SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Justice Anne E) "

Search: WFRF:(Justice Anne E)

  • Result 1-22 of 22
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Kanoni, Stavroula, et al. (author)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • In: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Journal article (peer-reviewed)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
3.
  • Turcot, Valerie, et al. (author)
  • Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity
  • 2018
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:1, s. 26-41
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are similar to 10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed similar to 7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
  •  
4.
  • Locke, Adam E, et al. (author)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • Journal article (peer-reviewed)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
5.
  • Shungin, Dmitry, et al. (author)
  • New genetic loci link adipose and insulin biology to body fat distribution.
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 187-378
  • Journal article (peer-reviewed)abstract
    • Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
  •  
6.
  • Marouli, Eirini, et al. (author)
  • Rare and low-frequency coding variants alter human adult height
  • 2017
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 542:7640, s. 186-190
  • Journal article (peer-reviewed)abstract
    • Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
  •  
7.
  • Berndt, Sonja I., et al. (author)
  • Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture
  • 2013
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:5, s. 501-U69
  • Journal article (peer-reviewed)abstract
    • Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.
  •  
8.
  • Justice, Anne E., et al. (author)
  • Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution
  • 2019
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:3, s. 452-469
  • Journal article (peer-reviewed)abstract
    • Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF >= 5%) and nine low-frequency or rare (MAF < 5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
  •  
9.
  • Jang, Seon-Kyeong, et al. (author)
  • Rare genetic variants explain missing heritability in smoking.
  • 2022
  • In: Nature human behaviour. - : Springer Science and Business Media LLC. - 2397-3374. ; 6:11, s. 1577-1586
  • Journal article (peer-reviewed)abstract
    • Common genetic variants explain less variation in complex phenotypes than inferred from family-based studies, and there is a debate on the source of this 'missing heritability'. We investigated the contribution of rare genetic variants to tobacco use with whole-genome sequences from up to 26,257 unrelated individuals of European ancestries and 11,743 individuals of African ancestries. Across four smoking traits, single-nucleotide-polymorphism-based heritability ([Formula: see text]) was estimated from 0.13 to 0.28 (s.e., 0.10-0.13) in European ancestries, with 35-74% of it attributable to rare variants with minor allele frequencies between 0.01% and 1%. These heritability estimates are 1.5-4 times higher than past estimates based on common variants alone and accounted for 60% to 100% of our pedigree-based estimates of narrow-sense heritability ([Formula: see text], 0.18-0.34). In the African ancestry samples, [Formula: see text] was estimated from 0.03 to 0.33 (s.e., 0.09-0.14) across the four smoking traits. These results suggest that rare variants are important contributors to the heritability of smoking.
  •  
10.
  • Lu, Yingchang, et al. (author)
  • New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10(-8)), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk.
  •  
11.
  • Surendran, Praveen, et al. (author)
  • Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension
  • 2016
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 48:10, s. 1151-1161
  • Journal article (peer-reviewed)abstract
    • High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to 192,763 individuals and used -1/4155,063 samples for independent replication. We identified 30 new blood pressure- or hypertension-associated genetic regions in the general population, including 3 rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5 mm Hg/allele) than common variants. Multiple rare nonsense and missense variant associations were found in A2ML1, and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention.
  •  
12.
