracks, and we present variations of the Gaia HRD with age, metallicity, and kinematics. Late stages of stellar evolution such as hot subdwarfs, post-AGB stars, planetary nebulae, and white dwarfs are also analysed, as well as low-mass brown dwarf objects. Results. The Gaia HRDs are unprecedented in both precision and coverage of the various Milky Way stellar populations and stellar evolutionary phases. Many fine structures of the HRDs are presented. The clear split of the white dwarf sequence into hydrogen and helium white dwarfs is presented for the first time in an HRD. The relation between kinematics and the HRD is nicely illustrated. Two different populations in a classical kinematic selection of the halo are unambiguously identified in the HRD. Membership and mean parameters for a selected list of open clusters are provided. They allow drawing very detailed cluster sequences, highlighting fine structures, and providing extremely precise empirical isochrones that will lead to more insight in stellar physics. Conclusions. Gaia DR2 demonstrates the potential of combining precise astrometry and photometry for large samples for studies in stellar evolution and stellar population and opens an entire new area for HRD-based studies.
  •  
17.
  • Helmi, A., et al. (author)
  • Gaia Data Release 2 Kinematics of globular clusters and dwarf galaxies around the Milky Way
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 616:A12
  • Journal article (peer-reviewed)abstract
    • Aims The goal of this paper is to demonstrate the outstanding quality of the second data release of the Gaia mission and its power for constraining many different aspects of the dynamics of the satellites of the Milky Way. We focus here on determining the proper motions of 75 Galactic globular clusters, nine dwarf spheroidal galaxies, one ultra-faint system, and the Large and Small Magellanic Clouds.Methods Using data extracted from the Gaia archive, we derived the proper motions and parallaxes for these systems, as well as their uncertainties. We demonstrate that the errors, statistical and systematic, are relatively well understood. We integrated the orbits of these objects in three different Galactic potentials, and characterised their properties. We present the derived proper motions, space velocities, and characteristic orbital parameters in various tables to facilitate their use by the astronomical community.Results Our limited and straightforward analyses have allowed us for example to (i) determine absolute and very precise proper motions for globular clusters; (ii) detect clear rotation signatures in the proper motions of at least five globular clusters; (iii) show that the satellites of the Milky Way are all on high-inclination orbits, but that they do not share a single plane of motion; (i v) derive a lower limit for the mass of the Milky Way of 9.1(-2.6)(+6.2) x 10(11) M-circle dot based on the assumption that the Leo I dwarf spheroidal is bound; (v) derive a rotation curve for the Large Magellanic Cloud based solely on proper motions that is competitive with line-of-sight velocity curves, now using many orders of magnitude more sources; and (v i) unveil the dynamical effect of the bar on the motions of stars in the Large Magellanic Cloud.Conclusions All these results highlight the incredible power of the Gaia astrometric mission, and in particular of its second data release.
  •  
18.
  • Kim, Jae-Young, et al. (author)
  • Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 640
  • Journal article (peer-reviewed)abstract
    • 3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array, at an angular resolution of ∼20 μas (at a redshift of z = 0:536 this corresponds to ∼0:13 pc ∼ 1700 Schwarzschild radii with a black hole mass MBH = 8 × 108 M⊙). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation.We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across diffierent imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet.We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ∼15 c and ∼20 c (∼1:3 and ∼1:7 μas day-1, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3mm core and the outer jet. The intrinsic brightness temperature of the jet components are ≤1010 K, a magnitude or more lower than typical values seen at ≥7mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths.
  •  
19.
  • Georgiev, Boris, et al. (author)
  • A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT.
  •  
20.
  • Akiyama, Kazunori, et al. (author)
  • First M87 Event Horizon Telescope Results. IX. Detection of Near-horizon Circular Polarization
  • 2023
  • In: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 957:2
  • Journal article (peer-reviewed)abstract
    • Event Horizon Telescope (EHT) observations have revealed a bright ring of emission around the supermassive black hole at the center of the M87 galaxy. EHT images in linear polarization have further identified a coherent spiral pattern around the black hole, produced from ordered magnetic fields threading the emitting plasma. Here we present the first analysis of circular polarization using EHT data, acquired in 2017, which can potentially provide additional insights into the magnetic fields and plasma composition near the black hole. Interferometric closure quantities provide convincing evidence for the presence of circularly polarized emission on event-horizon scales. We produce images of the circular polarization using both traditional and newly developed methods. All methods find a moderate level of resolved circular polarization across the image (〈|v|〉 < 3.7%), consistent with the low image-integrated circular polarization fraction measured by the Atacama Large Millimeter/submillimeter Array (|vint| < 1%). Despite this broad agreement, the methods show substantial variation in the morphology of the circularly polarized emission, indicating that our conclusions are strongly dependent on the imaging assumptions because of the limited baseline coverage, uncertain telescope gain calibration, and weakly polarized signal. We include this upper limit in an updated comparison to general relativistic magnetohydrodynamic simulation models. This analysis reinforces the previously reported preference for magnetically arrested accretion flow models. We find that most simulations naturally produce a low level of circular polarization consistent with our upper limit and that Faraday conversion is likely the dominant production mechanism for circular polarization at 230 GHz in M87*
  •  
21.
