SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jimenez Alfaro Borja) "

Search: WFRF:(Jimenez Alfaro Borja)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mendieta-Leiva, Glenda, et al. (author)
  • EpIG-DB: A database of vascular epiphyte assemblages in the Neotropics
  • 2020
  • In: Journal of Vegetation Science. - : Wiley. - 1100-9233 .- 1654-1103. ; 31, s. 518-528
  • Journal article (peer-reviewed)abstract
    • Vascular epiphytes are a diverse and conspicuous component of biodiversity in tropical and subtropical forests. Yet, the patterns and drivers of epiphyte assemblages are poorly studied in comparison with soil-rooted plants. Current knowledge about diversity patterns of epiphytes mainly stems from local studies or floristic inventories, but this information has not yet been integrated to allow a better understanding of large-scale distribution patterns. EpIG-DB, the first database on epiphyte assemblages at the continental scale, resulted from an exhaustive compilation of published and unpublished inventory data from the Neotropics. The current version of EpIG-DB consists of 463,196 individual epiphytes from 3,005 species, which were collected from a total of 18,148 relevés (host trees and ‘understory’ plots). EpIG-DB reports the occurrence of ‘true’ epiphytes, hemiepiphytes and nomadic vines, including information on their cover, abundance, frequency and biomass. Most records (97%) correspond to sampled host trees, 76% of them aggregated in forest plots. The data is stored in a TURBOVEG database using the most up-to-date checklist of vascular epiphytes. A total of 18 additional fields were created for the standardization of associated data commonly used in epiphyte ecology (e.g. by considering different sampling methods). EpIG-DB currently covers six major biomes across the whole latitudinal range of epiphytes in the Neotropics but welcomes data globally. This novel database provides, for the first time, unique biodiversity data on epiphytes for the Neotropics and unified guidelines for future collection of epiphyte data. EpIG-DB will allow exploration of new ways to study the community ecology and biogeography of vascular epiphytes.
  •  
2.
  • Biurrun, Idoia, et al. (author)
  • Benchmarking plant diversity of Palaearctic grasslands and other open habitats
  • 2021
  • In: Journal of Vegetation Science. - Oxford : John Wiley & Sons. - 1100-9233 .- 1654-1103. ; 32:4
  • Journal article (peer-reviewed)abstract
    • Journal of Vegetation Science published by John Wiley & Sons Ltd on behalf of International Association for Vegetation Science.Aims: Understanding fine-grain diversity patterns across large spatial extents is fundamental for macroecological research and biodiversity conservation. Using the GrassPlot database, we provide benchmarks of fine-grain richness values of Palaearctic open habitats for vascular plants, bryophytes, lichens and complete vegetation (i.e., the sum of the former three groups). Location: Palaearctic biogeographic realm. Methods: We used 126,524 plots of eight standard grain sizes from the GrassPlot database: 0.0001, 0.001, 0.01, 0.1, 1, 10, 100 and 1,000 m2 and calculated the mean richness and standard deviations, as well as maximum, minimum, median, and first and third quartiles for each combination of grain size, taxonomic group, biome, region, vegetation type and phytosociological class. Results: Patterns of plant diversity in vegetation types and biomes differ across grain sizes and taxonomic groups. Overall, secondary (mostly semi-natural) grasslands and natural grasslands are the richest vegetation type. The open-access file ”GrassPlot Diversity Benchmarks” and the web tool “GrassPlot Diversity Explorer” are now available online (https://edgg.org/databases/GrasslandDiversityExplorer) and provide more insights into species richness patterns in the Palaearctic open habitats. Conclusions: The GrassPlot Diversity Benchmarks provide high-quality data on species richness in open habitat types across the Palaearctic. These benchmark data can be used in vegetation ecology, macroecology, biodiversity conservation and data quality checking. While the amount of data in the underlying GrassPlot database and their spatial coverage are smaller than in other extensive vegetation-plot databases, species recordings in GrassPlot are on average more complete, making it a valuable complementary data source in macroecology. © 2021 The Authors.
  •  
3.
  • Björkman, Anne, 1981, et al. (author)
  • Tundra Trait Team: A database of plant traits spanning the tundra biome
  • 2018
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:12, s. 1402-1411
  • Journal article (peer-reviewed)abstract
    • © 2018 The Authors Global Ecology and Biogeography Published by John Wiley & Sons Ltd Motivation: The Tundra Trait Team (TTT) database includes field-based measurements of key traits related to plant form and function at multiple sites across the tundra biome. This dataset can be used to address theoretical questions about plant strategy and trade-offs, trait–environment relationships and environmental filtering, and trait variation across spatial scales, to validate satellite data, and to inform Earth system model parameters. Main types of variable contained: The database contains 91,970 measurements of 18 plant traits. The most frequently measured traits (>1,000 observations each) include plant height, leaf area, specific leaf area, leaf fresh and dry mass, leaf dry matter content, leaf nitrogen, carbon and phosphorus content, leaf C:N and N:P, seed mass, and stem specific density. Spatial location and grain: Measurements were collected in tundra habitats in both the Northern and Southern Hemispheres, including Arctic sites in Alaska, Canada, Greenland, Fennoscandia and Siberia, alpine sites in the European Alps, Colorado Rockies, Caucasus, Ural Mountains, Pyrenees, Australian Alps, and Central Otago Mountains (New Zealand), and sub-Antarctic Marion Island. More than 99% of observations are georeferenced. Time period and grain: All data were collected between 1964 and 2018. A small number of sites have repeated trait measurements at two or more time periods. Major taxa and level of measurement: Trait measurements were made on 978 terrestrial vascular plant species growing in tundra habitats. Most observations are on individuals (86%), while the remainder represent plot or site means or maximums per species. Software format: csv file and GitHub repository with data cleaning scripts in R; contribution to TRY plant trait database (www.try-db.org) to be included in the next version release.
