SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kankare E.) "

Search: WFRF:(Kankare E.)

  • Result 1-50 of 99
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Veres, P., et al. (author)
  • Observation of inverse Compton emission from a long gamma-ray burst
  • 2019
  • In: Nature. - : NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 575:7783, s. 459-
  • Journal article (peer-reviewed)abstract
    • Long-duration gamma-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterized by an initial phase of bright and highly variable radiation in the kiloelectron volt-to-mega electronvoltband, which is probably produced within the jet and lasts from milliseconds to minutes, known as the prompt emission(1,2). Subsequently, the interaction of the jet with the surrounding medium generates shock waves that are responsible for the afterglow emission, which lasts from days to months and occurs over a broad energy range from the radio to the gigaelectronvolt bands(1-6). The afterglow emission is generally well explained as synchrotron radiation emitted by electrons accelerated by the external shock(7-9). Recently, intense long-lasting emission between 0.2 and 1 teraelectronvolts was observed from GRB 190114C(10,11). Here we report multifrequency observations of GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from 5 x 10(-6) to 10(12) electronvolts. We find that the broadband spectral energy distribution is double-peaked, with the teraelectronvolt emission constituting a distinct spectral component with power comparable to the synchrotron component. This component is associated with the afterglow and is satisfactorily explained by inverse Compton up-scattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed teraelectronvolt component are typical for GRBs, supporting the possibility that inverse Compton emission is commonly produced in GRBs.
  •  
2.
  • Kankare, E., et al. (author)
  • Search for transient optical counterparts to high-energy IceCube neutrinos with Pan-STARRS1
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 626
  • Journal article (peer-reviewed)abstract
    • In order to identify the sources of the observed diffuse high-energy neutrino flux, it is crucial to discover their electromagnetic counterparts. To increase the sensitivity of detecting counterparts of transient or variable sources by telescopes with a limited field of view, IceCube began releasing alerts for single high-energy (E-v > 60 TeV) neutrino detections with sky localisation regions of order 1 degrees radius in 2016. We used Pan-STARRS1 to follow-up five of these alerts during 2016-2017 to search for any optical transients that may be related to the neutrinos. Typically 10-20 faint m(ip1) less than or similar to 22.5 mag) extragalactic transients are found within the Pan-STARRS1 footprints and are generally consistent with being unrelated field supernovae (SNe) and AGN. We looked for unusual properties of the detected transients, such as temporal coincidence of explosion epoch with the IceCube timestamp, or other peculiar light curve and physical properties. We found only one transient that had properties worthy of a specific follow-up. In the Pan-STARRS1 imaging for IceCube-160427A (probability to be of astrophysical origin of similar to 50%), we found a SN PS16cgx, located at 10.0' from the nominal IceCube direction. Spectroscopic observations of PS16cgx showed that it was an H-poor SN at redshift z = 0.2895 +/- 0.0001. The spectra and light curve resemble some high-energy Type Ic SNe, raising the possibility of a jet driven SN with an explosion epoch temporally coincident with the neutrino detection. However, distinguishing Type Ia and Type Ic SNe at this redshift is notoriously difficult. Based on all available data we conclude that the transient is more likely to be a Type Ia with relatively weak Sin absorption and a fairly normal rest-frame r-band light curve. If, as predicted, there is no high-energy neutrino emission from Type Ia SNe, then PS16cgx must be a random coincidence, and unrelated to the IceCube-160427A. We find no other plausible optical transient for any of the five IceCube events observed down to a 5 sigma limiting magnitude of mip1 approximate to 22 mag, between 1 day and 25 days after detection.
  •  
3.
  • Ackley, K., et al. (author)
  • Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 643
  • Journal article (peer-reviewed)abstract
    • Context. Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS.Aims. In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger.Methods. Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency - a 50% (90%) credible area of 5 deg(2) (23 deg(2)) - despite the relatively large distance of 26752 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups.Results. Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS-BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r similar to 22 (resp. K similar to 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total similar to 50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M greater than or similar to 0.1 M-circle dot to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger.Conclusions. Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.
  •  
4.
  • Gutierrez, C. P., et al. (author)
  • DES16C3cje : A low-luminosity, long-lived supernova
  • 2020
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 496:1, s. 95-110
  • Journal article (peer-reviewed)abstract
    • We present DES16C3cje, a low-luminosity, long-lived type II supernova (SN II) at redshift 0.0618, detected by the Dark Energy Survey (DES). DES16C3cje is a unique SN. The spectra are characterized by extremely narrow photospheric lines corresponding to very low expansion velocities of less than or similar to 1500 km s(-1), and the light curve shows an initial peak that fades after 50 d before slowly rebrightening over a further 100 d to reach an absolute brightness of M-r similar to 15.5 mag. The decline rate of the late-time light curve is then slower than that expected from the powering by radioactive decay of Co-56, but is comparable to that expected from accretion power. Comparing the bolometric light curve with hydrodynamical models, we find that DES16C3cje can be explained by either (i) a low explosion energy (0.11 foe) and relatively large Ni-56 production of 0.075 M-circle dot from an similar to 15 M-circle dot red supergiant progenitor typical of other SNe II, or (ii) a relatively compact similar to 40 M-circle dot star, explosion energy of 1 foe, and 0.08 M-circle dot of Ni-56. Both scenarios require additional energy input to explain the late-time light curve, which is consistent with fallback accretion at a rate of similar to 0.5 x 10(-)(8) M-circle dot s(-1).
  •  
5.
  • Smartt, S. J., et al. (author)
  • PESSTO : survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 579
  • Journal article (peer-reviewed)abstract
    • Context. The Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO) began as a public spectroscopic survey in April 2012. PESSTO classifies transients from publicly available sources and wide-field surveys, and selects science targets for detailed spectroscopic and photometric follow-up. PESSTO runs for nine months of the year, January - April and August - December inclusive, and typically has allocations of 10 nights per month. Aims. We describe the data reduction strategy and data products that are publicly available through the ESO archive as the Spectroscopic Survey data release 1 (SSDR1). Methods. PESSTO uses the New Technology Telescope with the instruments EFOSC2 and SOFI to provide optical and NIR spectroscopy and imaging. We target supernovae and optical transients brighter than 20.5(m) for classification. Science targets are selected for follow-up based on the PESSTO science goal of extending knowledge of the extremes of the supernova population. We use standard EFOSC2 set-ups providing spectra with resolutions of 13-18 angstrom between 3345-9995 angstrom. A subset of the brighter science targets are selected for SOFI spectroscopy with the blue and red grisms (0.935-2.53 mu m and resolutions 23-33 angstrom) and imaging with broadband JHK(s) filters. Results. This first data release (SSDR1) contains flux calibrated spectra from the first year (April 2012-2013). A total of 221 confirmed supernovae were classified, and we released calibrated optical spectra and classifications publicly within 24 h of the data being taken (via WISeREP). The data in SSDR1 replace those released spectra. They have more reliable and quantifiable flux calibrations, correction for telluric absorption, and are made available in standard ESO Phase 3 formats. We estimate the absolute accuracy of the flux calibrations for EFOSC2 across the whole survey in SSDR1 to be typically similar to 15%, although a number of spectra will have less reliable absolute flux calibration because of weather and slit losses. Acquisition images for each spectrum are available which, in principle, can allow the user to refine the absolute flux calibration. The standard NIR reduction process does not produce high accuracy absolute spectrophotometry but synthetic photometry with accompanying JHK(s) imaging can improve this. Whenever possible, reduced SOFI images are provided to allow this. Conclusions. Future data releases will focus on improving the automated flux calibration of the data products. The rapid turnaround between discovery and classification and access to reliable pipeline processed data products has allowed early science papers in the first few months of the survey.
  •  
6.
  • Smartt, S. J., et al. (author)
  • A kilonova as the electromagnetic counterpart to a gravitational-wave source
  • 2017
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 551:7678, s. 75-
  • Journal article (peer-reviewed)abstract
    • Gravitational waves were discovered with the detection of binary black-hole mergers(1) and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova(2-5). The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate(6). Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short.-ray burst(7,8). The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 +/- 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 +/- 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 +/- 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.
  •  
7.
  • Pastorello, A., et al. (author)
  • A luminous stellar outburst during a long-lasting eruptive phase first, and then SN IIn 2018cnf
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 628
  • Journal article (peer-reviewed)abstract
    • We present the results of the monitoring campaign of the Type IIn supernova (SN) 2018cnf (a.k.a. ASASSN-18mr). It was discovered about ten days before the maximum light (on MJD = 58 293.4 +/- 5.7 in the V band, with M-V = -18.13 +/- 0.15 mag). The multiband light curves show an immediate post-peak decline with some minor luminosity fluctuations, followed by a flattening starting about 40 days after maximum. The early spectra are relatively blue and show narrow Balmer lines with P Cygni profiles. Additionally, Fe II, O I, He I, and Ca II are detected. The spectra show little evolution with time and with intermediate-width features becoming progressively more prominent, indicating stronger interaction of the SN ejecta with the circumstellar medium. The inspection of archival images from the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) survey has revealed a variable source at the SN position with a brightest detection in December 2015 at M-r = -14.66 +/- 0.17 mag. This was likely an eruptive phase from the massive progenitor star that started from at least mid-2011, and that produced the circumstellar environment within which the star exploded as a Type IIn SN. The overall properties of SN 2018cnf closely resemble those of transients such as SN 2009ip. This similarity favours a massive hypergiant, perhaps a luminous blue variable, as progenitor for SN 2018cnf.
  •  
8.
