SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jerlstrom Hultqvist Joel 1982 ) "

Search: WFRF:(Jerlstrom Hultqvist Joel 1982 )

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Maciejowski, William J., et al. (author)
  • Ancient and pervasive expansion of adaptin-related vesicle coat machinery across Parabasalia
  • 2023
  • In: International Journal of Parasitology. - : Elsevier. - 0020-7519 .- 1879-0135. ; 53:4, s. 233-245
  • Journal article (peer-reviewed)abstract
    • The eukaryotic phylum Parabasalia is composed primarily of anaerobic, endobiotic organisms such as the veterinary parasite Tritrichomonas foetus and the human parasite Trichomonas vaginalis, the latter causing the most prevalent, non-viral, sexually transmitted disease world-wide. Although a parasitic lifestyle is generally associated with a reduction in cell biology, T. vaginalis provides a striking counter-example. The 2007 T. vaginalis genome paper reported a massive and selective expansion of encoded proteins involved in vesicle trafficking, particularly those implicated in the late secretory and endocytic systems. Chief amongst these were the hetero-tetrameric adaptor proteins or 'adaptins', with T. vaginalis encoding -3.5 times more such proteins than do humans. The provenance of such a complement, and how it relates to the transition from a free-living or endobiotic state to parasitism, remains unclear. In this study, we performed a comprehensive bioinformatic and molecular evolutionary investigation of the heterotetrameric cargo adaptor-derived coats, comparing the molecular complement and evolution of these proteins between T. vaginalis, T. foetus and the available diversity of endobiotic parabasalids. Notably, with the recent discovery of Anaeramoeba spp. as the free-living sister lineage to all parabasalids, we were able to delve back to time points earlier in the lineage's history than ever before. We found that, although T. vaginalis still encodes the most HTAC subunits amongst parabasalids, the duplications giving rise to the complement took place more deeply and at various stages across the lineage. While some duplications appear to have convergently shaped the parasitic lineages, the largest jump is in the transition from free-living to endobiotic lifestyle with both gains and losses shaping the encoded complement. This work details the evolution of a cellular system across an important lineage of parasites and provides insight into the evolutionary dynamics of an example of expansion of protein machinery, counter to the more common trends observed in many parasitic systems.
  •  
2.
  • Astvaldsson, Asgeir, 1981-, et al. (author)
  • Proximity Staining using Enzymatic Protein Tagging in Diplomonads
  • 2019
  • In: mSphere. - 2379-5042. ; 4:2
  • Journal article (peer-reviewed)abstract
    • The diplomonads are a group of understudied eukaryotic flagellates whose most prominent member is the human pathogen Giardia intestinalis. Methods commonly used in other eukaryotic model systems often require special optimization in diplomonads due to the highly derived character of their cell biology. We have optimized a proximity labeling protocol using pea ascorbate peroxidase (APEX) as a reporter for transmission electron microscopy (TEM), to enable study of ultrastructural cellular details in diplomonads. Currently available TEM-compatible tags requires light-induced activation (1, 2) or are inactive in many cellular compartments (3) while ascorbate peroxidase has not been shown to have those limitations. Here we have optimized the in vivo activity of two versions of pea ascorbate peroxidase (APXW41F and APEX) using the diplomonad fish parasite Spironucleus salmonicida, a relative of G. intestinalis. We exploited the well-known peroxidase substrates, Amplex UltraRed and 3,3’-diaminobenzidine (DAB), to validate the activity of the two tags and argue that APEX is the most stable version to use in Spironucleus salmonicida. Next, we fused APEX to proteins with established localization to evaluate the activity of APEX in different cellular compartments of the diplomonad cell and used Amplex UltraRed as well as antibodies along with super-resolution microscopy to confirm the protein-APEX localization. The ultrastructural details of protein-APEX fusions were determined by TEM and we observed marker activity in all cellular compartments tested when using the DAB substrate. Finally, we show that the optimized conditions established for S. salmonicida can be used in the related diplomonad G. intestinalis.
  •  
3.
  •  
4.
  •  
5.
  • Xu, Feifei, et al. (author)
  • The compact genome of Giardia muris reveals important steps in the evolution of intestinal protozoan parasites
  • 2020
  • In: Microbial Genomics. - : Microbiology Society. - 2057-5858. ; 6:8
  • Journal article (other academic/artistic)abstract
    • Diplomonad parasites of the genus Giardia have adapted to colonizing different hosts, most notably the intestinal tract of mammals. The human-pathogenic Giardia species, Giardia intestinalis, has been extensively studied at the genome and gene expression level, but no such information is available for other Giardia species. Comparative data would be particularly valuable for Giardia muris, which colonizes mice and is commonly used as a prototypic in vivo model for investigating host responses to intestinal parasitic infection. Here we report the draft-genome of G. muris. We discovered a highly streamlined genome, amongst the most densely encoded ever described for a nuclear eukaryotic genome. G. muris and G. intestinalis share many known or predicted virulence factors, including cysteine proteases and a large repertoire of cysteine-rich surface proteins involved in antigenic variation. Different to G. intestinalis, G. muris maintains tandem arrays of pseudogenized surface antigens at the telomeres, whereas intact surface antigens are present centrally in the chromosomes. The two classes of surface antigens engage in genetic exchange. Reconstruction of metabolic pathways from the G. muris genome suggest significant metabolic differences to G. intestinalis. Additionally, G. muris encodes proteins that might be used to modulate the prokaryotic microbiota. The responsible genes have been introduced in the Giardia genus via lateral gene transfer from prokaryotic sources. Our findings point to important evolutionary steps in the Giardia genus as it adapted to different hosts and it provides a powerful foundation for mechanistic exploration of host-pathogen interaction in the G. muris – mouse pathosystem.Importance The Giardia genus comprises eukaryotic single-celled parasites that infect many animals. The Giardia intestinalis species complex, which can colonize and cause diarrheal disease in humans and different animal hosts has been extensively explored at the genomic and cell biologic levels. Other Giardia species, such as the mouse parasite Giardia muris, have remained uncharacterized at the genomic level, hampering our understanding of in vivo host-pathogen interactions and the impact of host dependence on the evolution of the Giardia genus. We discovered that the G. muris genome encodes many of the same virulence factors as G. intestinalis. The G. muris genome has undergone genome contraction, potentially in response to a more defined infective niche in the murine host. We describe differences in metabolic and microbiome modulatory gene repertoire, mediated mainly by lateral gene transfer, that could be important for understanding infective success across the Giardia genus. Our findings provide new insights for the use of G. muris as a powerful model for exploring host-pathogen interactions in giardiasis.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view