  •  
4.
  • Dengler, Jürgen, et al. (author)
  • Ecological Indicator Values for Europe (EIVE) 1.0
  • 2023
  • In: Vegetation Classification and Survey. - 2683-0671. ; 4, s. 7-29
  • Journal article (peer-reviewed)abstract
    • Aims: To develop a consistent ecological indicator value system for Europe for five of the main plant niche dimensions: soil moisture (M), soil nitrogen (N), soil reaction (R), light (L) and temperature (T). Study area: Europe (and closely adjacent regions). Methods: We identified 31 indicator value systems for vascular plants in Europe that contained assessments on at least one of the five aforementioned niche dimensions. We rescaled the indicator values of each dimension to a continuous scale, in which 0 represents the minimum and 10 the maximum value present in Europe. Taxon names were harmonised to the Euro+Med Plantbase. For each of the five dimensions, we calculated European values for niche position and niche width by combining the values from the individual EIV systems. Using T values as an example, we externally validated our European indicator values against the median of bioclimatic conditions for global occurrence data of the taxa. Results: In total, we derived European indicator values of niche position and niche width for 14,835 taxa (14,714 for M, 13,748 for N, 14,254 for R, 14,054 for L, 14,496 for T). Relating the obtained values for temperature niche position to the bioclimatic data of species yielded a higher correlation than any of the original EIV systems (r = 0.859). The database: The newly developed Ecological Indicator Values for Europe (EIVE) 1.0, together with all source systems, is available in a flexible, harmonised open access database. Conclusions: EIVE is the most comprehensive ecological indicator value system for European vascular plants to date. The uniform interval scales for niche position and niche width provide new possibilities for ecological and macroecological analyses of vegetation patterns. The developed workflow and documentation will facilitate the future release of updated and expanded versions of EIVE, which may for example include the addition of further taxonomic groups, additional niche dimensions, external validation or regionalisation.
  •  
5.
  • Dengler, Juergen, et al. (author)
  • GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands
  • 2018
  • In: Phytocoenologia. - : Schweizerbart. - 0340-269X. ; 48:3, s. 331-347
  • Journal article (peer-reviewed)abstract
    • GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board.
  •  
6.
  • Idoia Biurrun, Idoia, et al. (author)
  • GrassPlot v. 2.00 – first update on the database of multi-scale plant diversity in Palaearctic grasslands
  • 2019
  • In: Palaearctic Grasslands. - : Eurasian Dry Grassland Group (EDGG). - 2627-9827. ; :44, s. 26-47
  • Journal article (peer-reviewed)abstract
    • GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). Following a previous Long Database Report (Dengler et al. 2018, Phytocoenologia 48, 331–347), we provide here the first update on content and functionality of GrassPlot. The current version (GrassPlot v. 2.00) contains a total of 190,673 plots of different grain sizes across 28,171 independent plots, with 4,654 nested-plot series including at least four grain sizes. The database has improved its content as well as its functionality, including addition and harmonization of header data (land use, information on nestedness, structure and ecology) and preparation of species composition data. Currently, GrassPlot data are intensively used for broad-scale analyses of different aspects of alpha and beta diversity in grassland ecosystems.
  •  
7.
  • Kemppinen, Julia, et al. (author)
  • Microclimate, an important part of ecology and biogeography
  • 2024
  • In: GLOBAL ECOLOGY AND BIOGEOGRAPHY. - 1466-822X .- 1466-8238. ; 33:6
  • Journal article (peer-reviewed)abstract
    • Brief introduction: What are microclimates and why are they important?Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next.Microclimate investigations in ecology and biogeographyWe highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles.Microclimate applications in ecosystem managementMicroclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity.Methods for microclimate scienceWe showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state-of-the-art of the field.What's next?We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management.
  •  
8.
  • Lazaro-Lobo, Adrian, et al. (author)
  • Monographs on invasive plants in Europe N°8 : Cortaderia selloana (Schult. & Schult. f.) Asch. & Graebn
  • 2024
  • In: BOTANY LETTERS. - : Taylor & Francis. - 2381-8107.
