SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Johannisson Wilhelm) "

Search: WFRF:(Johannisson Wilhelm)

  • Result 1-15 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Asp, Leif, 1966, et al. (author)
  • A structural battery and its multifunctional performance
  • 2021
  • In: Advanced Energy and Sustainability Research. - : Wiley. - 2699-9412. ; 2:3
  • Journal article (peer-reviewed)abstract
    • Engineering materials that can store electrical energy in structural load paths can revolutionize lightweight design across transport modes. Stiff and strong batteries that use solid-state electrolytes and resilient electrodes and separators are generally lacking. Herein, a structural battery composite with unprecedented multifunctional performance is demonstrated, featuring an energy density of 24 Wh kg-1 and an elastic modulus of 25 GPa and tensile strength exceeding 300 MPa. The structural battery is made from multifunctional constituents, where reinforcing carbon fibers (CFs) act as electrode and current collector. A structural electrolyte is used for load transfer and ion transport and a glass fiber fabric separates the CF electrode from an aluminum foil-supported lithium–iron–phosphate positive electrode. Equipped with these materials, lighter electrical cars, aircraft, and consumer goods can be pursued.
  •  
2.
  • Carlstedt, David, 1984, et al. (author)
  • Conceptual design framework for laminated structural battery composites
  • 2020
  • In: ECCM 2018 - 18th European Conference on Composite Materials. - : Applied Mechanics Laboratory.
  • Conference paper (peer-reviewed)abstract
    • The structural battery composite is a class of composite materials with ability to provide mechanical integrity in a structural system while simultaneously store electrical energy (i.e. work as a battery). In this paper a framework to estimate the mechanical and electrical performance of laminated structural battery composites is proposed. The mechanical performance of the battery composite laminate is assessed by estimating the in-plane elastic properties of the laminate using Classical Laminate Theory. The electrical performance is assessed estimating the specific capacity and energy density of the component. The developed framework is applied on an A4 sized structural battery composite demonstrator, as part of the Clean Sky 2 project SORCERER [1] to demonstrate the capabilities of the framework. The design process for the demonstrator is presented and mechanical and electrical performance metrics are estimated for three laminate configurations, one promoting structural performance, one promoting electrical performance and one intermediate. As the material provides both load carrying and electrical energy storage capabilities, the laminate configuration can be alternated to provide suitable performance based on the purpose of the component.
  •  
3.
  • Hagberg, Johan, 1988-, et al. (author)
  • Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries
  • 2018
  • In: Composites Science And Technology. - : Elsevier. - 0266-3538 .- 1879-1050. ; 162, s. 235-243
  • Journal article (peer-reviewed)abstract
    • A structural lithium ion battery is a material that can carry load and simultaneously be used to store electrical energy. We describe a path to manufacture structural positive electrodes via electrophoretic deposition (EPD) of LiFePO4 (LFP), carbon black and polyvinylidene fluoride (PVDF) onto carbon fibers. The carbon fibers act as load-bearers as well as current collectors. The quality of the coating was studied using scanning electron microscopy and energy dispersive X-ray spectroscopy. The active electrode material (LFP particles), conductive additive (carbon black) and binder (PVDF) were found to be well dispersed on the surface of the carbon fibers. Electrochemical characterization revealed a specific capacity of around 60–110 mAh g−1 with good rate performance and high coulombic efficiency. The cell was stable during cycling, with a capacity retention of around 0.5 after 1000 cycles, which indicates that the coating remained well adhered to the fibers. To investigate the adhesion of the coating, the carbon fibers were made into composite laminae in epoxy resin, and then tested using 3-point bending and double cantilever beam (DCB) tests. The former showed a small difference between coated and uncoated carbon fibers, suggesting good adhesion. The latter showed a critical strain energy release rate of ∼200–600 J m−2 for coated carbon fibers and ∼500 J m−2 for uncoated fibers, which also indicates good adhesion. This study shows that EPD can be used to produce viable structural positive electrodes.
  •  
4.
  • Ihrner, Niklas, et al. (author)
  • Structural lithium ion battery electrolytes via reaction induced phase-separation
  • 2017
  • In: Journal of Materials Chemistry A. - : Elsevier. - 2050-7488 .- 2050-7496. ; 5:48, s. 25652-25659
  • Journal article (peer-reviewed)abstract
    • For the realization of structural batteries, electrolytes where both higher ionic conductivity and stiffness are combined need to be developed. The present study describes the formation of a structural battery electrolyte (SBE) as a two phase system using reaction induced phase separation. A liquid electrolyte phase is combined with a stiff vinyl ester based thermoset matrix to form a SBE. The effect of monomer structure variations on the formed morphology and electrochemical and mechanical performance has been investigated. An ionic conductivity of 1.5 x 10(-4) S cm(-1), with a corresponding storage modulus (E') of 750 MPa, has been obtained under ambient conditions. The SBEs have been combined with carbon fibers to form a composite lamina and evaluated as a battery half-cell. Studies on the lamina revealed that both mechanical load transfer and ion transport are allowed between the carbon fibers and the electrolyte. These results pave the way for the preparation of structural batteries using carbon fibers as electrodes.