  • Merino, Jordi, et al. (author)
  • Quality of dietary fat and genetic risk of type 2 diabetes : individual participant data meta-analysis
  • 2019
  • In: BMJ. British Medical Journal. - : BMJ Publishing Group Ltd. - 0959-8146 .- 0959-535X. ; 366
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE To investigate whether the genetic burden of type 2 diabetes modifies the association between the quality of dietary fat and the incidence of type 2 diabetes.DESIGN Individual participant data meta-analysis.DATA SOURCES Eligible prospective cohort studies were systematically sourced from studies published between January 1970 and February 2017 through electronic searches in major medical databases (Medline, Embase, and Scopus) and discussion with investigators.REVIEW METHODS Data from cohort studies or multicohort consortia with available genome-wide genetic data and information about the quality of dietary fat and the incidence of type 2 diabetes in participants of European descent was sought. Prospective cohorts that had accrued five or more years of follow-up were included. The type 2 diabetes genetic risk profile was characterized by a 68-variant polygenic risk score weighted by published effect sizes. Diet was recorded by using validated cohort-specific dietary assessment tools. Outcome measures were summary adjusted hazard ratios of incident type 2 diabetes for polygenic risk score, isocaloric replacement of carbohydrate (refined starch and sugars) with types of fat, and the interaction of types of fat with polygenic risk score.RESULTS Of 102 305 participants from 15 prospective cohort studies, 20 015 type 2 diabetes cases were documented after a median follow-up of 12 years (interquartile range 9.4-14.2). The hazard ratio of type 2 diabetes per increment of 10 risk alleles in the polygenic risk score was 1.64 (95% confidence interval 1.54 to 1.75, I-2 = 7.1%, tau(2) = 0.003). The increase of polyunsaturated fat and total omega 6 polyunsaturated fat intake in place of carbohydrate was associated with a lower risk of type 2 diabetes, with hazard ratios of 0.90 (0.82 to 0.98, I-2 = 18.0%, tau(2) = 0.006; per 5% of energy) and 0.99 (0.97 to 1.00, I-2 = 58.8%, tau(2) = 0.001; per increment of 1 g/d), respectively. Increasing monounsaturated fat in place of carbohydrate was associated with a higher risk of type 2 diabetes (hazard ratio 1.10, 95% confidence interval 1.01 to 1.19, I-2 = 25.9%, tau(2) = 0.006; per 5% of energy). Evidence of small study effects was detected for the overall association of polyunsaturated fat with the risk of type 2 diabetes, but not for the omega 6 polyunsaturated fat and monounsaturated fat associations. Significant interactions between dietary fat and polygenic risk score on the risk of type 2 diabetes (P>0.05 for interaction) were not observed.CONCLUSIONS These data indicate that genetic burden and the quality of dietary fat are each associated with the incidence of type 2 diabetes. The findings do not support tailoring recommendations on the quality of dietary fat to individual type 2 diabetes genetic risk profiles for the primary prevention of type 2 diabetes, and suggest that dietary fat is associated with the risk of type 2 diabetes across the spectrum of type 2 diabetes genetic risk.
  •  
13.
  • Ried, Janina S., et al. (author)
  • A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.
  •  
14.
  • Robinson, Matthew R., et al. (author)
  • Population genetic differentiation of height and body mass index across Europe
  • 2015
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 47:11, s. 1357-1362
  • Journal article (peer-reviewed)abstract
    • Across-nation differences in the mean values for complex traits are common(1-8), but the reasons for these differences are unknown. Here we find that many independent loci contribute to population genetic differences in height and body mass index (BMI) in 9,416 individuals across 14 European countries. Using discovery data on over 250,000 individuals and unbiased effect size estimates from 17,500 sibling pairs, we estimate that 24% (95% credible interval (CI) = 9%, 41%) and 8% (95% CI = 4%, 16%) of the captured additive genetic variance for height and BMI, respectively, reflect population genetic differences. Population genetic divergence differed significantly from that in a null model (height, P < 3.94 x 10(-8); BMI, P < 5.95 x 10(-4)), and we find an among-population genetic correlation for tall and slender individuals (r = -0.80, 95% CI = -0.95, -0.60), consistent with correlated selection for both phenotypes. Observed differences in height among populations reflected the predicted genetic means (r = 0.51; P < 0.001), but environmental differences across Europe masked genetic differentiation for BMI (P < 0.58).
  •  
15.
