SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jumaa Sitaf) "

Search: WFRF:(Jumaa Sitaf)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • von der Heyde, Benedikt, et al. (author)
  • Translating GWAS-identified loci for cardiac rhythm and rate using an in vivo image- and CRISPR/Cas9-based approach
  • 2020
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Journal article (peer-reviewed)abstract
    • A meta-analysis of genome-wide association studies (GWAS) identified eight loci that are associated with heart rate variability (HRV), but candidate genes in these loci remain uncharacterized. We developed an image- and CRISPR/Cas9-based pipeline to systematically characterize candidate genes for HRV in live zebrafish embryos. Nine zebrafish orthologues of six human candidate genes were targeted simultaneously in eggs from fish that transgenically express GFP on smooth muscle cells (Tg[acta2:GFP]), to visualize the beating heart. An automated analysis of repeated 30 s recordings of beating atria in 381 live, intact zebrafish embryos at 2 and 5 days post-fertilization highlighted genes that influence HRV (hcn4 and si:dkey-65j6.2 [KIAA1755]); heart rate (rgs6 and hcn4); and the risk of sinoatrial pauses and arrests (hcn4). Exposure to 10 or 25 mu M ivabradine-an open channel blocker of HCNs-for 24 h resulted in a dose-dependent higher HRV and lower heart rate at 5 days post-fertilization. Hence, our screen confirmed the role of established genes for heart rate and rhythm (RGS6 and HCN4); showed that ivabradine reduces heart rate and increases HRV in zebrafish embryos, as it does in humans; and highlighted a novel gene that plays a role in HRV (KIAA1755).
  •  
2.
  • von der Heyde, Benedikt, et al. (author)
  • Translating GWAS-identified loci for cardiac rhythm and rate using an in vivo, image-based, large-scale genetic screen in zebrafish
  • Journal article (peer-reviewed)abstract
    • A meta-analysis of genome-wide association studies (GWAS) identified eight loci that are associated with heart rate variability (HRV) in data from 53,174 individuals. However, functional follow-up experiments - aiming to identify and characterize causal genes in these loci - have not yet been performed. We developed an image- and CRISPR-Cas9-based pipeline to systematically characterize candidate genes for HRV in live zebrafish embryos and larvae. Nine zebrafish orthologues of six human candidate genes were targeted simultaneously in fertilized eggs from fish that transgenically express GFP on smooth muscle cells (Tg(acta2:GFP)), to visualize the beating heart using a fluorescence microscope. An automated analysis of repeated 30s recordings of 381 live zebrafish atria at 2 and 5 days post-fertilization highlighted genes that influence HRV (hcn4 and kiaa1755); heart rate (rgs6 and hcn4) and the risk of sinoatrial pauses and arrests (hcn4). Hence, our screen confirmed the role of established genes for heart rate (rgs6 and hcn4), and highlighted a novel gene implicated in HRV (kiaa1755).
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view