  •  
5.
  • Johannisson, Wilhelm, et al. (author)
  • A residual performance methodology to evaluate multifunctional systems
  • Other publication (other academic/artistic)abstract
    • The development of multifunctional materials and structures is receiving increasing interest for many applications and industries; it is a promising way to increase system-wide efficiency and improve the ability to meet environmental targets. However, quantifying the advantages of a multifunctional solution over monofunctional systems can be challenging. One approach is to calculate a reduction in mass, volume or other penalty function. Another approach is to use a multifunctional efficiency metric. However, either approach can lead to results that are unfamiliar or difficult to interpret and implement for an audience without a multifunctional materials or structures background. Instead, we introduce a comparative metric for multifunctional materials that correlates with familiar design parameters for monofunctional materials. This metric allows the potential benefits of the multifunctional system to be understood easily without needing a holistic viewpoint. The analysis is applied to two different examples of multifunctional systems; a structural battery and a structural supercapacitor, demonstrating the methodology and its potential for state-of-the-art structural power materials to offer a weight saving over conventional systems. This metric offers a new way to communicate research on structural power which could help identify and prioritise future research.
  •  
6.
  • Johannisson, Wilhelm, et al. (author)
  • A residual performance methodology to evaluate multifunctional systems
  • 2020
  • In: Multifunctional Materials. - : Institute of Physics (IOP). - 2399-7532. ; 3:2
  • Journal article (peer-reviewed)abstract
    • The development of multifunctional materials and structures is receiving increasing interest for many applications and industries; it is a promising way to increase system-wide efficiency and improve the ability to meet environmental targets. However, quantifying the advantages of a multifunctional solution over monofunctional systems can be challenging. One approach is to calculate a reduction in mass, volume or other penalty function. Another approach is to use a multifunctional efficiency metric. However, either approach can lead to results that are unfamiliar or difficult to interpret and implement for an audience without a multifunctional materials or structures background. Instead, we introduce a comparative metric for multifunctional materials that correlates with familiar design parameters for monofunctional materials. This metric allows the potential benefits of the multifunctional system to be understood easily without needing a holistic viewpoint. The analysis is applied to two different examples of multifunctional systems; a structural battery and astructural supercapacitor, demonstrating the methodology and its potential for state-of-the-art structural power materials to offer a weight saving over conventional systems. This metric offers a new way to communicate research on structural power which could help identify and prioritise future research.
  •  
7.
  • Johannisson, Wilhelm, et al. (author)
  • A screen-printing method for manufacturing of current collectors for structural batteries
  • 2021
  • In: Multifunctional Materials. - : IOP Publishing. - 2399-7532. ; 4:3, s. 035002-
  • Journal article (peer-reviewed)abstract
    • Structural carbon fibre composite batteries are a type of multifunctional batteries that combine the energy storage capability of a battery with the load-carrying ability of a structural material. To extract the current from the structural battery cell, current collectors are needed. However, current collectors are expensive, hard to connect to the electrode material and add mass to the system. Further, attaching the current collector to the carbon fibre electrode must not affect the electrochemical properties negatively or requires time-consuming, manual steps. This paper presents a proof-of-concept method for screen-printing of current collectors for structural carbon fibre composite batteries using silver conductive paste. Current collectors are screen-printed directly on spread carbon fibre tows and a polycarbonate carrier film. Experimental results show that the electrochemical performance of carbon fibre vs lithium metal half-cells with the screen-printed collectors is similar to reference half-cells using metal foil and silver adhered metal-foil collectors. The screen-printed current collectors fulfil the requirements for electrical conductivity, adhesion to the fibres and flexible handling of the fibre electrode. The screen-printing process is highly automatable and allows for cost-efficient upscaling to large scale manufacturing of arbitrary and complex current collector shapes. Hence, the screen-printing process shows a promising route to realization of high performing current collectors in structural batteries and potentially in other types of energy storage solutions.
  •  
8.
  • Johannisson, Wilhelm, et al. (author)
  • Analysis of carbon fiber composite electrode
  • 2015
  • In: ICCM International Conferences on Composite Materials. - : International Committee on Composite Materials.