  • Pastorello, A., et al. (author)
  • Supernovae 2016bdu and 2005gl, and their link with SN 2009ip-like transients : another piece of the puzzle
  • 2018
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 474:1, s. 197-218
  • Journal article (peer-reviewed)abstract
    • Supernova (SN) 2016bdu is an unusual transient resembling SN 2009ip. SN 2009ip-like events are characterized by a long-lasting phase of erratic variability that ends with two luminous outbursts a few weeks apart. The second outburst is significantly more luminous (about 3 mag) than the first. In the case of SN 2016bdu, the first outburst (Event A) reached an absolute magnitude M-r approximate to -15.3 mag, while the second one (Event B) occurred over one month later and reached M-r approximate to -18 mag. By inspecting archival data, a faint source at the position of SN 2016bdu is several times in the past few years. We interpret these detections as signatures of a phase of erratic variability, similar to that experienced by SN 2009ip between 2008 and mid-2012, and resembling the currently observed variability of the luminous blue variable SN 2000ch in NGC 3432. Spectroscopic monitoring of SN 2016bdu during the second peak initially shows features typical of an SN IIn. One month after the Event B maximum, the spectra develop broad Balmer lines with P Cygni profiles and broad metal features. At these late phases, the spectra resemble those of a typical Type II SN. All members of this SN 2009ip-like group are remarkably similar to the Type IIn SN 2005gl. For this object, the claim of a terminal SN explosion is supported by the disappearance of the progenitor star. While the similarity with SN 2005gl supports a genuine SN explosion scenario for SN 2009ip-like events, the unequivocal detection of nucleosynthesized elements in their nebular spectra is still missing.
  •  
9.
  • Brennan, S. J., et al. (author)
  • Photometric and spectroscopic evolution of the interacting transient AT 2016jbu(Gaia16cfr)
  • 2022
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 513:4, s. 5642-5665
  • Journal article (peer-reviewed)abstract
    • We present the results from a high-cadence, multiwavelength observation campaign of AT 2016jbu (aka Gaia16cfr), an interacting transient. This data set complements the current literature by adding higher cadence as well as extended coverage of the light-curve evolution and late-time spectroscopic evolution. Photometric coverage reveals that AT 2016jbu underwent significant photometric variability followed by two luminous events, the latter of which reached an absolute magnitude of MV ∼ −18.5 mag. This is similar to the transient SN 2009ip whose nature is still debated. Spectra are dominated by narrow emission lines and show a blue continuum during the peak of the second event. AT 2016jbu shows signatures of a complex, non-homogeneous circumstellar material (CSM). We see slowly evolving asymmetric hydrogen line profiles, with velocities of 500 km s−1 seen in narrow emission features from a slow-moving CSM, and up to 10 000 km s−1 seen in broad absorption from some high-velocity material. Late-time spectra (∼+1 yr) show a lack of forbidden emission lines expected from a core-collapse supernova and are dominated by strong emission from H, He I, and Ca II. Strong asymmetric emission features, a bumpy light curve, and continually evolving spectra suggest an inhibit nebular phase. We compare the evolution of H α among SN 2009ip-like transients and find possible evidence for orientation angle effects. The light-curve evolution of AT 2016jbu suggests similar, but not identical, circumstellar environments to other SN 2009ip-like transients.
  •  
10.
  • Brennan, S. J., et al. (author)
  • Progenitor, environment, and modelling of the interacting transient AT 2016jbu (Gaia16cfr)
  • 2022
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 513:4, s. 5666-5685
  • Journal article (peer-reviewed)abstract
    • We present the bolometric light curve, identification and analysis of the progenitor candidate, and preliminary modelling of AT 2016jbu (Gaia16cfr). We find a progenitor consistent with a ∼ 22–25 M⊙ yellow hypergiant surrounded by a dusty circumstellar shell, in agreement with what has been previously reported. We see evidence for significant photometric variability in the progenitor, as well as strong Hα emission consistent with pre-existing circumstellar material. The age of the environment, as well as the resolved stellar population surrounding AT 2016jbu, supports a progenitor age of >10 Myr, consistent with a progenitor mass of ∼22 M⊙. A joint analysis of the velocity evolution of AT 2016jbu and the photospheric radius inferred from the bolometric light curve shows the transient is consistent with two successive outbursts/explosions. The first outburst ejected material with velocity ∼650 km s−1, while the second, more energetic event ejected material at ∼4500 km s−1. Whether the latter is the core collapse of the progenitor remains uncertain. We place a limit on the ejected 56Ni mass of <0.016 M⊙. Using the Binary Population And Spectral Synthesis (BPASS) code, we explore a wide range of possible progenitor systems and find that the majority of these are in binaries, some of which are undergoing mass transfer or common-envelope evolution immediately prior to explosion. Finally, we use the SuperNova Explosion Code (SNEC) to demonstrate that the low-energy explosions within some of these binary systems, together with sufficient circumstellar material, can reproduce the overall morphology of the light curve of AT 2016jbu.
  •  
11.
  • Pastorello, A., et al. (author)
  • Forbidden hugs in pandemic times II. The luminous red nova variety AT 2020hat and AT 2020kog
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 647
  • Journal article (peer-reviewed)abstract
    • We present the results of our monitoring campaigns of the luminous red novae (LRNe) AT 2020hat in NGC 5068 and AT 2020kog in NGC 6106. The two objects were imaged (and detected) before their discovery by routine survey operations. They show a general trend of slow luminosity rise, lasting at least a few months. The subsequent major LRN outbursts were extensively followed in photometry and spectroscopy. The light curves present an initial short-duration peak, followed by a redder plateau phase. AT 2020kog is a moderately luminous event peaking at similar to 7 x 10(40) erg s(-1), while AT 2020hat is almost one order of magnitude fainter than AT 2020kog, although it is still more luminous than V838 Mon. In analogy with other LRNe, the spectra of AT 2020kog change significantly with time. They resemble those of type TM supernovae at early phases, then they become similar to those of K-type stars during the plateau, and to M-type stars at very late phases. In contrast, AT 2020hat already shows a redder continuum at early epochs, and its spectrum shows the late appearance of molecular bands. A moderate-resolution spectrum of AT 2020hat taken at +37 d after maximum shows a forest of narrow P Cygni lines of metals with velocities of 180 km s(-1), along with an Ha emission with a full-width at half-maximum velocity of 250 km s(-1). For AT 2020hat, a robust constraint on its quiescent progenitor is provided by archival images of the Hubble Space Telescope. The progenitor is clearly detected as a mid-K type star, with an absolute magnitude of M-F606W = -3.33 +/- 0.09 mag and a colour of F606W - F814W = 1.14 +/- 0.05 mag, which are inconsistent with the expectations from a massive star that could later produce a core-collapse supernova. Although quite peculiar, the two objects nicely match the progenitor versus light curve absolute magnitude correlations discussed in the literature.
  •  
12.
  • Pastorello, A., et al. (author)
  • Luminous red novae : Stellar mergers or giant eruptions?
  • 2019
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 630
  • Journal article (peer-reviewed)abstract
    • We present extensive datasets for a class of intermediate-luminosity optical transients known as luminous red novae. They show double-peaked light curves, with an initial rapid luminosity rise to a blue peak (at -13 to -15 mag), which is followed by a longer-duration red peak that sometimes is attenuated, resembling a plateau. The progenitors of three of them (NGC 4490-2011OT1, M 101-2015OT1, and SNhunt248), likely relatively massive blue to yellow stars, were also observed in a pre-eruptive stage when their luminosity was slowly increasing. Early spectra obtained during the first peak show a blue continuum with superposed prominent narrow Balmer lines, with P Cygni profiles. Lines of Fe II are also clearly observed, mostly in emission. During the second peak, the spectral continuum becomes much redder, H alpha is barely detected, and a forest of narrow metal lines is observed in absorption. Very late-time spectra (similar to 6 months after blue peak) show an extremely red spectral continuum, peaking in the infrared (IR) domain. H alpha is detected in pure emission at such late phases, along with broad absorption bands due to molecular overtones (such as TiO, VO). We discuss a few alternative scenarios for luminous red novae. Although major instabilities of single massive stars cannot be definitely ruled out, we favour a common envelope ejection in a close binary system, with possibly a final coalescence of the two stars. The similarity between luminous red novae and the outburst observed a few months before the explosion of the Type IIn SN 2011ht is also discussed.
  •  
13.
  • Smartt, S. J., et al. (author)
  • Pan-STARRS and PESSTO search for an optical counterpart to the LIGO gravitational-wave source GW150914
  • 2016
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462:4, s. 4094-4116
  • Journal article (peer-reviewed)abstract
    • We searched for an optical counterpart to the first gravitational-wave source discovered by LIGO (GW150914), using a combination of the Pan-STARRS1 wide-field telescope and the Public ESO Spectroscopic Survey of Transient Objects (PESSTO) spectroscopic follow-up programme. As the final LIGO sky maps changed during analysis, the total probability of the source being spatially coincident with our fields was finally only 4.2 per cent. Therefore, we discuss our results primarily as a demonstration of the survey capability of Pan-STARRS and spectroscopic capability of PESSTO. We mapped out 442 deg(2) of the northern sky region of the initial map. We discovered 56 astrophysical transients over a period of 41 d from the discovery of the source. Of these, 19 were spectroscopically classified and a further 13 have host galaxy redshifts. All transients appear to be fairly normal supernovae (SNe) and AGN variability and none is obviously linked with GW150914. We illustrate the sensitivity of our survey by defining parametrized light curves with time-scales of 4, 20 and 40 d and use the sensitivity of the Pan-STARRS1 images to set limits on the luminosities of possible sources. The Pan-STARRS1 images reach limiting magnitudes of iP1 = 19.2, 20.0 and 20.8, respectively, for the three time-scales. For long time-scale parametrized light curves (with full width half-maximum similar or equal to 40 d), we set upper limits of M-i <= -17.2(+1.4)(-0.9) if the distance to GW150914 is D-L = 400 +/- 200 Mpc. The number of Type Ia SN we find in the survey is similar to that expected from the cosmic SN rate, indicating a reasonably complete efficiency in recovering SN like transients out to D-L = 400 +/- 200 Mpc.
  •  
14.