  • Smith, Caren E., et al. (author)
  • Genome-Wide Interactions with Dairy Intake for Body Mass Index in Adults of European Descent
  • 2018
  • In: Molecular Nutrition & Food Research. - : Wiley. - 1613-4125. ; 62:3
  • Journal article (peer-reviewed)abstract
    • Scope: Body weight responds variably to the intake of dairy foods. Genetic variation may contribute to inter-individual variability in associations between body weight and dairy consumption. Methods and results: A genome-wide interaction study to discover genetic variants that account for variation in BMI in the context of low-fat, high-fat and total dairy intake in cross-sectional analysis was conducted. Data from nine discovery studies (up to 25 513 European descent individuals) were meta-analyzed. Twenty-six genetic variants reached the selected significance threshold (p-interaction <10−7), and six independent variants (LINC01512-rs7751666, PALM2/AKAP2-rs914359, ACTA2-rs1388, PPP1R12A-rs7961195, LINC00333-rs9635058, AC098847.1-rs1791355) were evaluated meta-analytically for replication of interaction in up to 17 675 individuals. Variant rs9635058 (128 kb 3’ of LINC00333) was replicated (p-interaction = 0.004). In the discovery cohorts, rs9635058 interacted with dairy (p-interaction = 7.36 × 10−8) such that each serving of low-fat dairy was associated with 0.225 kg m−2 lower BMI per each additional copy of the effect allele (A). A second genetic variant (ACTA2-rs1388) approached interaction replication significance for low-fat dairy exposure. Conclusion: Body weight responses to dairy intake may be modified by genotype, in that greater dairy intake may protect a genetic subgroup from higher body weight.
  •  
16.
  • Yaghootkar, Hanieh, et al. (author)
  • Genetic Studies of Leptin Concentrations Implicate Leptin in the Regulation of Early Adiposity
  • 2020
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:12, s. 2806-2818
  • Journal article (peer-reviewed)abstract
    • Leptin influences food intake by informing the brain about the status of body fat stores. Rare LEP mutations associated with congenital leptin deficiency cause severe early-onset obesity that can be mitigated by administering leptin. However, the role of genetic regulation of leptin in polygenic obesity remains poorly understood. We performed an exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic variants that influence adiposity-adjusted leptin concentrations. We identify five novel variants, including four missense variants, in LEP, ZNF800, KLHL31, and ACTL9, and one intergenic variant near KLF14. The missense variant Val94Met (rs17151919) in LEP was common in individuals of African ancestry only, and its association with lower leptin concentrations was specific to this ancestry (P = 2 × 10-16, n = 3,901). Using in vitro analyses, we show that the Met94 allele decreases leptin secretion. We also show that the Met94 allele is associated with higher BMI in young African-ancestry children but not in adults, suggesting that leptin regulates early adiposity.
  •  
17.
  • Mahajan, Anubha, et al. (author)
  • Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes
  • 2018
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:4, s. 559-571
  • Journal article (peer-reviewed)abstract
    • We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10−7); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent ‘false leads’ with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
  •  
18.
  • Merino, Jordi, et al. (author)
  • Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium
  • 2019
  • In: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 24:12, s. 1920-1932
  • Journal article (peer-reviewed)abstract
    • Macronutrient intake, the proportion of calories consumed from carbohydrate, fat, and protein, is an important risk factor for metabolic diseases with significant familial aggregation. Previous studies have identified two genetic loci for macronutrient intake, but incomplete coverage of genetic variation and modest sample sizes have hindered the discovery of additional loci. Here, we expanded the genetic landscape of macronutrient intake, identifying 12 suggestively significant loci (P < 1 × 10−6) associated with intake of any macronutrient in 91,114 European ancestry participants. Four loci replicated and reached genome-wide significance in a combined meta-analysis including 123,659 European descent participants, unraveling two novel loci; a common variant in RARB locus for carbohydrate intake and a rare variant in DRAM1 locus for protein intake, and corroborating earlier FGF21 and FTO findings. In additional analysis of 144,770 participants from the UK Biobank, all identified associations from the two-stage analysis were confirmed except for DRAM1. Identified loci might have implications in brain and adipose tissue biology and have clinical impact in obesity-related phenotypes. Our findings provide new insight into biological functions related to macronutrient intake.
  •  
19.