  • Paraschos, Georgios Filippos, et al. (author)
  • Ordered magnetic fields around the 3C 84 central black hole
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 682
  • Journal article (peer-reviewed)abstract
    • Context . 3C 84 is a nearby radio source with a complex total intensity structure, showing linear polarisation and spectral patterns. A detailed investigation of the central engine region necessitates the use of very-long-baseline interferometry (VLBI) above the hitherto available maximum frequency of 86 GHz. Aims. Using ultrahigh resolution VLBI observations at the currently highest available frequency of 228 GHz, we aim to perform a direct detection of compact structures and understand the physical conditions in the compact region of 3C 84. Methods . We used Event Horizon Telescope (EHT) 228 GHz observations and, given the limited (u, v)-coverage, applied geometric model fitting to the data. Furthermore, we employed quasi-simultaneously observed, ancillary multi-frequency VLBI data for the source in order to carry out a comprehensive analysis of the core structure. Results . We report the detection of a highly ordered, strong magnetic field around the central, supermassive black hole of 3C 84. The brightness temperature analysis suggests that the system is in equipartition. We also determined a turnover frequency of νm = (113 ± 4) GHz, a corresponding synchrotron self-absorbed magnetic field of BSSA = (2.9 ± 1.6) G, and an equipartition magnetic field of Beq = (5.2 ± 0.6) G. Three components are resolved with the highest fractional polarisation detected for this object (mnet = (17.0 ± 3.9)%). The positions of the components are compatible with those seen in low-frequency VLBI observations since 2017-2018. We report a steeply negative slope of the spectrum at 228 GHz. We used these findings to test existing models of jet formation, propagation, and Faraday rotation in 3C 84. Conclusions . The findings of our investigation into different flow geometries and black hole spins support an advection-dominated accretion flow in a magnetically arrested state around a rapidly rotating supermassive black hole as a model of the jet-launching system in the core of 3C 84. However, systematic uncertainties due to the limited (u, v)-coverage, however, cannot be ignored. Our upcoming work using new EHT data, which offer full imaging capabilities, will shed more light on the compact region of 3C 84.
  •  
22.
  • Roelofs, F., et al. (author)
  • Polarimetric Geometric Modeling for mm-VLBI Observations of Black Holes
  • 2023
  • In: Astrophysical Journal Letters. - 2041-8213 .- 2041-8205. ; 957:2
  • Journal article (peer-reviewed)abstract
    • The Event Horizon Telescope (EHT) is a millimeter very long baseline interferometry (VLBI) array that has imaged the apparent shadows of the supermassive black holes M87* and Sagittarius A*. Polarimetric data from these observations contain a wealth of information on the black hole and accretion flow properties. In this work, we develop polarimetric geometric modeling methods for mm-VLBI data, focusing on approaches that fit data products with differing degrees of invariance to broad classes of calibration errors. We establish a fitting procedure using a polarimetric “m-ring” model to approximate the image structure near a black hole. By fitting this model to synthetic EHT data from general relativistic magnetohydrodynamic models, we show that the linear and circular polarization structure can be successfully approximated with relatively few model parameters. We then fit this model to EHT observations of M87* taken in 2017. In total intensity and linear polarization, the m-ring fits are consistent with previous results from imaging methods. In circular polarization, the m-ring fits indicate the presence of event-horizon-scale circular polarization structure, with a persistent dipolar asymmetry and orientation across several days. The same structure was recovered independently of observing band, used data products, and model assumptions. Despite this broad agreement, imaging methods do not produce similarly consistent results. Our circular polarization results, which imposed additional assumptions on the source structure, should thus be interpreted with some caution. Polarimetric geometric modeling provides a useful and powerful method to constrain the properties of horizon-scale polarized emission, particularly for sparse arrays like the EHT.
  •  
23.
  • Janssen, Michael, et al. (author)
  • Event Horizon Telescope observations of the jet launching and collimation in Centaurus A
  • 2021
  • In: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 5:10, s. 1017-1028
  • Journal article (peer-reviewed)abstract
    • Very-long-baseline interferometry (VLBI) observations of active galactic nuclei at millimetre wavelengths have the power to reveal the launching and initial collimation region of extragalactic radio jets, down to 10–100 gravitational radii (rg ≡ GM/c2) scales in nearby sources1. Centaurus A is the closest radio-loud source to Earth2. It bridges the gap in mass and accretion rate between the supermassive black holes (SMBHs) in Messier 87 and our Galactic Centre. A large southern declination of −43° has, however, prevented VLBI imaging of Centaurus A below a wavelength of 1 cm thus far. Here we show the millimetre VLBI image of the source, which we obtained with the Event Horizon Telescope at 228 GHz. Compared with previous observations3, we image the jet of Centaurus A at a tenfold higher frequency and sixteen times sharper resolution and thereby probe sub-lightday structures. We reveal a highly collimated, asymmetrically edge-brightened jet as well as the fainter counterjet. We find that the source structure of Centaurus A resembles the jet in Messier 87 on ~500 rg scales remarkably well. Furthermore, we identify the location of Centaurus A’s SMBH with respect to its resolved jet core at a wavelength of 1.3 mm and conclude that the source’s event horizon shadow4 should be visible at terahertz frequencies. This location further supports the universal scale invariance of black holes over a wide range of masses5,6.
  •  
24.
  • Eatough, Ralph P., et al. (author)
  • Verification of Radiative Transfer Schemes for the EHT
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 897:2
  • Journal article (peer-reviewed)abstract
    • The Event Horizon Telescope (EHT) Collaboration has recently produced the first resolved images of the central supermassive black hole in the giant elliptical galaxy M87. Here we report on tests of the consistency and accuracy of the general relativistic radiative transfer codes used within the collaboration to model M87∗ and Sgr A∗. We compare and evaluate (1) deflection angles for equatorial null geodesics in a Kerr spacetime; (2) images calculated from a series of simple, parameterized matter distributions in the Kerr metric using simplified emissivities and absorptivities; (3) for a subset of codes, images calculated from general relativistic magnetohydrodynamics simulations using different realistic synchrotron emissivities and absorptivities; (4) observables for the 2017 configuration of EHT, including visibility amplitudes and closure phases. The error in total flux is of order 1% when the codes are run with production numerical parameters. The dominant source of discrepancies for small camera distances is the location and detailed setup of the software "camera"that each code uses to produce synthetic images. We find that when numerical parameters are suitably chosen and the camera is sufficiently far away the images converge and that for given transfer coefficients, numerical uncertainties are unlikely to limit parameter estimation for the current generation of EHT observations. The purpose of this paper is to describe a verification and comparison of EHT radiative transfer codes. It is not to verify EHT models more generally.
  •  
25.