  • Journal article (peer-reviewed)abstract
    • Cortaderia selloana (Schult. & Schult. f.) Asch. & Graebn. (Pampas grass) is a perennial grass native to temperate and subtropical regions of South America. The species was introduced to western Europe for ornamental purposes during the nineteenth century, where it has become naturalized in anthropogenic and natural habitats, especially in sandy, open, and disturbed areas. Female plants of C. selloana produce thousands of seeds that are dispersed over long distances by wind and germinate readily. Its invasive success is also attributed to its ability to adapt and tolerate a wide range of environmental conditions, such as high salinity levels, long droughts, and soil chemical pollution. Cortaderia selloana usually invades human-disturbed habitats where it encounters little competition with other plants and high resource availability. However, the species can invade natural habitats, especially those with high light availability, causing biodiversity loss and changes in ecosystem functioning (e.g. alteration of succession and nutrient dynamics). The species may cause negative socio-economic impacts by reducing productivity of tree plantations, causing respiratory allergies, and decreasing the recreational value of invaded areas. Control costs are high due to the extensive root system that C. selloana develops and the high resprouting ability following physical damage. Although herbicides are effective control measures, their use is not allowed or is undesirable in all situations where the plant occurs (e.g. near riverbanks, natural protected sites). No biological control agents have been released on C. selloana to date, but the planthopper Sacchasydne subandina and the gall midge Spanolepis selloanae are promising targets.
  •  
9.
  • Mondoni, Andrea, et al. (author)
  • Seed dormancy and longevity in subarctic and alpine populations of Silene suecica
  • 2018
  • In: Alpine Botany. - : Springer. - 1664-2201 .- 1664-221X. ; 128:1, s. 71-81
  • Journal article (peer-reviewed)abstract
    • Despite the strong environmental control of seed dormancy and longevity, their changes along latitudes are poorly understood. The aim of this study was to assess seed dormancy and longevity in different populations across the distribution of the arctic-alpine plant Silene suecica. Seeds of seven populations collected from alpine (Spain, Italy, Scotland) and subarctic (Sweden, Norway) populations were incubated at four temperature regimes and five cold stratification intervals for germination and dormancy testing. Seed longevity was studied by exposing seeds to controlled ageing (45 A degrees C, 60% RH) and regularly sampled for germination. Fresh seeds of S. suecica germinated at warm temperature (20/15 A degrees C) and more in subarctic (80-100%) compared to alpine (20-50%) populations showed a negative correlation with autumn temperature (i.e., post-dispersal period). Seed germination increased after cold stratification in all populations, with different percentages (30-100%). Similarly, there was a large variation of seed longevity (p(50) = 12-32 days), with seeds from the wettest locations showing faster deterioration rate. Subarctic populations of S. suecica were less dormant, showing a warmer suitable temperature range for germination, and a higher germinability than alpine populations. Germination and dormancy were driven by an interplay of geographical and climatic factors, with alpine and warm versus subarctic and cool autumn conditions, eliciting a decrease and an increase of emergence, respectively. Germination and dormancy patterns typically found in alpine habitats may not be found in the arctic.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9
Type of publication
journal article (9)
Type of content
peer-reviewed (9)
Author/Editor
Jiménez-Alfaro, Borj ... (9)
Hajek, Michal (4)
Van Meerbeek, Koenra ... (4)
Guarino, Riccardo (4)
De Frenne, Pieter (3)
Diekmann, Martin (3)
show more...
Alatalo, Juha M. (3)
Pielech, Remigiusz (3)
Boch, Steffen (3)
Bruun, Hans Henrik (3)
Bergamini, Ariel (3)
Dembicz, Iwona (3)
Gillet, François (3)
Kozub, Łukasz (3)
Marcenò, Corrado (3)
Axmanová, Irena (3)
Essl, Franz (3)
Filibeck, Goffredo (3)
Kuzemko, Anna (3)
Roleček, Jan (3)
Belonovskaya, Elena (3)
Prentice, Honor C (2)
Mayrhofer, Helmut (2)
Lindborg, Regina (2)
Pakeman, Robin J. (2)
Jeanneret, Philippe (2)
Jentsch, Anke (2)
Wang, Yun (2)
Waldén, Emelie (2)
Normand, Signe (2)
Becker, Thomas (2)
Deng, Lei (2)
Natcheva, Rayna (2)
Biurrun, Idoia (2)
Reitalu, Triin (2)
Chytrý, Milan (2)
Burrascano, Sabina (2)
Bartha, Sándor (2)
Conradi, Timo (2)
Molnár, Zsolt (2)
Sutcliffe, Laura M. ... (2)
Terzi, Massimo (2)
Winkler, Manuela (2)
Aćić, Svetlana (2)
Afif, Elias (2)
Akasaka, Munemitsu (2)
Aleffi, Michele (2)
Apostolova, Iva (2)
Bátori, Zoltán (2)
Baumann, Esther (2)
show less...
University
Lund University (4)
University of Gothenburg (3)
Umeå University (2)
Stockholm University (2)
University of Gävle (2)
Uppsala University (1)
show more...
Halmstad University (1)
Jönköping University (1)
Karlstad University (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (9)
Research subject (UKÄ/SCB)
Natural sciences (9)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view