  • Beal, Jacob, et al. (author)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
20.
  • Holliday, Katelyn M., et al. (author)
  • Gaseous air pollutants and DNA methylation in a methylome-wide association study of an ethnically and environmentally diverse population of US adults
  • 2022
  • In: Environmental Research. - : Elsevier. - 0013-9351 .- 1096-0953. ; 212
  • Journal article (peer-reviewed)abstract
    • Epigenetic mechanisms may underlie air pollution-health outcome associations. We estimated gaseous air pollutant-DNA methylation (DNAm) associations using twelve subpopulations within Women's Health Initiative (WHI) and Atherosclerosis Risk in Communities (ARIC) cohorts (n = 8397; mean age 61.3 years; 83% female; 46% African-American, 46% European-American, 8% Hispanic/Latino). We used geocoded participant address-specific mean ambient carbon monoxide (CO), nitrogen oxides (NO2; NOx), ozone (O-3), and sulfur dioxide (SO2) concentrations estimated over the 2-, 7-, 28-, and 365-day periods before collection of blood samples used to generate Illumina 450 k array leukocyte DNAm measurements. We estimated methylome-wide, subpopulation-and race/ethnicity-stratified pollutant-DNAm associations in multi-level, linear mixed-effects models adjusted for sociodemographic, behavioral, meteorological, and technical covariates. We combined stratum-specific estimates in inverse variance-weighted meta-analyses and characterized significant associations (false discovery rate; FDR<0.05) at Cytosine-phosphate-Guanine (CpG) sites without among-strata heterogeneity (P-Cochran's Q > 0.05). We attempted replication in the Cooperative Health Research in Region of Augsburg (KORA) study and Normative Aging Study (NAS). We observed a -0.3 (95% CI: -0.4, -0.2) unit decrease in percent DNAm per interquartile range (IQR, 7.3 ppb) increase in 28-day mean NO2 concentration at cg01885635 (chromosome 3; regulatory region 290 bp upstream from ZNF621; FDR = 0.03). At intragenic sites cg21849932 (chromosome 20; LIME1; intron 3) and cg05353869 (chromosome 11; KLHL35; exon 2), we observed a -0.3 (95% CI: -0.4, -0.2) unit decrease (FDR = 0.04) and a 1.2 (95% CI: 0.7, 1.7) unit increase (FDR = 0.04), respectively, in percent DNAm per IQR (17.6 ppb) increase in 7-day mean ozone concentration. Results were not fully replicated in KORA and NAS. We identified three CpG sites potentially susceptible to gaseous air pollution-induced DNAm changes near genes relevant for cardiovascular and lung disease. Further harmonized investigations with a range of gaseous pollutants and averaging durations are needed to determine the effect of gaseous air pollutants on DNA methylation and ultimately gene expression.
  •  
21.
  • Shungin, Dmitry, et al. (author)
  • Ranking and characterization of established BMI and lipid associated loci as candidates for gene-environment interactions
  • 2017
  • In: PLOS Genetics. - : Public Library Science. - 1553-7390 .- 1553-7404. ; 13:6
  • Journal article (peer-reviewed)abstract
    • Phenotypic variance heterogeneity across genotypes at a single nucleotide polymorphism (SNP) may reflect underlying gene-environment (GxE) or gene-gene interactions. We modeled variance heterogeneity for blood lipids and BMI in up to 44,211 participants and investigated relationships between variance effects (P-v), GxE interaction effects (with smoking and physical activity), and marginal genetic effects (P-m). Correlations between P-v and P-m were stronger for SNPs with established marginal effects (Spearman's rho = 0.401 for triglycerides, and rho = 0.236 for BMI) compared to all SNPs. When P-v and P-m were compared for all pruned SNPs, only BMI was statistically significant (Spearman's rho = 0.010). Overall, SNPs with established marginal effects were overrepresented in the nominally significant part of the P-v distribution (P-binomial < 0.05). SNPs from the top 1% of the P-m distribution for BMI had more significant P-v values (Pmann-Whitney = 1.46x10(-5)), and the odds ratio of SNPs with nominally significant (< 0.05) P-m and P-v was 1.33 (95% CI: 1.12, 1.57) for BMI. Moreover, BMI SNPs with nominally significant GxE interaction P-values (Pint < 0.05) were enriched with nominally significant P-v values (P-binomial = 8.63x10(-9) and 8.52x10(-7) for SNP x smoking and SNP x physical activity, respectively). We conclude that some loci with strong marginal effects may be good candidates for GxE, and variance-based prioritization can be used to identify them.
