SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kjärstad Jan 1956) "

Search: WFRF:(Kjärstad Jan 1956)

  • Result 1-47 of 47
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Biermann, Max, 1989, et al. (author)
  • Lessons learned from the Preem-CCS project – a pioneering Swedish-Norwegian collaboration showcasing the full CCS chain
  • 2022
  • In: 16th Greenhouse Gas Control Technologies Conference 2022 (GHGT-16).
  • Conference paper (peer-reviewed)abstract
    • This paper presents the key findings of the Preem-CCS project, a co-funded Swedish-Norwegian R&D collaboration that investigated CO2 capture from the Preem refineries in Sweden, and subsequent ship transport of captured CO2 for permanent storage on the Norwegian Continental Shelf. The project was conducted 2019-2022 and accomplished: 1) the on-site pilot scale demonstration of amine-based CO2 absorption using Aker Carbon Capture’s mobile test unit (MTU), 2) an in-depth investigation of energy-efficient heat supply for CO2 capture, 3) a detailed techno-economic evaluation of a feasible carbon capture and storage (CCS) chain (from CO2 capture in Sweden to ship transport to Norway), and 4) an investigation of relevant legal and regulatory aspects of trans-border CO2 transport between Sweden and Norway.
  •  
2.
  • Biermann, Max, 1989, et al. (author)
  • Preem CCS - Synthesis of main project findings and insights
  • 2022
  • Reports (other academic/artistic)abstract
    • The Preem-CCS project was a Swedish-Norwegian collaboration that investigated CO2 capture from the Preem refineries in Sweden, and subsequent ship transport of captured CO2 for permanent storage on the Norwegian Continental Shelf. The project was conducted from early 2019 to beginning of 2022 and funding was provided by the Norwegian CLIMIT-Demo program via Gassnova, by the Swedish Energy Agency and by the participating industry and research partners (Preem, Aker Carbon Capture, SINTEF Energy Research, Chalmers University of Technology, and Equinor). This report summarizes the key findings of the project activities listed below:   - Pilot-scale testing of CO2 capture at the hydrogen production unit (HPU) at the Lysekil refinery using the Aker Carbon Capture (ACC) mobile test unit (MTU)   - In-depth investigation of energy efficiency opportunities along the CCS chain, including the use of residual heat at the Lysekil refinery site to satisfy the energy requirements for solvent regeneration   - Evaluation of the technical feasibility and cost evaluation of the CCS chain including CO2 capture and transportation by ship to storage facilities off the Norwegian west coast   - Investigation of relevant legal and regulatory aspects related to trans-border CO2 transport and storage and national emissions reduction commitments in Norway and Sweden The report also discusses the next steps towards implementation of CCS at Preem refineries in Lysekil and Gothenburg.
  •  
3.
  • Edvall, Maria, et al. (author)
  • Vätgas på Västkusten
  • 2022
  • Reports (other academic/artistic)abstract
    • Detta projekt syftar till att samla kunskap och kartlägga det framtida behovet av fossilfri vätgas på västkusten, inom västsvensk industri samt kraft- och värmesektorn. Därefter undersöka och utvärdera vilken infrastruktur som krävs och värdera centraliserade lösningar mot lokala. Projektet har intervjuat deltagande företag kring deras vätgasbehov, vätgasproduktion, önskade framtida roll, vätgasstrategier samt annat relaterat till den industriella omställningen till fossilfrihet. Alla 13 deltagande företag har intervjuats under mars/april 2021 och svaren har sammanställts för att få en aggregerad bild. Utöver intervjuer har det inom projektet också genomförts två workshops med deltagande företag. Bland de 13 deltagande företagen är det 7 industrier som har ett vätgasbehov idag och detta uppgår totalt till 6,4 TWh vätgas/år, vilket motsvarar 192 kton vätgas/år. Industrierna har gett uppskattningar på framtida behov av vätgas uppdelat på två scenarios, ett för minimum och ett för maximum. I minscenariot uppgår vätgasbehovet till 4,9 TWh vätgas/år vilket är en minskning om knappt en fjärdedel (-24 %) jämfört med dagens behov medan maxscenariot motsvarar mer än en fördubbling av dagens behov (+120 %) till totalt 