  • Broderick, Avery E., et al. (author)
  • THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 897:2
  • Journal article (peer-reviewed)abstract
    • The Event Horizon Telescope (EHT) provides the unprecedented ability to directly resolve the structure and dynamics of black hole emission regions on scales smaller than their horizons. This has the potential to critically probe the mechanisms by which black holes accrete and launch outflows, and the structure of supermassive black hole spacetimes. However, accessing this information is a formidable analysis challenge for two reasons. First, the EHT natively produces a variety of data types that encode information about the image structure in nontrivial ways; these are subject to a variety of systematic effects associated with very long baseline interferometry and are supplemented by a wide variety of auxiliary data on the primary EHT targets from decades of other observations. Second, models of the emission regions and their interaction with the black hole are complex, highly uncertain, and computationally expensive to construct. As a result, the scientific utilization of EHT observations requires a flexible, extensible, and powerful analysis framework. We present such a framework, Themis, which defines a set of interfaces between models, data, and sampling algorithms that facilitates future development. We describe the design and currently existing components of Themis, how Themis has been validated thus far, and present additional analyses made possible by Themis that illustrate its capabilities. Importantly, we demonstrate that Themis is able to reproduce prior EHT analyses, extend these, and do so in a computationally efficient manner that can efficiently exploit modern high-performance computing facilities. Themis has already been used extensively in the scientific analysis and interpretation of the first EHT observations of M87.
  •  
26.
  • Roelofs, F., et al. (author)
  • SYMBA: An end-to-end VLBI synthetic data generation pipeline: Simulating Event Horizon Telescope observations of M 87
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 636
  • Journal article (peer-reviewed)abstract
    • Context. Realistic synthetic observations of theoretical source models are essential for our understanding of real observational data. In using synthetic data, one can verify the extent to which source parameters can be recovered and evaluate how various data corruption effects can be calibrated. These studies are the most important when proposing observations of new sources, in the characterization of the capabilities of new or upgraded instruments, and when verifying model-based theoretical predictions in a direct comparison with observational data. Aims. We present the SYnthetic Measurement creator for long Baseline Arrays (SYMBA), a novel synthetic data generation pipeline for Very Long Baseline Interferometry (VLBI) observations. SYMBA takes into account several realistic atmospheric, instrumental, and calibration effects. Methods. We used SYMBA to create synthetic observations for the Event Horizon Telescope (EHT), a millimetre VLBI array, which has recently captured the first image of a black hole shadow. After testing SYMBA with simple source and corruption models, we study the importance of including all corruption and calibration effects, compared to the addition of thermal noise only. Using synthetic data based on two example general relativistic magnetohydrodynamics (GRMHD) model images of M 87, we performed case studies to assess the image quality that can be obtained with the current and future EHT array for different weather conditions. Results. Our synthetic observations show that the effects of atmospheric and instrumental corruptions on the measured visibilities are significant. Despite these effects, we demonstrate how the overall structure of our GRMHD source models can be recovered robustly with the EHT2017 array after performing calibration steps, which include fringe fitting, a priori amplitude and network calibration, and self-calibration. With the planned addition of new stations to the EHT array in the coming years, images could be reconstructed with higher angular resolution and dynamic range. In our case study, these improvements allowed for a distinction between a thermal and a non-thermal GRMHD model based on salient features in reconstructed images.
  •  
27.
  • Akiyama, Kazunori, et al. (author)
  • First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • We present Event Horizon Telescope (EHT) 1.3 mm measurements of the radio source located at the position of the supermassive black hole Sagittarius A* (Sgr A*), collected during the 2017 April 5-11 campaign. The observations were carried out with eight facilities at six locations across the globe. Novel calibration methods are employed to account for Sgr A*'s flux variability. The majority of the 1.3 mm emission arises from horizon scales, where intrinsic structural source variability is detected on timescales of minutes to hours. The effects of interstellar scattering on the image and its variability are found to be subdominant to intrinsic source structure. The calibrated visibility amplitudes, particularly the locations of the visibility minima, are broadly consistent with a blurred ring with a diameter of similar to 50 mu as, as determined in later works in this series. Contemporaneous multiwavelength monitoring of Sgr A* was performed at 22, 43, and 86 GHz and at near-infrared and X-ray wavelengths. Several X-ray flares from Sgr A* are detected by Chandra, one at low significance jointly with Swift on 2017 April 7 and the other at higher significance jointly with NuSTAR on 2017 April 11. The brighter April 11 flare is not observed simultaneously by the EHT but is followed by a significant increase in millimeter flux variability immediately after the X-ray outburst, indicating a likely connection in the emission physics near the event horizon. We compare Sgr A*'s broadband flux during the EHT campaign to its historical spectral energy distribution and find that both the quiescent emission and flare emission are consistent with its long-term behavior.
  •  
28.
  • Wielgus, Maciek, et al. (author)
  • Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • The Event Horizon Telescope (EHT) observed the compact radio source, Sagittarius A* (Sgr A*), in the Galactic Center on 2017 April 5-11 in the 1.3 mm wavelength band. At the same time, interferometric array data from the Atacama Large Millimeter/submillimeter Array and the Submillimeter Array were collected, providing Sgr A* light curves simultaneous with the EHT observations. These data sets, complementing the EHT very long baseline interferometry, are characterized by a cadence and signal-to-noise ratio previously unattainable for Sgr A* at millimeter wavelengths, and they allow for the investigation of source variability on timescales as short as a minute. While most of the light curves correspond to a low variability state of Sgr A*, the April 11 observations follow an X-ray flare and exhibit strongly enhanced variability. All of the light curves are consistent with a red-noise process, with a power spectral density (PSD) slope measured to be between -2 and -3 on timescales between 1 minute and several hours. Our results indicate a steepening of the PSD slope for timescales shorter than 0.3 hr. The spectral energy distribution is flat at 220 GHz, and there are no time lags between the 213 and 229 GHz frequency bands, suggesting low optical depth for the event horizon scale source. We characterize Sgr A*'s variability, highlighting the different behavior observed just after the X-ray flare, and use Gaussian process modeling to extract a decorrelation timescale and a PSD slope. We also investigate the systematic calibration uncertainties by analyzing data from independent data reduction pipelines.
  •  
29.