  • Anderson, J. P., et al. (author)
  • A nearby super-luminous supernova with a long pre-maximum plateau and strong C (II) features
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 620
  • Journal article (peer-reviewed)abstract
    • Context. Super-luminous supernovae (SLSNe) are rare events defined as being significantly more luminous than normal terminal stellar explosions. The source of the additional power needed to achieve such luminosities is still unclear. Discoveries in the local Universe (i.e. z < 0.1) are scarce, but afford dense multi-wavelength observations. Additional low-redshift objects are therefore extremely valuable.Aims. We present early-time observations of the type I SLSN ASASSN-18km/SN 2018bsz. These data are used to characterise the event and compare to literature SLSNe and spectral models. Host galaxy properties are also analysed.Methods. Optical and near-IR photometry and spectroscopy were analysed. Early-time ATLAS photometry was used to constrain the rising light curve. We identified a number of spectral features in optical-wavelength spectra and track their time evolution. Finally, we used archival host galaxy photometry together with H( II )region spectra to constrain the host environment.Results. ASASSN-18km/SN 2018bsz is found to be a type I SLSN in a galaxy at a redshift of 0.0267 (111 Mpc), making it the lowest-redshift event discovered to date. Strong C- II lines are identified in the spectra. Spectral models produced by exploding a Wolf-Rayet progenitor and injecting a magnetar power source are shown to be qualitatively similar to ASASSN-18km/SN 2018bsz, contrary to most SLSNe-I that display weak or non-existent C (II) lines. ASASSN-18km/SN 2018bsz displays along, slowly rising, red plateau of >26 days, before a steeper, faster rise to maximum. The host has an absolute magnitude of -19.8 mag (r), a mass of M-* = 1.5(-0.33)(+0.08) x 10(9) M-circle dot, and a star formation rate of =0.50(-0.19)(+2.22) M-circle dot yr(-1). A nearby H (II) region has an oxygen abundance (O3N2) of 8.31 +/- 0.01 dex.
  •  
15.
  • Andrews, Jennifer E., et al. (author)
  • SN 2017gmr : An Energetic Type II-P Supernova with Asymmetries
  • 2019
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 885:1
  • Journal article (peer-reviewed)abstract
    • We present high-cadence UV, optical, and near-infrared data on the luminous Type II-P supernova SN;2017gmr from hours after discovery through the first 180 days. SN;2017gmr does not show signs of narrow, high-ionization emission lines in the early optical spectra, yet the optical light-curve evolution suggests that an extra energy source from circumstellar medium (CSM) interaction must be present for at least 2 days after explosion. Modeling of the early light curve indicates a ?500 R progenitor radius, consistent with a rather compact red supergiant, and late-time luminosities indicate that up to 0.130;;0.026 M of Ni-56 are present, if the light curve is solely powered by radioactive decay, although the Ni-56 mass may be lower if CSM interaction contributes to the post-plateau luminosity. Prominent multipeaked emission lines of H? and [O i] emerge after day 154, as a result of either an asymmetric explosion or asymmetries in the CSM. The lack of narrow lines within the first 2 days of explosion in the likely presence of CSM interaction may be an example of close, dense, asymmetric CSM that is quickly enveloped by the spherical supernova ejecta.
  •  
16.
  • Nicholl, M., et al. (author)
  • Slowly fading super-luminous supernovae that are not pair-instability explosions
  • 2013
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 502:7471, s. 346-
  • Journal article (peer-reviewed)abstract
    • Super-luminous supernovae(1-4) that radiate more than 1044 ergs per second at their peak luminosity have recently been discovered in faint galaxies at redshifts of 0.1-4. Some evolve slowly, resembling models of 'pair-instability' supernovae(5,6). Such models involve stars with original masses 140-260 times that of the Sun that now have carbon-oxygen cores of 65-130 solar masses. In these stars, the photons that prevent gravitational collapse are converted to electron-positron pairs, causing rapid contraction and thermonuclear explosions. Many solar masses of Ni-56 are synthesized; this isotope decays to Fe-56 via Co-56, powering bright light curves(7,8). Such massive progenitors are expected to have formed from metal-poor gas in the early Universe(9). Recently, supernova 2007bi in a galaxy at redshift 0.127 (about 12 billion years after the Big Bang) with a metallicity one-third that of the Sun was observed to look like a fading pair-instability supernova(1,10). Here we report observations of two slow-to-fade super-luminous supernovae that show relatively fast rise times and blue colours, which are incompatible with pair-instability models. Their late-time light-curve and spectral similarities to supernova 2007bi call the nature of that event into question. Our early spectra closely resemble typical fast-declining super-luminous supernovae(2,11,12), which are not powered by radio-activity. Modelling our observations with 10-16 solar masses of magnetar-energized(13,14) ejecta demonstrates the possibility of a common explosion mechanism. The lack of unambiguous nearby pair-instability events suggests that their local rate of occurrence is less than 6 x 10(-6) times that of the core-collapse rate.
  •  
17.
  • Smartt, S. J., et al. (author)
  • A SEARCH FOR AN OPTICAL COUNTERPART TO THE GRAVITATIONAL-WAVE EVENT GW151226
  • 2016
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 827:2
  • Journal article (peer-reviewed)abstract
    • We present a search for an electromagnetic counterpart of the gravitational-wave source GW151226. Using the Pan-STARRS1 telescope we mapped out 290 square degrees in the optical i(P1) filter, starting 11.5 hr after the LIGO information release and lasting for an additional 28 days. The first observations started 49.5 hr after the time of the GW151226 detection. We typically reached sensitivity limits of i(P1) = 20.3-20.8 and covered 26.5% of the LIGO probability skymap. We supplemented this with ATLAS survey data, reaching 31% of the probability region to shallower depths of m similar or equal to 19. We found 49 extragalactic transients (that are not obviously active galactic nuclei), including a faint transient in a galaxy at 7 Mpc (a luminous blue variable outburst) plus a rapidly decaying M-dwarf flare. Spectral classification of 20 other transient events showed them all to be supernovae. We found an unusual transient, PS15dpn, with an explosion date temporally coincident with GW151226, that evolved into a type Ibn supernova. The redshift of the transient is secure at z = 0.1747 +/- 0.0001 and we find it unlikely to be linked, since the luminosity distance has a negligible probability of being consistent with that of GW151226. In the 290 square degrees surveyed we therefore do not find a likely counterpart. However we show that our survey strategy would be sensitive to NS-NS mergers producing kilonovae at D-L less than or similar to 100 Mpc, which is promising for future LIGO/Virgo searches.
  •  
18.
  • Botticella, M. T., et al. (author)
  • Supernova 2009kf : An Ultraviolet Bright Type IIP Supernova Discovered with Pan-STARRS 1 and GALEX
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 717, s. L52-L56
  • Journal article (peer-reviewed)abstract
    • We present photometric and spectroscopic observations of a luminous Type IIP Supernova (SN) 2009kf discovered by the Pan-STARRS 1 (PS1) survey and also detected by the Galaxy Evolution Explorer. The SN shows a plateau in its optical and bolometric light curves, lasting approximately 70 days in the rest frame, with an absolute magnitude of M V = -18.4 mag. The P-Cygni profiles of hydrogen indicate expansion velocities of 9000 km s-1 at 61 days after discovery which is extremely high for a Type IIP SN. SN 2009kf is also remarkably bright in the near-ultraviolet (NUV) and shows a slow evolution 10-20 days after optical discovery. The NUV and optical luminosity at these epochs can be modeled with a blackbody with a hot effective temperature (T ~ 16,000 K) and a large radius (R ~ 1 × 1015 cm). The bright bolometric and NUV luminosity, the light curve peak and plateau duration, the high velocities, and temperatures suggest that 2009kf is a Type IIP SN powered by a larger than normal explosion energy. Recently discovered high-z SNe (0.7 < z < 2.3) have been assumed to be IIn SNe, with the bright UV luminosities due to the interaction of SN ejecta with a dense circumstellar medium. UV-bright SNe similar to SN 2009kf could also account for these high-z events, and its absolute magnitude M NUV = -21.5 ± 0.5 mag suggests such SNe could be discovered out to z ~ 2.5 in the PS1 survey.
  •  
19.
  • Cai, Y.-Z., et al. (author)
  • Intermediate-luminosity red transients : Spectrophotometric properties and connection to electron-capture supernova explosions
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 654
  • Journal article (peer-reviewed)abstract
    • We present the spectroscopic and photometric study of five intermediate-luminosity red transients (ILRTs), namely AT 2010dn, AT 2012jc, AT 2013la, AT 2013lb, and AT 2018aes. They share common observational properties and belong to a family of objects similar to the prototypical ILRT SN 2008S. These events have a rise time that is less than 15 days and absolute peak magnitudes of between −11.5 and −14.5 mag. Their pseudo-bolometric light curves peak in the range 0.5–9.0 × 1040 erg s−1 and their total radiated energies are on the order of (0.3–3) × 1047 erg. After maximum brightness, the light curves show a monotonic decline or a plateau, resembling those of faint supernovae IIL or IIP, respectively. At late phases, the light curves flatten, roughly following the slope of the 56Co decay. If the late-time power source is indeed radioactive decay, these transients produce 56Ni masses on the order of 10−4 to 10−3 M⊙. The spectral energy distribution of our ILRT sample, extending from the optical to the mid-infrared (MIR) domain, reveals a clear IR excess soon after explosion and non-negligible MIR emission at very late phases. The spectra show prominent H lines in emission with a typical velocity of a few hundred km s−1, along with Ca II features. In particular, the [Ca II] λ7291,7324 doublet is visible at all times, which is a characteristic feature for this family of transients. The identified progenitor of SN 2008S, which is luminous in archival Spitzer MIR images, suggests an intermediate-mass precursor star embedded in a dusty cocoon. We propose the explosion of a super-asymptotic giant branch star forming an electron-capture supernova as a plausible explanation for these events.