14 TWh vätgas/år. Orsaken till det eventuellt minskade vätgasbehovet är att produktionsvolymer möjligen kan reduceras i framtiden samt en möjlig övergång till mer förädlade råvaror. I detta arbete har vi haft fokus på fossilfri vätgas som produceras genom elektrolys med fossilfri el för både centraliserad och decentraliserad produktion. För de decentraliserade lösningar har tre fiktiva industrier med olika stora behov av vätgas, satta för att täcka in behovsspannet för medverkande företag, jämförts med en centraliserad lösning för produktion av vätgas som sedan transporteras i rörledningar till fler användare. Den centraliserade lösningen som har utvärderats innefattar Göteborg, Stenungsund och Lysekil samt en sträckning för vätgasledningen på 120 km och har utgått från det uppskattade maxscenariot för behovet av vätgas. Rapporten visar att vätgasledningarna endast utgör en marginell del av kostnaden för centraliserad produktion och distribution av vätgas. Dessutom har den föreslagna vätgasledningen en stor överkapacitet och det finns därmed möjlighet att dela kostnaden för ledningarna över en ännu större vätgasvolym. Utöver den rent ekonomiska jämförelsen mellan centraliserad och decentraliserad vätgasproduktion och distribution så finns en rad andra aspekter att beakta. Den centraliserade lösningen kan medföra större flexibilitet för en konsument avseende mängden vätgas som köps in och över hur lång tid. En centraliserad lösning kan också behöva en lägre total kapacitet avseende produktion och lager då eventuell överkapacitet delas mellan alla som är anslutna till nätet. Etableringen av en storskalig vätgasinfrastruktur gör också att satsningarna blir mindre knutet till enskilda aktörer. Dessutom kan ett vätgasnät i regionen nyttjas av andra sektorer och locka nya aktörer att placera verksamhet här, vilket i sin tur kan stärka regionens konkurrenskraft. Den centraliserade lösningens uppbyggnad kräver dock en synkronisering av efterfrågan och produktion samt större investeringar vilket kan medföra längre ledtider än för en decentraliserad produktion hos en enskild aktör. En centraliserad lösning gör att placering av produktionskapacitet blir friare längst vätgasledningens sträckning vilket ger möjlighet att ta hänsyn till elnätskapacitet och avsättning för biprodukterna syrgas och restvärme. En viktig lärdom av projektet var att konstatera att uppbyggnad av en infrastruktur för produktion, transport och lagring av vätgas är en komplex fråga. Man måste samverka brett över flera sektorer för att identifiera många nyttor, för flertalet aktörer, om man vill räkna hem en sådan infrastruktursatsning. Dessutom måste många olika investeringar ske i rätt följd och vara väl samordnade. Därför ser de deltagande aktörerna positivt på ett fortsatt samarbete kring vätgasfrågan. Projektet har identifierat flera möjliga förslag till fortsatt arbete, bland annat: • En mer detaljerad förstudie som genomförs av ett ledande gas- /infrastrukturföretag. Studien bör inkludera produktion och distribution av både förnybar och blå vätgas och eventuellt ammoniak, samt en fördjupad analys av olika lagringsmöjligheter för vätgas. För att kunna genomföra förstudien behövs ett mer preciserat behovsscenario kring exempelvis när i tiden behovet uppstår och hur stort behovet är. • Utvärdering av systemperspektivet kring vätgas, el och andra närliggande sektorer. Exempelvis hur systemintegration kan främja resurseffektivitet och flexibilitet. • Initiering av ett regionalt samordningsprojekt, som bör ha fokus på det kortsiktiga perspektivet och konkreta aktiviteter. Förslag på relevanta aktiviteter i ett sådant projekt har identifierats och inkluderar följande:    ‐ Kunskapsbevakning om teknikutveckling inom vätgasområdet, inklusive vätgasproduktion från biometan med CCS (möjlighet till negativa utsläpp)    ‐ Kunskapsbevakning om utveckling av CAPEX för produktion, distribution och lagring av vätgas    ‐ Bevaknings av sektorkopplingsfrågor i och med att tillgång till förnybar el, både produktion och elnätskapacitet, och elpriset anses vara avgörande för produktion av fossilfri vätgas.    ‐ Harmonisering med omvärlden/EU, både i termer av regelverk och möjligheter till sammankoppling med dess vätgasledningar    ‐ Påverkansarbete och policyfrågor
  •  
4.