  • Akiyama, Kazunori, et al. (author)
  • First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • We present the first event-horizon-scale images and spatiotemporal analysis of Sgr A* taken with the Event Horizon Telescope in 2017 April at a wavelength of 1.3 mm. Imaging of Sgr A* has been conducted through surveys over a wide range of imaging assumptions using the classical CLEAN algorithm, regularized maximum likelihood methods, and a Bayesian posterior sampling method. Different prescriptions have been used to account for scattering effects by the interstellar medium toward the Galactic center. Mitigation of the rapid intraday variability that characterizes Sgr A* has been carried out through the addition of a "variability noise budget" in the observed visibilities, facilitating the reconstruction of static full-track images. Our static reconstructions of Sgr A* can be clustered into four representative morphologies that correspond to ring images with three different azimuthal brightness distributions and a small cluster that contains diverse nonring morphologies. Based on our extensive analysis of the effects of sparse (u, v)-coverage, source variability, and interstellar scattering, as well as studies of simulated visibility data, we conclude that the Event Horizon Telescope Sgr A* data show compelling evidence for an image that is dominated by a bright ring of emission with a ring diameter of similar to 50 mu as, consistent with the expected "shadow" of a 4 x 10(6) M (circle dot) black hole in the Galactic center located at a distance of 8 kpc.
  •  
30.
  • Akiyama, Kazunori, et al. (author)
  • First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • In this paper we quantify the temporal variability and image morphology of the horizon-scale emission from Sgr A*, as observed by the EHT in 2017 April at a wavelength of 1.3 mm. We find that the Sgr A* data exhibit variability that exceeds what can be explained by the uncertainties in the data or by the effects of interstellar scattering. The magnitude of this variability can be a substantial fraction of the correlated flux density, reaching similar to 100% on some baselines. Through an exploration of simple geometric source models, we demonstrate that ring-like morphologies provide better fits to the Sgr A* data than do other morphologies with comparable complexity. We develop two strategies for fitting static geometric ring models to the time-variable Sgr A* data; one strategy fits models to short segments of data over which the source is static and averages these independent fits, while the other fits models to the full data set using a parametric model for the structural variability power spectrum around the average source structure. Both geometric modeling and image-domain feature extraction techniques determine the ring diameter to be 51.8 +/- 2.3 mu as (68% credible intervals), with the ring thickness constrained to have an FWHM between similar to 30% and 50% of the ring diameter. To bring the diameter measurements to a common physical scale, we calibrate them using synthetic data generated from GRMHD simulations. This calibration constrains the angular size of the gravitational radius to be 4.8(-0.7)(+1.4) mu as, which we combine with an independent distance measurement from maser parallaxes to determine the mass of Sgr A* to be 4.0(-0.6)(+1.1) x 10(6) M-circle dot.
  •  
31.
  • Akiyama, Kazunori, et al. (author)
  • First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • In this paper we provide a first physical interpretation for the Event Horizon Telescope's (EHT) 2017 observations of Sgr A*. Our main approach is to compare resolved EHT data at 230 GHz and unresolved non-EHT observations from radio to X-ray wavelengths to predictions from a library of models based on time-dependent general relativistic magnetohydrodynamics simulations, including aligned, tilted, and stellar-wind-fed simulations; radiative transfer is performed assuming both thermal and nonthermal electron distribution functions. We test the models against 11 constraints drawn from EHT 230 GHz data and observations at 86 GHz, 2.2 mu m, and in the X-ray. All models fail at least one constraint. Light-curve variability provides a particularly severe constraint, failing nearly all strongly magnetized (magnetically arrested disk (MAD)) models and a large fraction of weakly magnetized models. A number of models fail only the variability constraints. We identify a promising cluster of these models, which are MAD and have inclination i <= 30 degrees. They have accretion rate (5.2-9.5) x 10(-9) M (circle dot) yr(-1), bolometric luminosity (6.8-9.2) x 10(35) erg s(-1), and outflow power (1.3-4.8) x 10(38) erg s(-1). We also find that all models with i >= 70 degrees fail at least two constraints, as do all models with equal ion and electron temperature; exploratory, nonthermal model sets tend to have higher 2.2 mu m flux density; and the population of cold electrons is limited by X-ray constraints due to the risk of bremsstrahlung overproduction. Finally, we discuss physical and numerical limitations of the models, highlighting the possible importance of kinetic effects and duration of the simulations.
  •  
32.
  • Akiyama, Kazunori, et al. (author)
  • First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • Astrophysical black holes are expected to be described by the Kerr metric. This is the only stationary, vacuum, axisymmetric metric, without electromagnetic charge, that satisfies Einstein's equations and does not have pathologies outside of the event horizon. We present new constraints on potential deviations from the Kerr prediction based on 2017 EHT observations of Sagittarius A* (Sgr A*). We calibrate the relationship between the geometrically defined black hole shadow and the observed size of the ring-like images using a library that includes both Kerr and non-Kerr simulations. We use the exquisite prior constraints on the mass-to-distance ratio for Sgr A* to show that the observed image size is within similar to 10% of the Kerr predictions. We use these bounds to constrain metrics that are parametrically different from Kerr, as well as the charges of several known spacetimes. To consider alternatives to the presence of an event horizon, we explore the possibility that Sgr A* is a compact object with a surface that either absorbs and thermally reemits incident radiation or partially reflects it. Using the observed image size and the broadband spectrum of Sgr A*, we conclude that a thermal surface can be ruled out and a fully reflective one is unlikely. We compare our results to the broader landscape of gravitational tests. Together with the bounds found for stellar-mass black holes and the M87 black hole, our observations provide further support that the external spacetimes of all black holes are described by the Kerr metric, independent of their mass.
  •  
33.