  • Conference paper (peer-reviewed)abstract
    • In this article a novel energy-storing composite electrode is investigated with regards to its mechanical and electrochemical properties. This composite electrode consists of carbon fibers, which provide both the mechanical reinforcement and the negative electrode in the battery cell. Also, this carbon fiber composite electrode consists of a polymer matrix that can conduct lithium ions, in order to simultaneously act as the electrolyte in the battery cell. Electrochemical tests were performed on the manufactured composite electrode and show extremely promising results for the battery performance. Furthermore, mechanical tests show that the composite electrode has acceptable mechanical properties for structural use. It is shown that the internal distances in the composite are large, and volume fraction of fibers is low. This is not only significantly limiting the mechanical properties of the composite, but also the electrochemical properties. Overall, the carbon fiber composite electrode is found to have suitable characteristics for further research, where many further research topics are found in order to improve and characterize the composite further.
  •  
9.
  • Johannisson, Wilhelm (author)
  • Exploring structural carbon fiber composites for mass-less energy and actuation
  • 2020
  • Doctoral thesis (other academic/artistic)abstract
    • The energy consumption in transport is today a large contributor to global greenhouse emissions. One way of reducing these emissions is by electrification, which is an ongoing journey for the vehicle industry. The aeronautical industry has started investigations but are limited by the relatively low specific energy of batteries.One way to improve the specific energy of batteries is by making them multifunctional by combining them with other functions of the vehicle. When the battery is combined with a structural material, the resulting material is referred to as a structural battery. This structural battery ultimately performs the fundamental function of mechanical rigidity and the battery function provides almost mass-less energy. The idea of structural batteries has been around for a while, but its actual construction has not yet been understood.This thesis is focused on exploring the design and implications of structural batteries made from carbon fiber composites. The first section is focused on the construction of the structural battery. Specifically investigating a structural carbon fiber negative electrode with regards to its manufacturing, electrochemical properties and mechanical properties. The results show that the construction of a negative electrode for structural batteries is achievable. The next section is using the findings from the first section in exploring the implications of implementing a structural battery into vehicles with regards to weight saving and life cycle characteristics. The findings show that the structural batteries have the potential to decrease both weight and life cycle burdens. The last section presents the use of the structural carbon fiber negative electrodes as a morphing material controlled by applied electrical power. The morphing deformations are large and stationary when power is removed but the morphing rate of the material is limited. Additionally, it is solid state, lightweight and has an elastic modulus higher than aluminum with large morphing deformations.The long-term outcomes of a thesis are hard to predict, but the findings herein conclude that the technology of structural batteries have the potential to disrupt energy storage in transportation, as well as traditional actuation and morphing technologies.
  •  
10.
  • Johannisson, Wilhelm, et al. (author)
  • Model of a structural battery and its potential for system level mass savings
  • 2019
  • In: Multifunctional Materials. - : IOP Publishing. - 2399-7532.
  • Journal article (peer-reviewed)abstract
    • Structural batteries are materials that can carry mechanical load while storing electrical energy. This is achieved by combining the properties of carbon fiber composites and lithium ion batteries. There are many design parameters for a structural battery and in order to understand their impact and importance, this paper presents a model for multifunctional performance. The mechanical behavior and electrical energy storage of the structural battery are matched to the mechanical behavior of a conventional carbon fiber composite, and the electrical energy storage of a standard lithium ion battery. The latter are both monofunctional and have known performance and mass. In order to calculate the benefit of using structural batteries, the mass of the structural battery is compared to that of the two monofunctional systems. There is often an inverse relationship between the mechanical and electrochemical properties of multifunctional materials, in order to understand these relationships a sensitivity analysis is performed on variables for the structural battery. This gives new insight into the complex multifunctional design of structural batteries.The results show that it is possible to save mass compared to monofunctional systems but that it depends strongly on the structure it is compared with. With improvements to the design of the structural battery it would be possible to achieve mass saving compared to state-of-the-art composite laminates and lithium ion batteries.
  •  
11.
  • Johannisson, Wilhelm, et al. (author)
  • Modelling and design of structural batteries with life cycle assessment
  • 2019
  • Conference paper (other academic/artistic)abstract
    • A multifunctional structural battery consisting of carbon fibers, lithium-electrode coatings and a structural battery electrolyte is investigated with an analytical bottom-up model. This model has a multiphysics approach, calculating both mechanical properties and electrical energy storage. The intention of the model is twofold; first, calculating the potential mass saving with using a structural battery instead of the combination of a monofunctional carbon fiber composite and a monofunctional lithium ion battery. Second, the model is used to investigate the behavior of the mass saving due to changing variables of the structural battery. This variable sensitivity analysis is made in order to understand the behavior of the structural battery and its sensitivity to the different construction variables. The results show that the structural battery can save up to 26% of mass compared to the monofunctional parts.Next, the model of the structural battery is further utilized in a life cycle assessment, where the manufacturing, usage and recycling of the structural battery is investigated. The life cycle assessment examines the structural battery as the roof of an electric vehicle. This analysis is compared to the same assessment for a steel roof and standard lithium ion batteries, which shows that manufacturing the carbon fibers and structural battery with clean energy is most important for decreasing the emissions from manufacturing.