  • Hansson, Julia, 1978, et al. (author)
  • Co-firing biomass with coal for electricity generation—An assessment of the potential in EU27
  • 2009
  • In: Energy Policy. - : Elsevier BV. - 0301-4215. ; 37:4, s. 1444-1455
  • Journal article (peer-reviewed)abstract
    • The European Union aims to increase bioenergy use. Co-firing biomass with coal represents an attractive near-term option for electricity generation from renewable energy sources (RES-E). This study assesses the near-term technical potential for biomass co-firing with coal in the existing coal-fired power plant infrastructure in the EU27 Member States. The total technical potential for RES-E frombiomass co-firing amounts to approximately 50–90 TWh/yr, which requires a biomass supply of approximately 500–900 PJ/yr. The estimated co-firing potential in EU27 amounts to 20–35% of the estimated gap between current RES-E production and the RES-E target for 2010. However, for some member states the national co-firing potential is large enough to fill the national gap. The national biomass supply potential is considerably larger than the estimated biomass demand for co-firing for all member states. About 45% of the estimated biomass demand for co-firing comes from plants located close to the sea or near main navigable rivers and indicates the possibility for biomass import by sea transport. Thus, biomass co-firing has the potential to contribute substantially to the RES-E development in EU27.
  •  
5.
  • Hansson, Julia, 1978, et al. (author)
  • The potential for biomass co-firing with coal in EU27
  • 2008
  • In: Proceedings of the 16th European Biomass Conference & Exhibition - From research to industry and markets, Feria Valencia, Spain, 2-6 June 2008..
  • Conference paper (other academic/artistic)abstract
    • The European Union (EU) aims to increase the use of bioenergy. An increased production of electricity from renewable energy sources (RES-E) is also being promoted within the EU. Biomass co-firing with coal represents an attractive near-term option for increasing the production of RES-E. This study assesses the near-term technical potential for biomass co-firing with coal in the existing coal-fired power plant infrastructure in the EU27 Member States (MS) and relates the potential to the national EU targets for RES-E by 2010. The possible contribution of RES-E from biomass co-firing to the RES-E target for 2010 for EU27 as a whole (expressed in absolute numbers) is about 10%. However, the contribution from the estimated co-firing potential to the gap between current RES-E levels and the RES-E target for 2010 is about 20-33% for EU27 (depending on assumptions made). For some MS the potential contribution is large enough to fill the gap. Biomass co-firing with coal has the potential to play an important role when increasing the amount of RES-E in EU27. However, considering how little time remains, it is unlikely that co-firing can actually make a considerable contribution to the 2010 RES-E targets.
  •  
6.
  • Haugen, H. A., et al. (author)
  • CCS in the Skagerrak/Kattegat area
  • 2011
  • In: Energy Procedia. 10th International Conference on Greenhouse Gas Control Technologies; Amsterdam; 19-23 September 2010. - : Elsevier BV. - 1876-6102. ; 4, s. 2324-2331
  • Conference paper (peer-reviewed)abstract
    • This paper presents an ongoing project with the aim to assess a CO 2 infrastructure in the Skagerrak/Kattegat region (the sea bordered by north of Denmark, south coast of Norway and the west coast of Sweden). The area comprises 10-12 CO2 emission sources of more than 0.5 Mt/year. The geological and geophysical assessment of CO2 storage potential in the described area as well as reservoir modelling and simulations are performed in work package (WP) 1. The results from WP1 are used in the other work packages. Candidate storage sites are matched with those point sources in the region that are technically and economically feasible for CO2 capture, together with an assessment of the connecting infrastructure needs. WP 2 focuses on identifying optimal technological CO2 infrastructure solutions. Sources-to-sink solutions are in the process of being developed based on input from WP1 and WP3. Assessment of the build-up of a complete CCS infrastructure from a system perspective is the overall focus of WP 3, covering economical, practical and judicial aspects. The project group explores the economic potential for capture at each individual site including looking at other CO2 mitigation options and propose relevant capture technology with cost estimations. Dissemination of project results is organized in a separate work package, WP4.
  •  
7.
  • Haugen, H.A., et al. (author)
  • Infrastructure for CCS in the Skagerrak/Kattegat region, Southern Scandinavia: A feasibility study
  • 2013
  • In: Energy Procedia. - : Elsevier BV. - 1876-6102. ; 37, s. 2562-2569
  • Conference paper (peer-reviewed)abstract
    • This paper gives an overview of results from a project which explored the feasibility of establishing a CO2 Capture and Storage infrastructure in the Skagerrak/Kattegat region of Southern Scandinavia. This involves assessment of the technical and economic parameters of the complete CCS chain and, in particular, identification of possible storage locations. The project ran from June 2009 to December 2011. Emissions from three major industrial clusters in the Skagerrak/Kattegat region - Gothenburg in Sweden, Grenland in Telemark County, southern Norway and Aalborg in Denmark - were targeted. Both emissions from process industries as well as power plants were included.
  •  
8.