  • Broderick, Avery E., et al. (author)
  • Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • The extraordinary physical resolution afforded by the Event Horizon Telescope has opened a window onto the astrophysical phenomena unfolding on horizon scales in two known black holes, M87* and Sgr A*. However, with this leap in resolution has come a new set of practical complications. Sgr A* exhibits intraday variability that violates the assumptions underlying Earth aperture synthesis, limiting traditional image reconstruction methods to short timescales and data sets with very sparse (u, v) coverage. We present a new set of tools to detect and mitigate this variability. We develop a data-driven, model-agnostic procedure to detect and characterize the spatial structure of intraday variability. This method is calibrated against a large set of mock data sets, producing an empirical estimator of the spatial power spectrum of the brightness fluctuations. We present a novel Bayesian noise modeling algorithm that simultaneously reconstructs an average image and statistical measure of the fluctuations about it using a parameterized form for the excess variance in the complex visibilities not otherwise explained by the statistical errors. These methods are validated using a variety of simulated data, including general relativistic magnetohydrodynamic simulations appropriate for Sgr A* and M87*. We find that the reconstructed source structure and variability are robust to changes in the underlying image model. We apply these methods to the 2017 EHT observations of M87*, finding evidence for variability across the EHT observing campaign. The variability mitigation strategies presented are widely applicable to very long baseline interferometry observations of variable sources generally, for which they provide a data-informed averaging procedure and natural characterization of inter-epoch image consistency.
  •  
34.
  • Goddi, Ciriaco, et al. (author)
  • Polarimetric Properties of Event Horizon Telescope Targets from ALMA
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 910:1
  • Journal article (peer-reviewed)abstract
    • We present the results from a full polarization study carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) during the first Very Long Baseline Interferometry (VLBI) campaign, which was conducted in 2017 April in the lambda 3 mm and lambda 1.3 mm bands, in concert with the Global mm-VLBI Array (GMVA) and the Event Horizon Telescope (EHT), respectively. We determine the polarization and Faraday properties of all VLBI targets, including Sgr A*, M87, and a dozen radio-loud active galactic nuclei (AGNs), in the two bands at several epochs in a time window of 10 days. We detect high linear polarization fractions (2%-15%) and large rotation measures (RM > 10(3.3)-10(5.5) rad m(-2)), confirming the trends of previous AGN studies at millimeter wavelengths. We find that blazars are more strongly polarized than other AGNs in the sample, while exhibiting (on average) order-of-magnitude lower RM values, consistent with the AGN viewing angle unification scheme. For Sgr A* we report a mean RM of (-4.2 0.3) x 10(5) rad m(-2) at 1.3 mm, consistent with measurements over the past decade and, for the first time, an RM of (-2.1 0.1) x 10(5) rad m(-2) at 3 mm, suggesting that about half of the Faraday rotation at 1.3 mm may occur between the 3 mm photosphere and the 1.3 mm source. We also report the first unambiguous measurement of RM toward the M87 nucleus at millimeter wavelengths, which undergoes significant changes in magnitude and sign reversals on a one year timescale, spanning the range from -1.2 to 0.3 x 10(5) rad m(-2) at 3 mm and -4.1 to 1.5 x 10(5) rad m(-2) at 1.3 mm. Given this time variability, we argue that, unlike the case of Sgr A*, the RM in M87 does not provide an accurate estimate of the mass accretion rate onto the black hole. We put forward a two-component model, comprised of a variable compact region and a static extended region, that can simultaneously explain the polarimetric properties observed by both the EHT (on horizon scales) and ALMA (which observes the combined emission from both components). These measurements provide critical constraints for the calibration, analysis, and interpretation of simultaneously obtained VLBI data with the EHT and GMVA.
  •  
35.
  • Jorstad, S.G., et al. (author)
  • The Event Horizon Telescope Image of the Quasar NRAO 530
  • 2023
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 943:2
  • Journal article (peer-reviewed)abstract
    • We report on the observations of the quasar NRAO 530 with the Event Horizon Telescope (EHT) on 2017 April 5-7, when NRAO 530 was used as a calibrator for the EHT observations of Sagittarius A*. At z = 0.902, this is the most distant object imaged by the EHT so far. We reconstruct the first images of the source at 230 GHz, at an unprecedented angular resolution of similar to 20 mu as, both in total intensity and in linear polarization (LP). We do not detect source variability, allowing us to represent the whole data set with static images. The images reveal a bright feature located on the southern end of the jet, which we associate with the core. The feature is linearly polarized, with a fractional polarization of similar to 5%-8%, and it has a substructure consisting of two components. Their observed brightness temperature suggests that the energy density of the jet is dominated by the magnetic field. The jet extends over 60 mu as along a position angle similar to -28 degrees. It includes two features with orthogonal directions of polarization (electric vector position angle), parallel and perpendicular to the jet axis, consistent with a helical structure of the magnetic field in the jet. The outermost feature has a particularly high degree of LP, suggestive of a nearly uniform magnetic field. Future EHT observations will probe the variability of the jet structure on microarcsecond scales, while simultaneous multiwavelength monitoring will provide insight into the high-energy emission origin.
  •  
36.
  • Moshontz, Hannah, et al. (author)
  • The Psychological Science Accelerator: Advancing Psychology Through a Distributed Collaborative Network
  • 2018
  • In: Advances in Methods and Practices in Psychological Science. - : SAGE Publications. - 2515-2459 .- 2515-2467. ; 1:4, s. 501-515
  • Journal article (peer-reviewed)abstract
    • Concerns about the veracity of psychological research have been growing. Many findings in psychological science are based on studies with insufficient statistical power and nonrepresentative samples, or may otherwise be limited to specific, ungeneralizable settings or populations. Crowdsourced research, a type of large-scale collaboration in which one or more research projects are conducted across multiple lab sites, offers a pragmatic solution to these and other current methodological challenges. The Psychological Science Accelerator (PSA) is a distributed network of laboratories designed to enable and support crowdsourced research projects. These projects can focus on novel research questions or replicate prior research in large, diverse samples. The PSA’s mission is to accelerate the accumulation of reliable and generalizable evidence in psychological science. Here, we describe the background, structure, principles, procedures, benefits, and challenges of the PSA. In contrast to other crowdsourced research networks, the PSA is ongoing (as opposed to time limited), efficient (in that structures and principles are reused for different projects), decentralized, diverse (in both subjects and researchers), and inclusive (of proposals, contributions, and other relevant input from anyone inside or outside the network). The PSA and other approaches to crowdsourced psychological science will advance understanding of mental processes and behaviors by enabling rigorous research and systematic examination of its generalizability.
  •  
37.