  •  
20.
  • Fiore, A., et al. (author)
  • Close, bright, and boxy : the superluminous SN 2018hti
  • 2022
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 512:3, s. 4484-4502
  • Journal article (peer-reviewed)abstract
    • SN 2018hti was a very nearby (z = 0.0614) superluminous supernova with an exceedingly bright absolute magnitude of −21.7 mag in r band at maximum. The densely sampled pre-maximum light curves of SN 2018hti show a slow luminosity evolution and constrain the rise time to ∼50 rest-frame d. We fitted synthetic light curves to the photometry to infer the physical parameters of the explosion of SN 2018hti for both the magnetar and the CSM-interaction scenarios. We conclude that one of two mechanisms could be powering the luminosity of SN 2018hti; interaction with ∼10 M⊙ of circumstellar material or a magnetar with a magnetic field of Bp∼ 1.3 × 1013 G, and initial period of Pspin∼ 1.8 ms. From the nebular spectrum modelling we infer that SN 2018hti likely results from the explosion of a ∼40M⊙∼40M⊙ progenitor star.
  •  
21.
  • Gezari, S., et al. (author)
  • GALEX and Pan-STARRS1 Discovery of SN IIP 2010aq : The First Few Days After Shock Breakout in a Red Supergiant Star
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 720, s. L77-L81
  • Journal article (peer-reviewed)abstract
    • We present the early UV and optical light curve of Type IIP supernova (SN) 2010aq at z = 0.0862, and compare it to analytical models for thermal emission following SN shock breakout in a red supergiant star. SN 2010aq was discovered in joint monitoring between the Galaxy Evolution Explorer (GALEX) Time Domain Survey (TDS) in the NUV and the Pan-STARRS1 Medium Deep Survey (PS1 MDS) in the g, r, i, and z bands. The GALEX and Pan-STARRS1 observations detect the SN less than 1 day after the shock breakout, measure a diluted blackbody temperature of 31, 000 ± 6000 K 1 day later, and follow the rise in the UV/optical light curve over the next 2 days caused by the expansion and cooling of the SN ejecta. The high signal-to-noise ratio of the simultaneous UV and optical photometry allows us to fit for a progenitor star radius of 700 ± 200R sun, the size of a red supergiant star. An excess in UV emission two weeks after shock breakout compared with SNe well fitted by model atmosphere-code synthetic spectra with solar metallicity is best explained by suppressed line blanketing due to a lower metallicity progenitor star in SN 2010aq. Continued monitoring of PS1 MDS fields by the GALEX TDS will increase the sample of early UV detections of Type II SNe by an order of magnitude and probe the diversity of SN progenitor star properties.
  •  
22.
  • McBrien, O. R., et al. (author)
  • PS15cey and PS17cke : prospective candidates from the Pan-STARRS Search for kilonovae
  • 2021
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 500:3, s. 4213-4228
  • Journal article (peer-reviewed)abstract
    • Time domain astronomy was revolutionized with the discovery of the first kilonova, AT2017gfo, in August 2017, which was associated with the gravitational wave signal GW170817. Since this event, numerous wide-field surveys have been optimizing search strategies to maximize their efficiency of detecting these fast and faint transients. With the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), we have been conducting a volume-limited survey for intrinsically faint and fast-fading events to a distance of D similar or equal to 200 Mpc. Two promising candidates have been identified from this archival search, with sparse data - PS15cey and PS17cke. Here, we present more detailed analysis and discussion of their nature. We observe that PS15cey was a luminous, fast-declining transient at 320 Mpc. Models of BH-NS mergers with a very stiff equation of state could possibly reproduce the luminosity and decline but the physical parameters are extreme. A more likely scenario is that this was an AT2018kzr-like merger event. PS17cke was a faint and fast-declining event at 15 Mpc. We explore several explosion scenarios of this transient including models of it as a NS-NS and BH-NS merger, the outburst of a massive luminous star, and compare it against other known fast-fading transients. Although there is uncertainty in the explosion scenario due to difficulty in measuring the explosion epoch, we find PS17cke to be a plausible kilonova candidate from the model comparisons.
  •  
23.
  • Pastorello, A., et al. (author)
  • The evolution of luminous red nova AT 2017jfs in NGC 4470
  • 2019
  • In: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 625
  • Journal article (peer-reviewed)abstract
    • We present the results of our photometric and spectroscopic follow-up of the intermediate-luminosity optical transient AT 2017jfs. At peak, the object reaches an absolute magnitude of M-g = 15.46 +/- 0.15 mag and a bolometric luminosity of 5.5 x 10(41) erg s(-1). Its light curve has the double-peak shape typical of luminous red novae (LRNe), with a narrow first peak bright in the blue bands, while the second peak is longer-lasting and more luminous in the red and near-infrared (NIR) bands. During the first peak, the spectrum shows a blue continuum with narrow emission lines of H and Fe II. During the second peak, the spectrum becomes cooler, resembling that of a K-type star, and the emission lines are replaced by a forest of narrow lines in absorption. About 5 months later, while the optical light curves are characterized by a fast linear decline, the NIR ones show a moderate rebrightening, observed until the transient disappears in solar conjunction. At these late epochs, the spectrum becomes reminiscent of that of M-type stars, with prominent molecular absorption bands. The late-time properties suggest the formation of some dust in the expanding common envelope or an IR echo from foreground pre-existing dust. We propose that the object is a common-envelope transient, possibly the outcome of a merging event in a massive binary, similar to NGC4490-2011OT1.
  •  
24.
  • Valenti, S., et al. (author)
  • PESSTO spectroscopic classification of La Silla-Quest Transients
  • 2012
  • Reports (other academic/artistic)abstract
    • PESSTO is the "Public ESO Spectroscopic Survey of Transient Objects" (http://www.pessto.org) using the ESO New Technology Telescope (NTT) at La Silla and the EFOSC2 (optical) and SOFI (near-IR) spectrographs. It is one of two currently running public spectroscopic surveys at ESO. The survey details are as follows: - PESSTO has 90 nights per year on the NTT: 9 lunations (August to April), 10 nights per lunation (we are not observing May-July).
  •  
25.
  • Anderson, P., et al. (author)
  • The lowest-metallicity type II supernova from the highest-mass red supergiant progenitor
  • 2018
  • In: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 2:7, s. 574-579
  • Journal article (peer-reviewed)abstract
    • Red supergiants have been confirmed as the progenitor stars of the majority of hydrogen-rich type II supernovae(1). However, while such stars are observed with masses > 25 M-circle dot (ref. (2)), detections of > 18 M-circle dot progenitors remain elusive(1). Red supergiants are also expected to form at all metallicities, but discoveries of explosions from low-metallicity progenitors are scarce. Here, we report observations of the type II supernova, SN 2015bs, for which we infer a progenitor metallicity of <= 0.1 Z(circle dot) from comparison to photospheric-phase spectral models(3), and a zero-age main-sequence mass of 17-25 M-circle dot through comparison to nebular-phase spectral models(4,5). SN 2015bs displays a normal 'plateau' light-curve morphology, and typical spectral properties, implying a red supergiant progenitor. This is the first example of such a high-mass progenitor for a 'normal' type II supernova, suggesting a link between high-mass red supergiant explosions and low-metallicity progenitors.
  •  
26.
  • Dall'Ora, M., et al. (author)
  • THE TYPE IIP SUPERNOVA 2012aw IN M95 : HYDRODYNAMICAL MODELING OF THE PHOTOSPHERIC PHASE FROM ACCURATE SPECTROPHOTOMETRIC MONITORING
  • 2014
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 787:2, s. 139-
  • Journal article (peer-reviewed)abstract
    • We present an extensive optical and near-infrared photometric and spectroscopic campaign of the Type IIP supernova SN 2012aw. The data set densely covers the evolution of SN 2012aw shortly after the explosion through the end of the photospheric phase, with two additional photometric observations collected during the nebular phase, to fit the radioactive tail and estimate the Ni-56 mass. Also included in our analysis is the previously published Swift UV data, therefore providing a complete view of the ultraviolet-optical-infrared evolution of the photospheric phase. On the basis of our data set, we estimate all the relevant physical parameters of SN 2012aw with our radiation-hydrodynamics code: envelope mass M-env similar to 20 M-circle dot, progenitor radius R similar to 3 x 10(13) cm (similar to 430 R-circle dot), explosion energy E similar to 1.5 foe, and initial Ni-56 mass similar to 0.06 M-circle dot. These mass and radius values are reasonably well supported by independent evolutionary models of the progenitor, and may suggest a progenitor mass higher than the observational limit of 16.5 +/- 1.5 M-circle dot of the Type IIP events.
  •  
27.
  • Fiore, A., et al. (author)
  • SN 2017gci : a nearby Type I Superluminous Supernova with a bumpy tail
  • 2021
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 502:2, s. 2120-2139
  • Journal article (peer-reviewed)abstract
    • We present and discuss the optical spectrophotometric observations of the nearby (z = 0.087) Type I superluminous supernova (SLSN I) SN 2017gci, whose peak K-corrected absolute magnitude reaches M-g = -21.5 mag. Its photometric and spectroscopic evolution includes features of both slow- and of fast-evolving SLSN I, thus favoring a continuum distribution between the two SLSN-I subclasses. In particular, similarly to other SLSNe I, the multiband light curves (LCs) of SN 2017gci show two re-brightenings at about 103 and 142 d after the maximum light. Interestingly, this broadly agrees with a broad emission feature emerging around 6520 angstrom after similar to 51 d from the maximum light, which is followed by a sharp knee in the LC. If we interpret this feature as H alpha, this could support the fact that the bumps are the signature of late interactions of the ejecta with a (hydrogen-rich) circumstellar material. Then we fitted magnetar- and CSM-interaction-powered synthetic LCs on to the bolometric one of SN 2017gci. In the magnetar case, the fit suggests a polar magnetic field B-p similar or equal to 6 x 10(14) G, an initial period of the magnetar P-initial similar or equal to 2.8 ms, an ejecta mass M-ejecta similar or equal to 9M(circle dot) and an ejecta opacity kappa similar or equal to 0.08 cm(2) g(-1). A CSM-interaction scenario would imply a CSM mass similar or equal to 5 M-circle dot and an ejecta mass similar or equal to 12M(circle dot). Finally, the nebular spectrum of phase + 187 d was modeled, deriving a mass of similar or equal to 10 M-circle dot for the ejecta. Our models suggest that either a magnetar or CSM interaction might be the power sources for SN 2017gci and that its progenitor was a massive (40 M-circle dot) star.