  • Johansson, Heléne, et al. (author)
  • Finansieringsmöjligheter för större infrastrukturprojekt för klimatomställning i Västsverige
  • 2021
  • Reports (other academic/artistic)abstract
    • Västsverige med sin stora koncentration av (process-)industrier står för en betydande del av Sveriges klimatutsläpp. Samtidigt finns en stor medvetenhet och en önskan att bidra till såväl Sveriges klimatmål om nettonollutsläpp, som till infriandet av Parisavtalet. Samverkan mellan akademi, forskningsinstitut, offentligt ägda företag och privata industrier är väl etablerad sedan länge och ett flertal förstudier inom området infångning, transport och lagring eller användning av koldioxid (CCS/CCU), pågår parallellt. En samlad bedömning är att de tekniska förutsättningarna finns och det geografiska läget (nära Norges planerade lagringsplatser) är bra, men att stora investeringar krävs, särskilt när det gäller infrastruktur för att möjliggöra CCS som ett steg på vägen mot nettonollutsläpp. I vårt uppdrag från Klimatledande Processindustri har ingått att undersöka vilka möjligheter till offentlig finansiering som finns för investeringar i infrastruktur för klimatomställning (med särskilt fokus på CCS/CCU, men även för exempelvis vätgas) samt vilka hinder och strategier som finns för att de västsvenska aktörerna ska kunna ta del av tillgängliga medel. Dessutom önskades en sammanställning av pågående forskningsprojekt inom området i syfte att bidra till ytterligare samverkan och synergieffekter. Den här rapporten består därför att följande delar – vilka kan läsas och användas var för sig: • Sammanfattning av intervjuer kring erfarenheter av offentlig finansiering – hinder och möjligheter • Sammanställning av finansieringsmöjligheter – för- och nackdelar (detaljer om de olika utlysningarna återfinns i bilaga) • Sammanställning av pågående projekt med fokus på CCS i Västsverige (detaljer återfinns i bilaga) • Förslag på strategier för att ta del av tillgängliga offentliga medel – för den enskilda aktören och genom västsvensk samverkan Eftersom det händer mycket inom området har vi behövt begränsa oss i olika delar. Kontakta gärna någon av oss författare om du vill veta mer.
  •  
9.
  • Johnsson, Filip, 1960, et al. (author)
  • Avskiljning, transport och lagring av koldioxid i Sverige Behov av forskning och demonstration
  • 2019
  • Reports (other academic/artistic)abstract
    • Denna rapport redovisar resultatet av en utredning kring behov av forskning och demonstration av koldioxidavskiljning och lagring från fossila (CCS) och biogena utsläppskällor (BECCS). Rapporten är framtagen på uppdrag av Energimyndigheten för att utgöra ett underlag till Energimyndighetens regeringsuppdrag "Innovationsfrämjande insatser för att minska processindustrins utsläpp av växthusgaser". Det är främst två anledningar till att avskiljning och lagring av koldioxid kan behöva användas i Sverige: ·         Allt pekar på att CCS krävs för att svensk process- och basindustri ska lyckas möta det svenska utsläppsmålet att det senast år 2045 inte ska finnas några nettoutsläpp av växthusgaser till atmosfären. Det är dock viktigt att understryka att CCS inte ersätter andra åtgärder i industrin utan är en del av en portfölj av åtgärder som krävs om det överhuvudtaget ska vara någon chans att nå utsläppsmålen. ·         Tillämpat på processer som använder biomassa som bränsle eller råvara kan BECCS bidra till negativa utsläpp. Detta är både i enlighet med det svenska målet att nå negativa utsläpp efter 2045 och troligtvis nödvändigt för världen om ett 1,5-gradersmål ska nås. Sverige har gynnsamma förutsättningar att tillämpa BECCS, som även skulle kunna kompensera för utsläpp i sektorer där kostnaden (per ton koldioxid) att nå nollutsläpp är hög, till exempel i flygsektorn. Baserat på en genomgång av de svenska förutsättningarna för forskning och demonstration av CCS och BECCS ger denna rapport följande rekommendationer (där punkterna 2-9 kan ses som delar av 1): 1.Sverige behöver en nationell strategi för CCS och BECCS som innefattar hela kedjan forskning, demonstration och kommersiell implementering och där det blir tydligt vilka industrier och myndigheter som berörs av en sådan strategi. Strategin bör baseras på en beskrivning av de svenska förutsättningarna för CCS och BECCS och bör inkludera tekniker, finansiering och juridiska och miljömässiga förutsättningar samt hur CCS och BECCS kopplar till andra utsläppsminskande åtgärder på de processer där tekniken är aktuell. Strategin bör förhålla sig till utvecklingen i Norge, eftersom lagring i ett inledande skede troligtvis kommer ske där. En svensk CCS-strategi bör utgöra en del av en sammanhållen industripolitik som relaterar till den svenska klimatpolitiken med målet om noll nettoutsläpp till år 2045, och att utsläppen därefter ska bli negativa. 