  •  
12.
  • Johannisson, Wilhelm, et al. (author)
  • Multifunctional performance of a carbon fiber UD lamina electrode for structural batteries
  • 2018
  • In: Composites Science And Technology. - : Elsevier. - 0266-3538 .- 1879-1050. ; 168, s. 81-87
  • Journal article (peer-reviewed)abstract
    • In electric transportation there is an inherent need to store electrical energy while maintaining a low vehicle weight. One way to decrease the weight of the structure is to use composite materials. However, the electrical energy storage in today's systems contributes to a large portion of the total weight of a vehicle. Structural batteries have been suggested as a possible route to reduce this weight. A structural battery is a material that carries mechanical loads and simultaneously stores electrical energy and can be realized using carbon fibers both as a primary load carrying material and as an active battery electrode. However, as yet, no proof of a system-wide improvement by using such structural batteries has been demonstrated. In this study we make a structural battery composite lamina from carbon fibers with a structural battery electrolyte matrix, and we show that this material provides system weight benefits. The results show that it is possible to make weight reductions in electric vehicles by using structural batteries. 
  •  
13.
  • Johannisson, Wilhelm, et al. (author)
  • Shape-morphing carbon fiber composite using electrochemical actuation
  • 2020
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 117:14, s. 7658-7664
  • Journal article (peer-reviewed)abstract
    • Structures that are capable of changing shape can increase efficiency in many applications, but are often heavy and maintenance intensive. To reduce the mass and mechanical complexity solid-state morphing materials are desirable but are typically nonstructural and problematic to control. Here we present an electrically controlled solid-state morphing composite material that is lightweight and has a stiffness higher than aluminum. It is capable of producing large deformations and holding them with no additional power, albeit at low rates. The material is manufactured from commercial carbon fibers and a structural battery electrolyte, and uses lithium-ion insertion to produce shape changes at low voltages. A proof-of-concept material in a cantilever setup is used to show morphing, and analytical modeling shows good correlation with experimental observations. The concept presented shows considerable promise and paves the way for stiff, solid-state morphing materials.
  •  
14.
  • Xu, Johanna, 1989-, et al. (author)
  • Characterization of the adhesive properties between structural battery electrolytes and carbon fibers
  • 2020
  • In: Composites Science And Technology. - : Elsevier. - 0266-3538 .- 1879-1050. ; 188
  • Journal article (peer-reviewed)abstract
    • Structural batteries can simultaneously store electrical energy and carry mechanical load, being similar to both laminated carbon fiber composites and lithium ion batteries. The matrix in a structural battery must both conduct ions and transfer load between the fibers, made possible with a phase-separated combination of a solid polymer and a liquid electrolyte. This leads to a trade-off between the polymer contact creating adhesion and liquid contact creating ionic conductivity. Here we investigate the fiber-matrix adhesion between carbon fibres with different sizing and two different matrix systems, using microbond testing supported by transverse tensile tests. The results show that the mechanical adhesion of the fiber-matrix interface is lower than that of a commercial non-ion conducting polymer matrix but sufficient for structural battery applications.
  •  
15.
  • Zackrisson, Mats, et al. (author)
  • Prospective life cycle assessment of a structural battery
  • 2019
  • In: Sustainability. - : MDPI AG. - 2071-1050. ; 11:20
  • Journal article (peer-reviewed)abstract
    • With increasing interest in reducing fossil fuel emissions, more and more development is focused on electric mobility. For electric vehicles, the main challenge is the mass of the batteries, which significantly increase the mass of the vehicles and limits their range. One possible concept to solve this is incorporating structural batteries; a structural material that both stores electrical energy and carries mechanical load. The concept envisions constructing the body of an electric vehicle with this material and thus reducing the need for further energy storage. This research is investigating a future structural battery that is incorporated in the roof of an electric vehicle. The structural battery is replacing the original steel roof of the vehicle, and part of the original traction battery. The environmental implications of this structural battery roof are investigated with a life cycle assessment, which shows that a structural battery roof can avoid climate impacts in substantive quantities. The main emissions for the structural battery stem from its production and efforts should be focused there to further improve the environmental benefits of the structural battery. Toxicity is investigated with a novel chemical risk assessment from a life cycle perspective, which shows that two chemicals should be targeted for substitution. © 2019 by the authors.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-15 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view