  •  
28.
  • Gutiérrez, C. P., et al. (author)
  • Type II supernovae in low-luminosity host galaxies
  • 2018
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 479:3, s. 3232-3253
  • Journal article (peer-reviewed)abstract
    • We present an analysis of a new sample of type II core-collapse supernovae (SNe II) occurring within low-luminosity galaxies, comparing these with a sample of events in brighter hosts. Our analysis is performed comparing SN II spectral and photometric parameters and estimating the influence of metallicity (inferred from host luminosity differences) on SN II transient properties. We measure the SN absolute magnitude at maximum, the light-curve plateau duration, the optically thick duration, and the plateau decline rate in the V band, together with expansion velocities and pseudo-equivalent-widths (pEWs) of several absorption lines in the SN spectra. For the SN host galaxies, we estimate the absolute magnitude and the stellar mass, a proxy for the metallicity of the host galaxy. SNe II exploding in low-luminosity galaxies display weaker pEWs of Fe II lambda 5018, confirming the theoretical prediction that metal lines in SN II spectra should correlate with metallicity. We also find that SNe II in low-luminosity hosts have generally slower declining light curves and display weaker absorption lines. We find no relationship between the plateau duration or the expansion velocities with SN environment, suggesting that the hydrogen envelope mass and the explosion energy are not correlated with the metallicity of the host galaxy. This result supports recent predictions that mass-loss for red supergiants is independent of metallicity.
  •  
29.
  • Kangas, T., et al. (author)
  • Gaia16apd-a link between fast and slowly declining type I superluminous supernovae
  • 2017
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 469:1, s. 1246-1258
  • Journal article (peer-reviewed)abstract
    • We present ultraviolet (UV), optical and infrared photometry and optical spectroscopy of the type Ic superluminous supernova (SLSN) Gaia16apd (= SN 2016eay), covering its evolution from 26 d before the g-band peak to 234.1 d after the peak. Gaia16apd was followed as a part of the NOT Unbiased Transient Survey (NUTS). It is one of the closest SLSNe known (z = 0.102 +/- 0.001), with detailed optical and UV observations covering the peak. Gaia16apd is a spectroscopically typical type Ic SLSN, exhibiting the characteristic blue early spectra with O II absorption, and reaches a peak M-g = -21.8 +/- 0.1 mag. However, photometrically it exhibits an evolution intermediate between the fast and slowly declining type Ic SLSNe, with an early evolution closer to the fast-declining events. Together with LSQ12dlf, another SLSN with similar properties, it demonstrates a possible continuum between fast and slowly declining events. It is unusually UV-bright even for an SLSN, reaching a non-K-corrected M-uvm2 similar or equal to -23.3 mag, the only other type Ic SLSN with similar UV brightness being SN 2010gx. Assuming that Gaia16apd was powered by magnetar spin-down, we derive a period of P = 1.9 +/- 0.2 ms and a magnetic field of B = 1.9 +/- 0.2 x 10(14) G for the magnetar. The estimated ejecta mass is between 8 and 16 M circle dot, and the kinetic energy between 1.3 and 2.5 x 10(52) erg, depending on opacity and assuming that the entire ejecta is swept up into a thin shell. Despite the early photometric differences, the spectra at late times are similar to slowly declining type Ic SLSNe, implying that the two subclasses originate from similar progenitors.
  •  
30.
  • Kankare, E., et al. (author)
  • A population of highly energetic transient events in the centres of active galaxies
  • 2017
  • In: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 1:12, s. 865-871
  • Journal article (peer-reviewed)abstract
    • Recent all-sky surveys have led to the discovery of new types of transients. These include stars disrupted by the central supermassive black hole, and supernovae that are 10-100 times more energetic than typical ones. However, the nature of even more energetic transients that apparently occur in the innermost regions of their host galaxies is hotly debated1-3. Here we report the discovery of the most energetic of these to date: PS1-10adi, with a total radiated energy of similar to 2.3 x 10(52) erg. The slow evolution of its light curve and persistently narrow spectral lines over similar to 3 yr are inconsistent with known types of recurring black hole variability. The observed properties imply powering by shock interaction between expanding material and large quantities of surrounding dense matter. Plausible sources of this expanding material are a star that has been tidally disrupted by the central black hole, or a supernova. Both could satisfy the energy budget. For the former, we would be forced to invoke a new and hitherto unseen variant of a tidally disrupted star, while a supernova origin relies principally on environmental effects resulting from its nuclear location. Remarkably, we also discover that PS1-10adi is not an isolated case. We therefore surmise that this new population of transients has previously been overlooked due to incorrect association with underlying central black hole activity.
  •  
31.
  • Kankare, E., et al. (author)
  • Core-collapse supernova subtypes in luminous infrared galaxies
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 649
  • Journal article (peer-reviewed)abstract
    • The fraction of core-collapse supernovae (CCSNe) occurring in the central regions of galaxies is not well constrained at present. This is partly because large-scale transient surveys operate at optical wavelengths, making it challenging to detect transient sources that occur in regions susceptible to high extinction factors. Here we present the discovery and follow-up observations of two CCSNe that occurred in the luminous infrared galaxy (LIRG) NGC 3256. The first, SN 2018ec, was discovered using the ESO HAWK-I /GRAAL adaptive optics seeing enhancer, and was classified as a Type Ic with a host galaxy extinction of AV = 2:1+0:3 0:1 mag. The second, AT 2018cux, was discovered during the course of follow-up observations of SN 2018ec, and is consistent with a subluminous Type IIP classification with an AV = 2:1 +/- 0:4 mag of host extinction. A third CCSN, PSN J10275082 4354034 in NGC 3256, was previously reported in 2014, and we recovered the source in late-time archival Hubble Space Telescope imaging. Based on template light curve fitting, we favour a Type IIn classification for it with modest host galaxy extinction of AV = 0:3+0:4 0:3 mag. We also extend our study with follow-up data of the recent Type IIb SN 2019lqo and Type Ib SN 2020fkb that occurred in the LIRG system Arp 299 with host extinctions of AV = 2:1 +0:1 0 :3 and AV = 0:4 +0:1 0 :2 mag, respectively. Motivated by the above, we inspected, for the first time, a sample of 29 CCSNe located within a projected distance of 2.5 kpc from the host galaxy nuclei in a sample of 16 LIRGs. We find, if star formation within these galaxies is modelled assuming a global starburst episode and normal IMF, that there is evidence of a correlation between the starburst age and the CCSN subtype. We infer that the two subgroups of 14 H-poor (Type IIb /Ib /Ic /Ibn) and 15 H-rich (Type II /IIn) CCSNe have di fferent underlying progenitor age distributions, with the H-poor progenitors being younger at 3 sigma significance. However, we note that the currently available sample sizes of CCSNe and host LIRGs are small, and the statistical comparisons between subgroups do not take into account possible systematic or model errors related to the estimated starburst ages.
  •  
32.
  • Nicholl, M., et al. (author)
  • On the diversity of superluminous supernovae : ejected mass as the dominant factor
  • 2015
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 452:4, s. 3869-3893
  • Journal article (peer-reviewed)abstract
    • We assemble a sample of 24 hydrogen-poor superluminous supernovae (SLSNe). Parameterizing the light-curve shape through rise and decline time-scales shows that the two are highly correlated. Magnetar-powered models can reproduce the correlation, with the diversity in rise and decline rates driven by the diffusion time-scale. Circumstellar interaction models can exhibit a similar rise-decline relation, but only for a narrow range of densities, which may be problematic for these models. We find that SLSNe are approximately 3.5 mag brighter and have light curves three times broader than SNe Ibc, but that the intrinsic shapes are similar. There are a number of SLSNe with particularly broad light curves, possibly indicating two progenitor channels, but statistical tests do not cleanly separate two populations. The general spectral evolution is also presented. Velocities measured from Fe II are similar for SLSNe and SNe Ibc, suggesting that diffusion time differences are dominated by mass or opacity. Flat velocity evolution in most SLSNe suggests a dense shell of ejecta. If opacities in SLSNe are similar to other SNe Ibc, the average ejected mass is higher by a factor 2-3. Assuming. = 0.1 cm(2) g(-1), we estimate a mean (median) SLSN ejecta mass of 10 M-circle dot (6 M-circle dot), with a range of 3-30 M-circle dot. Doubling the assumed opacity brings the masses closer to normal SNe Ibc, but with a high-mass tail. The most probable mechanism for generating SLSNe seems to be the core collapse of a very massive hydrogen-poor star, forming a millisecond magnetar.
  •  
33.
  • Pastorello, A., et al. (author)
  • Detection of PTF10cwr/CSS100313 on PS1 sky survey images and host galaxy identification
  • 2010
  • Reports (other academic/artistic)abstract
    • We report that the transient PTF10cwr (Quimby et al. ATEL #2492), a.k.a. CSS100313:112547-084941 (Mahabal et al. ATel #2490), was also recovered on images from the Pan-STARRS Telescope #1 (PS1) as part of the PS1 3Pi survey (PS1-1000037). Magnitudes of i=18.96 and r=18.65 where measured with respect to SDSS sequence stars on March 12.45 and 13.49 UT respectively. Further photometry was gathered at the Liverpool Telescope on March 20.92 and March 23.00 UT.
