SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kanhai La Daana K.) "

Search: WFRF:(Kanhai La Daana K.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kanhai, La Daana K., et al. (author)
  • Deep sea sediments of the Arctic Central Basin: A potential sink for microplastics
  • 2019
  • In: Deep-Sea Research Part I: Oceanographic Research Papers. - : Elsevier BV. - 0967-0637 .- 1879-0119. ; 145, s. 137-142
  • Journal article (peer-reviewed)abstract
    • Deep sea sediments have emerged as a potential sink for microplastics in the marine environment. The discovery of microplastics in various environmental compartments of the Arctic Central Basin (ACB) suggested that these contaminants were potentially being transported to the deep-sea realm of this oceanic basin. For the first time, the present study conducted a preliminary assessment to determine whether microplastics were present in surficial sediments from the ACB. Gravity and piston corers were used to retrieve sediments from depths of 855-4353 m at 11 sites in the ACB during the Arctic Ocean 2016 (AO16) expedition. Surficial sediments from the various cores were subjected to density flotation with sodium tungstate dihydrate solution (Na2WO4 center dot 2H(2)O, density 1.4 g cm(-3)). Potential microplastics were isolated and analysed by Fourier Transform Infrared (FT-IR) spectroscopy. Of the surficial samples, 7 of the 11 samples contained synthetic polymers which included polyester (n = 3), polystyrene (n = 2), polyacrylonitrile (n = 1), polypropylene (n = 1), polyvinyl chloride (n = 1) and polyamide (n = 1). Fibres (n = 5) and fragments (n = 4) were recorded in the samples. In order to avoid mis-interpretation, these findings musi be taken in the context that (i) sampling equipment did not guarantee retrieval of undisturbed surficial sediments, (ii) low sample volumes were analysed (similar to 10 g per site), (iii) replicate sediment samples per site was not possible, (iv) no air contamination checks were included during sampling and, (v) particles < 100 mu m were automatically excluded from analysis. While the present study provides preliminary indication that microplastics may be accumulating in the deep-sea realm of the ACB, further work is necessary to assess microplastic abundance, distribution and composition in surficial sediments of the ACB.
  •  
2.
  • Kanhai, La Daana K., et al. (author)
  • Microplastics in sea ice and seawater beneath ice floes from the Arctic Ocean
  • 2020
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Within the past decade, an alarm was raised about microplastics in the remote and seemingly pristine Arctic Ocean. To gain further insight about the issue, microplastic abundance, distribution and composition in sea ice cores (n = 25) and waters underlying ice floes (n = 22) were assessed in the Arctic Central Basin (ACB). Potential microplastics were visually isolated and subsequently analysed using Fourier Transform Infrared (FT-IR) Spectroscopy. Microplastic abundance in surface waters underlying ice floes (0-18 particles m-3) were orders of magnitude lower than microplastic concentrations in sea ice cores (2-17 particles L-1). No consistent pattern was apparent in the vertical distribution of microplastics within sea ice cores. Backward drift trajectories estimated that cores possibly originated from the Siberian shelves, western Arctic and central Arctic. Knowledge about microplastics in environmental compartments of the Arctic Ocean is important in assessing the potential threats posed by microplastics to polar organisms.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view