  • Narayan, Ramesh, et al. (author)
  • The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 912:1
  • Journal article (peer-reviewed)abstract
    • Synchrotron radiation from hot gas near a black hole results in a polarized image. The image polarization is determined by effects including the orientation of the magnetic field in the emitting region, relativistic motion of the gas, strong gravitational lensing by the black hole, and parallel transport in the curved spacetime. We explore these effects using a simple model of an axisymmetric, equatorial accretion disk around a Schwarzschild black hole. By using an approximate expression for the null geodesics derived by Beloborodov and conservation of the Walker-Penrose constant, we provide analytic estimates for the image polarization. We test this model using currently favored general relativistic magnetohydrodynamic simulations of M87*, using ring parameters given by the simulations. For a subset of these with modest Faraday effects, we show that the ring model broadly reproduces the polarimetric image morphology. Our model also predicts the polarization evolution for compact flaring regions, such as those observed from Sgr A* with GRAVITY. With suitably chosen parameters, our simple model can reproduce the EVPA pattern and relative polarized intensity in Event Horizon Telescope images of M87*. Under the physically motivated assumption that the magnetic field trails the fluid velocity, this comparison is consistent with the clockwise rotation inferred from total intensity images.
  •  
38.
  • Schijven, Dick, et al. (author)
  • Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium
  • 2023
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 120:14
  • Journal article (peer-reviewed)abstract
    • Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macrostructural asymmetry may reflect differences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia.
  •  
39.
  • Torne, Pablo, et al. (author)
  • A Search for Pulsars around Sgr A* in the First Event Horizon Telescope Data Set
  • 2023
  • In: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 959:1
  • Journal article (peer-reviewed)abstract
    • In 2017 the Event Horizon Telescope (EHT) observed the supermassive black hole at the center of the Milky Way, Sagittarius A* (Sgr A*), at a frequency of 228.1 GHz (lambda = 1.3 mm). The fundamental physics tests that even a single pulsar orbiting Sgr A* would enable motivate searching for pulsars in EHT data sets. The high observing frequency means that pulsars-which typically exhibit steep emission spectra-are expected to be very faint. However, it also negates pulse scattering, an effect that could hinder pulsar detections in the Galactic center. Additionally, magnetars or a secondary inverse Compton emission could be stronger at millimeter wavelengths than at lower frequencies. We present a search for pulsars close to Sgr A* using the data from the three most sensitive stations in the EHT 2017 campaign: the Atacama Large Millimeter/submillimeter Array, the Large Millimeter Telescope, and the IRAM 30 m Telescope. We apply three detection methods based on Fourier-domain analysis, the fast folding algorithm, and single-pulse searches targeting both pulsars and burst-like transient emission. We use the simultaneity of the observations to confirm potential candidates. No new pulsars or significant bursts were found. Being the first pulsar search ever carried out at such high radio frequencies, we detail our analysis methods and give a detailed estimation of the sensitivity of the search. We conclude that the EHT 2017 observations are only sensitive to a small fraction (less than or similar to 2.2%) of the pulsars that may exist close to Sgr A*, motivating further searches for fainter pulsars in the region.
  •  
40.
  • Akiyama, Kazunori, et al. (author)
  • First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring
  • 2019
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 875:1
  • Journal article (peer-reviewed)abstract
    • The Event Horizon Telescope (EHT) has mapped the central compact radio source of the elliptical galaxy M87 at 1.3 mm with unprecedented angular resolution. Here we consider the physical implications of the asymmetric ring seen in the 2017 EHT data. To this end, we construct a large library of models based on general relativistic magnetohydrodynamic (GRMHD) simulations and synthetic images produced by general relativistic ray tracing. We compare the observed visibilities with this library and confirm that the asymmetric ring is consistent with earlier predictions of strong gravitational lensing of synchrotron emission from a hot plasma orbiting near the black hole event horizon. The ring radius and ring asymmetry depend on black hole mass and spin, respectively, and both are therefore expected to be stable when observed in future EHT campaigns. Overall, the observed image is consistent with expectations for the shadow of a spinning Kerr black hole as predicted by general relativity. If the black hole spin and M87's large scale jet are aligned, then the black hole spin vector is pointed away from Earth. Models in our library of non-spinning black holes are inconsistent with the observations as they do not produce sufficiently powerful jets. At the same time, in those models that produce a sufficiently powerful jet, the latter is powered by extraction of black hole spin energy through mechanisms akin to the Blandford-Znajek process. We briefly consider alternatives to a black hole for the central compact object. Analysis of existing EHT polarization data and data taken simultaneously at other wavelengths will soon enable new tests of the GRMHD models, as will future EHT campaigns at 230 and 345 GHz.
  •  
41.
  • Akiyama, Kazunori, et al. (author)
  • First M87 Event Horizon Telescope Results. VII. Polarization of the Ring
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 910:1
  • Journal article (peer-reviewed)abstract
    • In 2017 April, the Event Horizon Telescope (EHT) observed the near-horizon region around the supermassive black hole at the core of the M87 galaxy. These 1.3 mm wavelength observations revealed a compact asymmetric ring-like source morphology. This structure originates from synchrotron emission produced by relativistic plasma located in the immediate vicinity of the black hole. Here we present the corresponding linear-polarimetric EHT images of the center of M87. We find that only a part of the ring is significantly polarized. The resolved fractional linear polarization has a maximum located in the southwest part of the ring, where it rises to the level of similar to 15%. The polarization position angles are arranged in a nearly azimuthal pattern. We perform quantitative measurements of relevant polarimetric properties of the compact emission and find evidence for the temporal evolution of the polarized source structure over one week of EHT observations. The details of the polarimetric data reduction and calibration methodology are provided. We carry out the data analysis using multiple independent imaging and modeling techniques, each of which is validated against a suite of synthetic data sets. The gross polarimetric structure and its apparent evolution with time are insensitive to the method used to reconstruct the image. These polarimetric images carry information about the structure of the magnetic fields responsible for the synchrotron emission. Their physical interpretation is discussed in an accompanying publication.
  •  
42.