  •  
34.
  • Pastorello, A., et al. (author)
  • INTERACTING SUPERNOVAE AND SUPERNOVA IMPOSTORS : SN 2009ip, IS THIS THE END?
  • 2013
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 767:1, s. 1-
  • Journal article (peer-reviewed)abstract
    • We report the results of a three-year-long dedicated monitoring campaign of a restless luminous blue variable (LBV) in NGC 7259. The object, named SN 2009ip, was observed photometrically and spectroscopically in the optical and near-infrared domains. We monitored a number of erupting episodes in the past few years, and increased the density of our observations during eruptive episodes. In this paper, we present the full historical data set from 2009 to 2012 with multi-wavelength dense coverage of the two high-luminosity events between 2012 August and September. We construct bolometric light curves and measure the total luminosities of these eruptive or explosive events. We label them the 2012a event (lasting similar to 50 days) with a peak of 3x10(41) erg s(-1), and the 2012b event (14 day rise time, still ongoing) with a peak of 8 x 1042 erg s(-1). The latter event reached an absolute R-band magnitude of about -18, comparable to that of a core-collapse supernova (SN). Our historical monitoring has detected high-velocity spectral features (similar to 13,000 km s(-1)) in 2011 September, one year before the current SN-like event. This implies that the detection of such high-velocity outflows cannot, conclusively, point to a core-collapse SN origin. We suggest that the initial peak in the 2012a event was unlikely to be due to a faint core-collapse SN. We propose that the high intrinsic luminosity of the latest peak, the variability history of SN 2009ip, and the detection of broad spectral lines indicative of high-velocity ejecta are consistent with a pulsational pair-instability event, and that the star may have survived the last outburst. The question of the survival of the LBV progenitor star and its future fate remain open issues, only to be answered with future monitoring of this historically unique explosion.
  •  
35.
  • Pastorello, A., et al. (author)
  • SN 2009E : a faint clone of SN 1987A
  • 2012
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 537
  • Journal article (peer-reviewed)abstract
    • Context. 1987A-like events form a rare sub-group of hydrogen-rich core-collapse supernovae that are thought to originate from the explosion of blue supergiant stars. Although SN 1987A is the best known supernova, very few objects of this group have been discovered and, hence, studied. Aims. In this paper we investigate the properties of SN 2009E, which exploded in a relatively nearby spiral galaxy (NGC 4141) and that is probably the faintest 1987A-like supernova discovered so far. We also attempt to characterize this subgroup of core-collapse supernovae with the help of the literature and present new data for a few additional objects. Methods. The lack of early-time observations from professional telescopes is compensated by frequent follow-up observations performed by a number of amateur astronomers. This allows us to reconstruct a well-sampled light curve for SN 2009E. Spectroscopic observations which started about 2 months after the supernova explosion, highlight significant differences between SN 2009E and the prototypical SN 1987A. Modelling the data of SN 2009E allows us to constrain the explosion parameters and the properties of the progenitor star, and compare the inferred estimates with those available for the similar SNe 1987A and 1998A. Results. The light curve of SN 2009E is less luminous than that of SN 1987A and the other members of this class, and the maximum light curve peak is reached at a slightly later epoch than in SN 1987A. Late-time photometric observations suggest that SN 2009E ejected about 0.04 M-circle dot of Ni-56, which is the smallest Ni-56 mass in our sample of 1987A-like events. Modelling the observations with a radiation hydrodynamics code, we infer for SN 2009E a kinetic plus thermal energy of about 0.6 foe, an initial radius of similar to 7x10(12) cm and an ejected mass of similar to 19 M-circle dot. The photospheric spectra show a number of narrow (v approximate to 1800 km s(-1)) metal lines, with unusually strong Ba II lines. The nebular spectrum displays narrow emission lines of H, Na I, [Ca II] and [O I], with the [O I] feature being relatively strong compared to the [Ca II] doublet. The overall spectroscopic evolution is reminiscent of that of the faint Ni-56-poor type II-plateau supernovae. This suggests that SN 2009E belongs to the low-luminosity, low Ni-56 mass, low-energy tail in the distribution of the 1987A-like objects in the same manner as SN 1997D and similar events represent the faint tail in the distribution of physical properties for normal type II-plateau supernovae.
  •  
36.
  • Pastorello, A., et al. (author)
  • Ultra-bright Optical Transients are Linked with Type Ic Supernovae
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 724, s. L16-L21
  • Journal article (peer-reviewed)abstract
    • Recent searches by unbiased, wide-field surveys have uncovered a group of extremely luminous optical transients. The initial discoveries of SN 2005ap by the Texas Supernova Search and SCP-06F6 in a deep Hubble pencil beam survey were followed by the Palomar Transient Factory confirmation of host redshifts for other similar transients. The transients share the common properties of high optical luminosities (peak magnitudes ~-21 to -23), blue colors, and a lack of H or He spectral features. The physical mechanism that produces the luminosity is uncertain, with suggestions ranging from jet-driven explosion to pulsational pair instability. Here, we report the most detailed photometric and spectral coverage of an ultra-bright transient (SN 2010gx) detected in the Pan-STARRS 1 sky survey. In common with other transients in this family, early-time spectra show a blue continuum and prominent broad absorption lines of O II. However, about 25 days after discovery, the spectra developed type Ic supernova features, showing the characteristic broad Fe II and Si II absorption lines. Detailed, post-maximum follow-up may show that all SN 2005ap and SCP-06F6 type transients are linked to supernovae Ic. This poses problems in understanding the physics of the explosions: there is no indication from late-time photometry that the luminosity is powered by 56Ni, the broad light curves suggest very large ejected masses, and the slow spectral evolution is quite different from typical Ic timescales. The nature of the progenitor stars and the origin of the luminosity are intriguing and open questions.
  •  
37.
  • Pessi, Priscila Jael, et al. (author)
  • Broad-emission-line dominated hydrogen-rich luminous supernovae
  • 2023
  • In: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 523:4, s. 5315-5340
  • Journal article (peer-reviewed)abstract
    • Hydrogen-rich Type II supernovae (SNe II) are the most frequently observed class of core-collapse SNe (CCSNe). However, most studies that analyse large samples of SNe II lack events with absolute peak magnitudes brighter than −18.5 mag at rest-frame optical wavelengths. Thanks to modern surveys, the detected number of such luminous SNe II (LSNe II) is growing. There exist several mechanisms that could produce luminous SNe II. The most popular propose either the presence of a central engine (a magnetar gradually spinning down or a black hole accreting fallback material) or the interaction of supernova ejecta with circumstellar material (CSM) that turns kinetic energy into radiation energy. In this work, we study the light curves and spectral series of a small sample of six LSNe II that show peculiarities in their H α profile, to attempt to understand the underlying powering mechanism. We favour an interaction scenario with CSM that is not dense enough to be optically thick to electron scattering on large scales – thus, no narrow emission lines are observed. This conclusion is based on the observed light curve (higher luminosity, fast decline, blue colours) and spectral features (lack of persistent narrow lines, broad H α emission, lack of H α absorption, weak, or non-existent metal lines) together with comparison to other luminous events available in the literature. We add to the growing evidence that transients powered by ejecta–CSM interaction do not necessarily display persistent narrow emission lines.
  •  
38.
  • Prentice, S. J., et al. (author)
  • Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors?
  • 2019
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 485:2, s. 1559-1578
  • Journal article (peer-reviewed)abstract
    • We present observations and analysis of 18 stripped-envelope supernovae observed during 2013-2018. This sample consists of five H/He-rich SNe, sixH-poor/He-rich SNe, three narrow lined SNe Ic, and four broad lined SNe Ic. The peak luminosity and characteristic time-scales of the bolometric light curves are calculated, and the light curves modelled to derive Ni-56 and ejecta masses (M-Ni and M-cj). Additionally, the temperature evolution and spectral line velocity curves of each SN are examined. Analysis of the [O I] line in the nebular phase of eight SNe suggests their progenitors had initial masses < 20 M-circle dot. The bolometric light curve properties are examined in combination with those of other SE events from the literature. The resulting data set gives the M-ej distribution for 80 SE-SNe, the largest such sample in the literature to date, and shows that SNe Ib have the lowest median M-ej, followed by narrow-lined SNe Ic, H/He-rich SNe, broad-lined SNe Ic, and finally gamma-ray burst SNe. SNe Ic-6/7 show the largest spread of M-ej ranging from similar to 1.2-11 M-circle dot, considerably greater than any other subtype. For all SE-SNe = 2.8 +/- 1.5 M-circle dot which further strengthens the evidence that SE-SNe arise from low-mass progenitors which are typically <5 M-circle dot at the time of explosion, again suggesting M-ZAMS < 25 M-circle dot. The low and lack of clear bimodality in the distribution implies < 30 M-circle dot progenitors and that envelope stripping via binary interaction is the dominant evolutionary pathway of these SNe.
  •  
39.
  • Short, P., et al. (author)
  • The tidal disruption event AT2018hyz-I. Double-peaked emission lines and a flat Balmer decrement
  • 2020
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 498:3, s. 4119-4133
  • Journal article (peer-reviewed)abstract
    • We present results from spectroscopic observations of AT 2018hyz, a transient discovered by the All-Sky Automated Survey for Supernova survey at an absolute magnitude of M-V similar to -20.2 mag, in the nucleus of a quiescent galaxy with strong Balmer absorption lines. AT 2018hyz shows a blue spectral continuum and broad emission lines, consistent with previous TDE candidates. High cadence follow-up spectra show broad Balmer lines and He I in early spectra, with He II making an appearance after similar to 70-100 d. The Balmer lines evolve from a smooth broad profile, through a boxy, asymmetric double-peaked phase consistent with accretion disc emission, and back to smooth at late times. The Balmer lines are unlike typical active galactic nucleus in that they show a flat Balmer decrement (H alpha/H beta similar to 1.5), suggesting the lines are collisionally excited rather than being produced via photoionization. The flat Balmer decrement together with the complex profiles suggests that the emission lines originate in a disc chromosphere, analogous to those seen in cataclysmic variables. The low optical depth of material due to a possible partial disruption may be what allows us to observe these double-peaked, collisionally excited lines. The late appearance of He II may be due to an expanding photosphere or outflow, or late-time shocks in debris collisions.