  •  
22.
  • Winkler, Thomas W., et al. (author)
  • Quality control and conduct of genome-wide association meta-analyses
  • 2014
  • In: Nature Protocols. - : Springer Science and Business Media LLC. - 1754-2189 .- 1750-2799. ; 9:5, s. 1192-1212
  • Journal article (peer-reviewed)abstract
    • Rigorous organization and quality control (QC) are necessary to facilitate successful genome-wide association meta-analyses (GWAMAs) of statistics aggregated across multiple genome-wide association studies. This protocol provides guidelines for (i) organizational aspects of GWAMAs, and for (ii) QC at the study file level, the meta- level across studies and the meta-analysis output level. Real-world examples highlight issues experienced and solutions developed by the GIANT Consortium that has conducted meta-analyses including data from 125 studies comprising more than 330,000 individuals. We provide a general protocol for conducting GWAMAs and carrying out QC to minimize errors and to guarantee maximum use of the data. We also include details for the use of a powerful and flexible software package called EasyQC. Precise timings will be greatly influenced by consortium size. For consortia of comparable size to the GIANT Consortium, this protocol takes a minimum of about 10 months to complete.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-22 of 22
Type of publication
journal article (22)
Type of content
peer-reviewed (22)
Author/Editor
Justice, Anne E. (20)
Luan, Jian'an (16)
North, Kari E. (15)
Loos, Ruth J F (15)
Langenberg, Claudia (14)
Salomaa, Veikko (13)
show more...
Chasman, Daniel I. (13)
Perola, Markus (12)
Wareham, Nicholas J. (12)
Hansen, Torben (12)
Ridker, Paul M. (12)
Mohlke, Karen L (12)
Lind, Lars (11)
Deloukas, Panos (11)
Kuusisto, Johanna (11)
Laakso, Markku (11)
McCarthy, Mark I (11)
Boehnke, Michael (11)
Scott, Robert A (11)
Mahajan, Anubha (11)
Gustafsson, Stefan (11)
Uitterlinden, André ... (11)
Hayward, Caroline (11)
Esko, Tõnu (11)
Feitosa, Mary F. (11)
Raitakari, Olli T (10)
Franks, Paul W. (10)
Grarup, Niels (10)
Pedersen, Oluf (10)
Karpe, Fredrik (10)
Kovacs, Peter (10)
Rivadeneira, Fernand ... (10)
Hirschhorn, Joel N. (10)
Wood, Andrew R (10)
Willer, Cristen J (10)
Rudan, Igor (9)
van Duijn, Cornelia ... (9)
Tuomilehto, Jaakko (9)
Thorleifsson, Gudmar (9)
Thorsteinsdottir, Un ... (9)
Stefansson, Kari (9)
Rotter, Jerome I. (9)
Peters, Annette (9)
Metspalu, Andres (9)
Jousilahti, Pekka (9)
Cupples, L. Adrienne (9)
Heid, Iris M (9)
Kanoni, Stavroula (9)
Frayling, Timothy M (9)
Jackson, Anne U. (9)
show less...
University
Lund University (16)
Uppsala University (15)
Umeå University (12)
Karolinska Institutet (10)
University of Gothenburg (7)
Högskolan Dalarna (2)
show more...
Luleå University of Technology (1)
Stockholm University (1)
Linköping University (1)
Chalmers University of Technology (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (22)
Research subject (UKÄ/SCB)
Medical and Health Sciences (21)
Natural sciences (7)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view