  • Akiyama, Kazunori, et al. (author)
  • First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 910:1
  • Journal article (peer-reviewed)abstract
    • Event Horizon Telescope (EHT) observations at 230 GHz have now imaged polarized emission around the supermassive black hole in M87 on event-horizon scales. This polarized synchrotron radiation probes the structure of magnetic fields and the plasma properties near the black hole. Here we compare the resolved polarization structure observed by the EHT, along with simultaneous unresolved observations with the Atacama Large Millimeter/submillimeter Array, to expectations from theoretical models. The low fractional linear polarization in the resolved image suggests that the polarization is scrambled on scales smaller than the EHT beam, which we attribute to Faraday rotation internal to the emission region. We estimate the average density n(e) similar to 10(4-7) cm(-3), magnetic field strength B similar to 1-30 G, and electron temperature T-e similar to (1-12) x 10(10) K of the radiating plasma in a simple one-zone emission model. We show that the net azimuthal linear polarization pattern may result from organized, poloidal magnetic fields in the emission region. In a quantitative comparison with a large library of simulated polarimetric images from general relativistic magnetohydrodynamic (GRMHD) simulations, we identify a subset of physical models that can explain critical features of the polarimetric EHT observations while producing a relativistic jet of sufficient power. The consistent GRMHD models are all of magnetically arrested accretion disks, where near-horizon magnetic fields are dynamically important. We use the models to infer a mass accretion rate onto the black hole in M87 of (3-20) x 10(-4) M yr(-1).
  •  
43.
  • Issaoun, Sara, et al. (author)
  • Resolving the Inner Parsec of the Blazar J1924-2914 with the Event Horizon Telescope
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 934:2
  • Journal article (peer-reviewed)abstract
    • The blazar J1924-2914 is a primary Event Horizon Telescope (EHT) calibrator for the Galactic center's black hole Sagittarius A*. Here we present the first total and linearly polarized intensity images of this source obtained with the unprecedented 20 mu as resolution of the EHT. J1924-2914 is a very compact flat-spectrum radio source with strong optical variability and polarization. In April 2017 the source was observed quasi-simultaneously with the EHT (April 5-11), the Global Millimeter VLBI Array (April 3), and the Very Long Baseline Array (April 28), giving a novel view of the source at four observing frequencies, 230, 86, 8.7, and 2.3 GHz. These observations probe jet properties from the subparsec to 100 pc scales. We combine the multifrequency images of J1924-2914 to study the source morphology. We find that the jet exhibits a characteristic bending, with a gradual clockwise rotation of the jet projected position angle of about 90 degrees between 2.3 and 230 GHz. Linearly polarized intensity images of J1924-2914 with the extremely fine resolution of the EHT provide evidence for ordered toroidal magnetic fields in the blazar compact core.
  •  
44.
  • Roberts, Jason D., et al. (author)
  • Ankyrin-B dysfunction predisposes to arrhythmogenic cardiomyopathy and is amenable to therapy
  • 2019
  • In: Journal of Clinical Investigation. - : AMER SOC CLINICAL INVESTIGATION INC. - 0021-9738 .- 1558-8238. ; 129:8, s. 3171-3184
  • Journal article (peer-reviewed)abstract
    • Arrhythmogenic cardiomyopathy (ACM) is an inherited arrhythmia syndrome characterized by severe structural and electrical cardiac phenotypes, including myocardial fibrofatty replacement and sudden cardiac death. Clinical management of ACM is largely palliative, owing to an absence of therapies that target its underlying pathophysiology, which stems partially from our limited insight into the condition. Following identification of deceased ACM probands possessing ANK2 rare variants and evidence of ankyrin-B loss of function on cardiac tissue analysis, an ANK2 mouse model was found to develop dramatic structural abnormalities reflective of human ACM, including biventricular dilation, reduced ejection fraction, cardiac fibrosis, and premature death. Desmosomal structure and function appeared preserved in diseased human and murine specimens in the presence of markedly abnormal beta-catenin expression and patterning, leading to identification of a previously unknown interaction between ankyrin-B and beta-catenin. A pharmacological activator of the WNT/beta-catenin pathway, SB-216763, successfully prevented and partially reversed the murine ACM phenotypes. Our findings introduce what we believe to be a new pathway for ACM, a role of ankyrin-B in cardiac structure and signaling, a molecular link between ankyrin-B and beta-catenin, and evidence for targeted activation of the WNT/beta-catenin pathway as a potential treatment for this disease.
  •  
45.
  • Akiyama, Kazunori, et al. (author)
  • First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole
  • 2019
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 875:1
  • Journal article (peer-reviewed)abstract
    • We present the first Event Horizon Telescope (EHT) images of M87, using observations from April 2017 at 1.3 mm wavelength. These images show a prominent ring with a diameter of similar to 40 mu as, consistent with the size and shape of the lensed photon orbit encircling the "shadow" of a supermassive black hole. The ring is persistent across four observing nights and shows enhanced brightness in the south. To assess the reliability of these results, we implemented a two-stage imaging procedure. In the first stage, four teams, each blind to the others' work, produced images of M87 using both an established method (CLEAN) and a newer technique (regularized maximum likelihood). This stage allowed us to avoid shared human bias and to assess common features among independent reconstructions. In the second stage, we reconstructed synthetic data from a large survey of imaging parameters and then compared the results with the corresponding ground truth images. This stage allowed us to select parameters objectively to use when reconstructing images of M87. Across all tests in both stages, the ring diameter and asymmetry remained stable, insensitive to the choice of imaging technique. We describe the EHT imaging procedures, the primary image features in M87, and the dependence of these features on imaging assumptions.
  •  
46.
  • Akiyama, Kazunori, et al. (author)
  • First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole
  • 2019
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 875:1
  • Journal article (peer-reviewed)abstract
    • We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) using two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated from GRMHD models directly to the data. We compare the derived emission region and black hole parameters from these analyses with those recovered from reconstructed images. There is a remarkable consistency among all methods and data sets. We find that >50% of the total flux at arcsecond scales comes from near the horizon, and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole. Across all methods, we measure a crescent diameter of 42 +/- 3 mu as and constrain its fractional width to be
  •  
47.