  •  
40.
  • Takats, K., et al. (author)
  • SN 2009ib : a Type II-P supernova with an unusually long plateau
  • 2015
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 450:3, s. 3137-3154
  • Journal article (peer-reviewed)abstract
    • We present optical and near-infrared photometry and spectroscopy of SN 2009ib, a Type II-P supernova in NGC 1559. This object has moderate brightness, similar to those of the intermediate-luminosity SNe 2008in and 2009N. Its plateau phase is unusually long, lasting for about 130 d after explosion. The spectra are similar to those of the subluminous SN 2002gd, with moderate expansion velocities. We estimate the Ni-56 mass produced as 0.046 +/- A 0.015 M-aS (TM). We determine the distance to SN 2009ib using both the expanding photosphere method (EPM) and the standard candle method. We also apply EPM to SN 1986L, a Type II-P SN that exploded in the same galaxy. Combining the results of different methods, we conclude the distance to NGC 1559 as D = 19.8 +/- A 3.0 Mpc. We examine archival, pre-explosion images of the field taken with the Hubble Space Telescope, and find a faint source at the position of the SN, which has a yellow colour [(V - I)(0) = 0.85 mag]. Assuming it is a single star, we estimate its initial mass as M-ZAMS = 20 M-aS (TM). We also examine the possibility, that instead of the yellow source the progenitor of SN 2009ib is a red supergiant star too faint to be detected. In this case, we estimate the upper limit for the initial zero-age main sequence (ZAMS) mass of the progenitor to be similar to 14-17 M-aS (TM). In addition, we infer the physical properties of the progenitor at the explosion via hydrodynamical modelling of the observables, and estimate the total energy as similar to 0.55 x 10(51) erg, the pre-explosion radius as similar to 400 R-aS (TM), and the ejected envelope mass as similar to 15 M-aS (TM), which implies that the mass of the progenitor before explosion was similar to 16.5-17 M-aS (TM).
  •  
41.
  • Tartaglia, L., et al. (author)
  • The Early Detection and Follow-up of the Highly Obscured Type II Supernova 2016ija/DLT16am
  • 2018
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 853:1
  • Journal article (peer-reviewed)abstract
    • We present our analysis of the Type II supernova DLT16am (SN 2016ija). The object was discovered during the ongoing D < 40 Mpc (DLT40) one-day cadence supernova search at r similar to 20.1 mag in the edge-on nearby (D = 20.0 +/- 4.0 Mpc) galaxy NGC 1532. The subsequent prompt and high-cadenced spectroscopic and photometric follow-up revealed a highly extinguished transient, with E(B - V) = 1.95 +/- 0.15 mag, consistent with a standard extinction law with R-V = 3.1 and a bright (M-V = -18.48 +/- 0.77 mag) absolute peak magnitude. A comparison of the photometric features with those of large samples of SNe II reveals a fast rise for the derived luminosity and a relatively short plateau phase, with a slope of S-50V = 0.84 +/- 0.04 mag/50 days, consistent with the photometric properties typical of those of fast-declining SNe II. Despite the large uncertainties on the distance and the extinction in the direction of DLT16am, the measured photospheric expansion velocity and the derived absolute V-band magnitude at similar to 50 days after the explosion match the existing luminosity-velocity relation for SNe II.
  •  
42.
  • Tomasella, L., et al. (author)
  • Comparison of progenitor mass estimates for the Type IIP SN 2012A
  • 2013
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 434:2, s. 1636-1657
  • Journal article (peer-reviewed)abstract
    • We present the one-year long observing campaign of SN 2012A which exploded in the nearby (9.8 Mpc) irregular galaxy NGC 3239. The photometric evolution is that of a normal Type IIP supernova, but the plateau is shorter and the luminosity not as constant as in other supernovae of this type. The absolute maximum magnitude, with M-B = -16.23 +/- 0.16 mag, is close to the average for SN IIP. Thanks also to the strong UV flux in the early phase, SN 2012A reached a peak luminosity of about 2 x 10(42) erg s(-1), which is brighter than those of other SNe with a similar Ni-56 mass. The latter was estimated from the luminosity in the exponential tail of the light curve and found to be M(Ni-56) = 0.011 +/- 0.004 M-circle dot, which is intermediate between standard and faint SN IIP. The spectral evolution of SN 2012A is also typical of SN IIP, from the early spectra dominated by a blue continuum and very broad (similar to 10(4) km s(-1)) Balmer lines, to the late-photospheric spectra characterized by prominent P-Cygni features of metal lines (Fe ii, Sc ii, Ba ii, Ti ii, Ca ii, Na i D). The photospheric velocity is moderately low, similar to 3 x 10(3) km s(-1) at 50 d, for the low optical depth metal lines. The nebular spectrum obtained 394 d after the shock breakout shows the typical features of SNe IIP and the strength of the [O i] doublet suggests a progenitor of intermediate mass, similar to SN 2004et (similar to 15 M-circle dot). A candidate progenitor for SN 2012A has been identified in deep, pre-explosion K-'-band Gemini North Near-InfraRed Imager and Spectrometer images, and found to be consistent with a star with a bolometric magnitude -7.08 +/- 0.36 (log L/L-circle dot = 4.73 +/- 0.14 dex). The magnitude of the recovered progenitor in archival images points towards a moderate-mass 10.5(-2)(+4.5) M-circle dot star as the precursor of SN 2012A. The explosion parameters and progenitor mass were also estimated by means of a hydrodynamical model, fitting the bolometric light curve, the velocity and the temperature evolution. We found a best fit for a kinetic energy of 0.48 foe, an initial radius of 1.8 x 10(13) cm and ejecta mass of 12.5 M-circle dot. Even including the mass for the compact remnant, this appears fully consistent with the direct measurements given above.
  •  
43.
  • Tomasella, L., et al. (author)
  • Optical and near-infrared observations of SN 2014ck : an outlier among the Type Iax supernovae
  • 2016
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 459:1, s. 1018-1038
  • Journal article (peer-reviewed)abstract
    • We present a comprehensive set of optical and near-infrared (NIR) photometric and spectroscopic observations for SN 2014ck, extending from pre-maximum to six months later. These data indicate that SN 2014ck is photometrically nearly identical to SN 2002cx, which is the prototype of the class of peculiar transients named SNe Iax. Similar to SN 2002cx, SN 2014ck reached a peak brightness M-B = -17.37 +/- 0.15 mag, with a post-maximum decline rate Delta m(15)(B) = 1.76 +/- 0.15 mag. However, the spectroscopic sequence shows similarities with SN 2008ha, which was three magnitudes fainter and faster declining. In particular, SN 2014ck exhibits extremely low ejecta velocities, similar to 3000 km s(-1) at maximum, which are close to the value measured for SN 2008ha and half the value inferred for SN 2002cx. The bolometric light curve of SN 2014ck is consistent with the production of 0.10(-0.03)(+0.04) M-circle dot of Ni-56. The spectral identification of several iron-peak features, in particular Co II lines in the NIR, provides a clear link to SNe Ia. Also, the detection of narrow Si, S and C features in the pre-maximum spectra suggests a thermonuclear explosion mechanism. The late-phase spectra show a complex overlap of both permitted and forbidden Fe, Ca and Co lines. The appearance of strong [Ca II] lambda lambda 7292, 7324 again mirrors the late-time spectra of SN 2008ha and SN 2002cx. The photometric resemblance to SN 2002cx and the spectral similarities to SN 2008ha highlight the peculiarity of SN 2014ck, and the complexity and heterogeneity of the SNe Iax class.
  •  
44.
  • Valenti, S., et al. (author)
  • SN 2009jf : a slow-evolving stripped-envelope core-collapse supernova
  • 2011
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 416:4, s. 3138-3159
  • Journal article (peer-reviewed)abstract
    • We present an extensive set of photometric and spectroscopic data for SN 2009jf, a nearby Type Ib supernova (SN), spanning from similar to 20 d before B-band maximum to 1 yr after maximum. We show that SN 2009jf is a slowly evolving and energetic stripped-envelope SN and is likely from a massive progenitor (25-30 M(circle dot)). The large progenitor's mass allows us to explain the complete hydrogen plus helium stripping without invoking the presence of a binary companion. The SN occurred close to a young cluster, in a crowded environment with ongoing star formation. The spectroscopic similarity with the He-poor Type Ic SN 2007gr suggests a common progenitor for some SNe Ib and Ic. The nebular spectra of SN 2009jf are consistent with an asymmetric explosion, with an off-centre dense core. We also find evidence that Herich Ib SNe have a rise time longer than other stripped-envelope SNe, however confirmation of this result and further observations are needed.
  •  
45.
  • Wevers, T., et al. (author)
  • An elliptical accretion disk following the tidal disruption event AT 2020zso
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Journal article (peer-reviewed)abstract
    • Aims. The modelling of spectroscopic observations of tidal disruption events (TDEs) to date suggests that the newly formed accretion disks are mostly quasi-circular. In this work we study the transient event AT 2020zso, hosted by an active galactic nucleus (AGN; as inferred from narrow emission line diagnostics), with the aim of characterising the properties of its newly formed accretion flow.Methods. We classify AT 2020zso as a TDE based on the blackbody evolution inferred from UV/optical photometric observations and spectral line content and evolution. We identify transient, double-peaked Bowen (N III), He I, He II, and Hα emission lines. We model medium-resolution optical spectroscopy of the He II (after careful de-blending of the N III contribution) and Hα lines during the rise, peak, and early decline of the light curve using relativistic, elliptical accretion disk models.Results. We find that the spectral evolution before the peak can be explained by optical depth effects consistent with an outflowing, optically thick Eddington envelope. Around the peak, the envelope reaches its maximum extent (approximately 1015 cm, or ∼3000–6000 gravitational radii for an inferred black hole mass of 5−10 × 105 M⊙) and becomes optically thin. The Hα and He II emission lines at and after the peak can be reproduced with a highly inclined (i = 85 ± 5 degrees), highly elliptical (e = 0.97 ± 0.01), and relatively compact (Rin = several 100 Rg and Rout = several 1000 Rg) accretion disk.Conclusions. Overall, the line profiles suggest a highly elliptical geometry for the new accretion flow, consistent with theoretical expectations of newly formed TDE disks. We quantitatively confirm, for the first time, the high inclination nature of a Bowen (and X-ray dim) TDE, consistent with the unification picture of TDEs, where the inclination largely determines the observational appearance. Rapid line profile variations rule out the binary supermassive black hole hypothesis as the origin of the eccentricity; these results thus provide a direct link between a TDE in an AGN and the eccentric accretion disk. We illustrate for the first time how optical spectroscopy can be used to constrain the black hole spin, through (the lack of) disk precession signatures (changes in inferred inclination). We constrain the disk alignment timescale to > 15 days in AT2020zso, which rules out high black hole spin values (a < 0.8) for MBH ∼ 106 M⊙ and disk viscosity α ≳ 0.1.
  •  
46.
  • Amanullah, Rahman, et al. (author)
  • Diversity in extinction laws of Type Ia supernovae measured between 0.2 and 2 μm
  • 2015
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 453:3, s. 3300-3328
  • Journal article (peer-reviewed)abstract
    • We present ultraviolet (UV) observations of six nearby Type Ia supernovae (SNe Ia) obtained with the Hubble Space Telescope, three of which were also observed in the near-IR (NIR) with Wide-Field Camera 3. UV observations with the Swift satellite, as well as ground-based optical and NIR data provide complementary information. The combined data set covers the wavelength range 0.2-2 mu m. By also including archival data of SN 2014J, we analyse a sample spanning observed colour excesses up to E(B - V) = 1.4 mag. We study the wavelength-dependent extinction of each individual SN and find a diversity of reddening laws when characterized by the total-to-selective extinction R-V. In particular, we note that for the two SNe with E(B - V) greater than or similar to 1 mag, for which the colour excess is dominated by dust extinction, we find R-V = 1.4 +/- 0.1 and R-V = 2.8 +/- 0.1. Adding UV photometry reduces the uncertainty of fitted R-V by similar to 50 per cent allowing us to also measure R-V of individual low-extinction objects which point to a similar diversity, currently not accounted for in the analyses when SNe Ia are used for studying the expansion history of the Universe.
  •  
47.
  • Blagorodnova, N., et al. (author)
  • COMMON ENVELOPE EJECTION FOR A LUMINOUS RED NOVA IN M101
  • 2017
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 834:2
  • Journal article (peer-reviewed)abstract
    • We present the results of optical, near-infrared, and mid-infrared observations of M101 OT2015-1 (PSN J14021678+ 5426205), a luminous red transient in the Pinwheel galaxy (M101), spanning a total of 16 years. The light curve showed two distinct peaks with absolute magnitudes M-r <= -12.4 and M-r similar or equal to -12, on 2014 November 11 and 2015 February 17, respectively. The spectral energy distributions during the second maximum show a cool outburst temperature of approximate to 3700 K and low expansion velocities (approximate to -300 km s(-1)) for the H I, Ca II, Ba II, and K I lines. From archival data spanning 15-8 years before the outburst, we find a single source consistent with the optically discovered transient, which we attribute to being the progenitor; it has properties consistent with being an F-type yellow supergiant with L similar to 8.7 x 10(4) L-circle dot, T-eff approximate to 7000. K, and an estimated mass of M1= 18 +/- 1 M-circle dot. This star has likely just finished the H-burning phase in the core, started expanding, and is now crossing the Hertzsprung gap. Based on the combination of observed properties, we argue that the progenitor is a binary system, with the more evolved system overfilling the Roche lobe. Comparison with binary evolution models suggests that the outburst was an extremely rare phenomenon, likely associated with the ejection of the common envelope of a massive star. The initial mass of the primary fills the gap between the merger candidates V838 Mon (5-10 M-circle dot) and NGC. 4490-OT. (30M(circle dot)).
  •  
48.
  • Cai, Y-Z., et al. (author)
  • AT 2017be-a new member of the class of intermediate-luminosity red transients
  • 2018
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 480:3, s. 3424-3445
  • Journal article (peer-reviewed)abstract
    • We report the results of our spectrophotometric monitoring campaign for AT 2017be in NGC 2537. Its light curve reveals a fast rise to an optical maximum, followed by a plateau lasting about 30 d, and finally a fast decline. Its absolute peak magnitude (M-r similar or equal to -12 mag) is fainter than that of core-collapse supernovae, and is consistent with those of supernova impostors and other intermediate-luminosity optical transients. The quasi-bolometric light-curve peaks at similar to 2 x 10(40) erg s(-1), and the late-time photometry allows us to constrain an ejected Ni-56 mass of similar to 8 x 10(-4)M(circle dot). The spectra of AT 2017 be show minor evolution over the observational period, a relatively blue continuum showing at early phases, which becomes redder with time. A prominent H alpha emission line always dominates over other Balmer lines. Weak Fe II features, Can H&K, and the Ca II NIR triplet are also visible, while P-Cygni absorption troughs are found in a high-resolution spectrum. In addition, the [Ca II] lambda lambda 7291, 7324 doublet is visible in all spectra. This feature is typical of intermediate-luminosity red transients (ILRTs), similar to SN 2008S. The relatively shallow archival Spitzer data are not particularly constraining. On the other hand, a non-detection in deeper near-infrared HST images disfavours a massive Luminous Blue Variable eruption as the origin for AT 2017be. As has been suggested for other ILRTs, we propose that AT 2017be is a candidate for a weak electron-capture supernova explosion of a superasymptotic giant branch star, still embedded in a thick dusty envelope.
  •  
49.
  • Ergon, Mattias, et al. (author)
  • Optical and near-infrared observations of SN 2011dh-The first 100 days
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 562, s. A17-
  • Journal article (peer-reviewed)abstract
    • We present optical and near-infrared (NIR) photometry and spectroscopy of the Type IIb supernova (SN) 2011dh for the first 100 days. We complement our extensive dataset with Swift ultra-violet (UV) and Spitzer mid-infrared (MIR) data to build a UV to MIR bolometric lightcurve using both photometric and spectroscopic data. Hydrodynamical modelling of the SN based on this bolometric lightcurve have been presented in Bersten et al. (2012, ApJ, 757, 31). We find that the absorption minimum for the hydrogen lines is never seen below similar to 11 000 km s(-1) but approaches this value as the lines get weaker. This suggests that the interface between the helium core and hydrogen rich envelope is located near this velocity in agreement with the Bersten et al. (2012) He4R270 ejecta model. Spectral modelling of the hydrogen lines using this ejecta model supports the conclusion and we find a hydrogen mass of 0.01-0.04 M-circle dot to be consistent with the observed spectral evolution. We estimate that the photosphere reaches the helium core at 5-7 days whereas the helium lines appear between similar to 10 and similar to 15 days, close to the photosphere and then move outward in velocity until similar to 40 days. This suggests that increasing non-thermal excitation due to decreasing optical depth for the gamma-rays is driving the early evolution of these lines. The Spitzer 4.5 mu m band shows a significant flux excess, which we attribute to CO fundamental band emission or a thermal dust echo although further work using late time data is needed. The distance and in particular the extinction, where we use spectral modelling to put further constraints, is discussed in some detail as well as the sensitivity of the hydrodynamical modelling to errors in these quantities. We also provide and discuss pre- and post-explosion observations of the SN site which shows a reduction by similar to 75 percent in flux at the position of the yellow supergiant coincident with SN 2011dh. The B, V and r band decline rates of 0.0073, 0.0090 and 0.0053 mag day(-1) respectively are consistent with the remaining flux being emitted by the SN. Hence we find that the star was indeed the progenitor of SN 2011dh as previously suggested by Maund et al. (2011, ApJ, 739, L37) and which is also consistent with the results from the hydrodynamical modelling.
  •  
50.
  • Gutiérrez, C. P., et al. (author)
  • SN 2017ivv : two years of evolution of a transitional Type II supernova
  • 2020
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 499:1, s. 974-992
  • Journal article (peer-reviewed)abstract
    • We present the photometric and spectroscopic evolution of the Type II supernova (SN II) SN 2017ivv (also known as ASASSN-17qp). Located in an extremely faint galaxy (M-r =-10.3 mag), SN 2017ivv shows an unprecedented evolution during the 2 yr of observations. At early times, the light curve shows a fast rise (similar to 6-8 d) to a peak of M-g(max) = -17.84 mag, followed by a very rapid decline of 7.94 +/- 0.48 mag per 100 d in the V band. The extensive photometric coverage at late phases shows that the radioactive tail has two slopes, one steeper than that expected from the decay of Co-56 (between 100 and 350 d), and another slower (after 450 d), probably produced by an additional energy source. From the bolometric light curve, we estimated that the amount of ejected 5(6)Ni is similar to 0.059 +/- 0.003M(circle dot). The nebular spectra of SN 2017ivv show a remarkable transformation that allows the evolution to be split into three phases: (1) H alpha strong phase (<200 d); (2) H alpha weak phase (between 200 and 350 d); and (3) H alpha broad phase (>500 d). We find that the nebular analysis favours a binary progenitor and an asymmetric explosion. Finally, comparing the nebular spectra of SN 2017ivv to models suggests a progenitor with a zero-age main-sequence mass of 15-17M(circle dot).
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 99

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view