  • Farah, Joseph, et al. (author)
  • Selective Dynamical Imaging of Interferometric Data
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • Recent developments in very long baseline interferometry (VLBI) have made it possible for the Event Horizon Telescope (EHT) to resolve the innermost accretion flows of the largest supermassive black holes on the sky. The sparse nature of the EHT's (u, v)-coverage presents a challenge when attempting to resolve highly time-variable sources. We demonstrate that the changing (u, v)-coverage of the EHT can contain regions of time over the course of a single observation that facilitate dynamical imaging. These optimal time regions typically have projected baseline distributions that are approximately angularly isotropic and radially homogeneous. We derive a metric of coverage quality based on baseline isotropy and density that is capable of ranking array configurations by their ability to produce accurate dynamical reconstructions. We compare this metric to existing metrics in the literature and investigate their utility by performing dynamical reconstructions on synthetic data from simulated EHT observations of sources with simple orbital variability. We then use these results to make recommendations for imaging the 2017 EHT Sgr A* data set.
  •  
48.
  • Krebs, Frederik C, et al. (author)
  • A round robin study of flexible large-area roll-to-roll processed polymer solar cell modules
  • 2009
  • In: SOLAR ENERGY MATERIALS AND SOLAR CELLS. - : Elsevier BV. - 0927-0248. ; 93:11, s. 1968-1977
  • Journal article (peer-reviewed)abstract
    • A round robin for the performance of roll-to-roll coated flexible large-area polymer solar-cell modules involving 18 different laboratories in Northern America, Europe and Middle East is presented. The study involved the performance measurement of the devices at one location (Riso DTU) followed by transportation to a participating laboratory for performance measurement and return to the starting location (Riso DTU) for re-measurement of the performance. It was found possible to package polymer solar-cell modules using a flexible plastic barrier material in such a manner that degradation of the devices played a relatively small role in the experiment that has taken place over 4 months. The method of transportation followed both air-mail and surface-mail paths.
  •  
49.
  • Mohammed Taha, Hiba, et al. (author)
  • The NORMAN Suspect List Exchange (NORMAN-SLE) : facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry
  • 2022
  • In: Environmental Sciences Europe. - : Springer. - 2190-4707 .- 2190-4715. ; 34:1
  • Journal article (peer-reviewed)abstract
    • Background: The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for “suspect screening” lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide.Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA’s CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101).Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the “one substance, one assessment” approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/).
  •  
50.
  • Satapathy, Kaushik, et al. (author)
  • The Variability of the Black Hole Image in M87 at the Dynamical Timescale
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 925:1
  • Journal article (peer-reviewed)abstract
    • The black hole images obtained with the Event Horizon Telescope (EHT) are expected to be variable at the dynamical timescale near their horizons. For the black hole at the center of the M87 galaxy, this timescale (5-61 days) is comparable to the 6 day extent of the 2017 EHT observations. Closure phases along baseline triangles are robust interferometric observables that are sensitive to the expected structural changes of the images but are free of station-based atmospheric and instrumental errors. We explored the day-to-day variability in closure-phase measurements on all six linearly independent nontrivial baseline triangles that can be formed from the 2017 observations. We showed that three triangles exhibit very low day-to-day variability, with a dispersion of similar to 3 degrees-5 degrees. The only triangles that exhibit substantially higher variability (similar to 90 degrees-180 degrees) are the ones with baselines that cross the visibility amplitude minima on the u-v plane, as expected from theoretical modeling. We used two sets of general relativistic magnetohydrodynamic simulations to explore the dependence of the predicted variability on various black hole and accretion-flow parameters. We found that changing the magnetic field configuration, electron temperature model, or black hole spin has a marginal effect on the model consistency with the observed level of variability. On the other hand, the most discriminating image characteristic of models is the fractional width of the bright ring of emission. Models that best reproduce the observed small level of variability are characterized by thin ring-like images with structures dominated by gravitational lensing effects and thus least affected by turbulence in the accreting plasmas.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 61
Type of publication
journal article (57)
research review (2)
Type of content
peer-reviewed (59)
Author/Editor
Kim, Jae-Young (32)
Akiyama, Kazunori (32)
Alberdi, Antxon (32)
Alef, Walter (32)
Barrett, John (32)
Bintley, Dan (32)
show more...
Blackburn, Lindy (32)
Brissenden, Roger (32)
Britzen, Silke (32)
Bronzwaer, Thomas (32)
Chatterjee, Koushik (32)
Chen, Ming Tang (32)
Chen, Yongjun (32)
Cordes, James M. (32)
Cui, Yuzhu (32)
Davelaar, Jordy (32)
Dempsey, Jessica (32)
Desvignes, Gregory (32)
Eatough, Ralph P. (32)
Gammie, Charles F. (32)
Gentaz, Olivier (32)
Gu, Minfeng (32)
Inoue, Makoto (32)
James, David J. (32)
Johnson, Michael D. (32)
Jung, Taehyun (32)
Karami, Mansour (32)
Kawashima, Tomohisa (32)
Koay, Jun Yi (32)
Koyama, Shoko (32)
Lee, Sang Sung (32)
Li, Zhiyuan (32)
Janssen, Michael (32)
Liuzzo, Elisabetta (32)
Lo, Wen-Ping (32)
Mao, Jirong (32)
Mizuno, Yosuke (32)
Mizuno, Izumi (32)
Moran, James M. (32)
Moriyama, Kotaro (32)
Narayanan, Gopal (32)
Natarajan, Iniyan (32)
Okino, Hiroki (32)
Palumbo, Daniel C. M ... (32)
Pietu, Vincent (32)
PopStefanija, Aleksa ... (32)
Preciado-Lopez, Jorg ... (32)
Ramakrishnan, Venkat ... (32)
Raymond, Alexander W ... (32)
Ripperda, Bart (32)
show less...
University
Chalmers University of Technology (32)
Lund University (12)
Uppsala University (8)
Karolinska Institutet (6)
Luleå University of Technology (5)
Umeå University (3)
show more...
Linköping University (3)
Linnaeus University (2)
University of Gothenburg (1)
Stockholm University (1)
Örebro University (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (61)
Research subject (UKÄ/SCB)
Natural sciences (45)
Engineering and Technology (13)
Medical and Health Sciences (13)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view