2. Det är av stor vikt att CCS och BECCS analyseras som en helhet och inte betraktas som olika tekniker. Inte minst kommer koldioxidavskiljning kunna tillämpas på anläggningar som har en mix av fossila och biogena utsläpp (till exempel avfallseldade kraftvärmeverk). 3. Det bör för varje industri (en eller flera anläggningar) som har årliga punktutsläpp över en viss nivå (till exempel 100 kt CO2 per anläggning) utredas hur en sådan industri skulle kunna uppnå nollutsläpp där följande bör ingå: ·         Identifiering av nyckelåtgärder och dess tekniker, inklusive bedömning av industrins framtid i en utsläppsbegränsad värld (vilket kan påverka bedömningen av storleken på de framtida utsläppen som kan vara föremål för CCS och BECCS). ·         Mognadsnivåer (TRL-nivåer) på tekniker som finns tillgängliga för att minska utsläppen mot noll. ·         Identifiering av kunskapsläge (svenskt och internationellt) samt forsknings- och demonstrationsbehov. ·         Uppskattning av kostnaden i kr/ton CO2 för nollutsläpp samt jämförelse med förväntad utveckling av priset på utsläppsrätter i EU:s handelssystem. ·         Bedömning av påverkan på priset på industrins produkter samt på nyckelprodukter längst ut i värdekedjan där industrins produkter används som insatsvara. ·         Identifiering av vad som krävs affärs- och finansieringsmässigt för att möta utsläppsmålet. ·         Om CCS visar sig vara en viktig teknik för att uppnå nära nollutsläpp så bör industrin ingå i den nationella CCS-strategin (punkt 1). 4. Villkoren för lagring på norskt territorium i närtid bör utredas givet olika antaganden om lagringsmängder. Samtidigt bör möjligheterna och potentialen för lagring av koldioxid inom svenskt territorium utredas i större detalj. Ett sådant arbete bör kunna svara på om, och i så fall för vilka volymer, detta är realistiskt. Här bör första steget vara att det tas fram och motiveras vilken typ av beslutsunderlag som behövs för att bedöma om lagring på svenskt territorium är rimligt (inklusive att utreda möjligheterna för att ändra Helsingforskonventionen så att lagring i Östersjöområdet tillåts). Ett första arbete bör ha som mål att fastställa vilken tidsram och vilka resurser som krävs för att få fram en sådan bedömning. Om lagringsvolymen inom svenskt territorium bedöms vara alltför begränsad för att lagring på svenskt territorium ska vara intressant, bör det analyseras vad samverkan på längre sikt med andra länder och då speciellt med Norge innebär. 5. Det bör skyndsamt utredas vilka möjligheter som kan finnas för att hantera den finansiella risken vid investering och drift av de olika delarna i CCS- och BECCS-kedjan och vilken roll staten kan spela för att minska risken. Det bör även undersökas om det för de industrier som kan vara föremål för CCS går att hitta nya sätt att prissätta klimatåtgärderna längst ut i värdekedjan, det vill säga så att slutkonsumenten ser merkostnaden av en klimatneutral produkt samt hur detta kan användas för finansiering av utsläppsminskande åtgärder inklusive CCS. 6. Delvis kopplat till punkt 3 bör det initieras forskning som analyserar CCS tekniken i ett vidare systemperspektiv där det givet olika scenarier och antaganden över hur de svenska punktutsläppen kan komma att utvecklas, studeras vilken roll CCS och BECCS kan ta i en övergripande portfölj av utsläppsminskande åtgärder för svensk industri. Sådana studier bör omfatta hela kedjan avskiljning, transport och lagring och ta hänsyn till utvecklingen på bränsle- och insatsvarorna för de olika industrierna och energianläggningarna som kan komma ifråga för CCS och BECCS (till exempel tillgången på och konkurrens om olika biomassafraktioner). Denna forskning bör ge viktigt bidrag till att dels sätta ramarna för hur svensk basindustri kan bidra till att nå de svenska klimatmålen, och dels till en svensk CCS strategi (punkt 1). 7. Då avskiljningsdelen för CCS och BECCS är den del där det finns störst potential att minska kostnaderna över tid bör en svensk forskningsstrategi möjliggöra finansiering av forskning av både grundläggande och tillämpad karaktär och utgöra en del av den nationella CCS- och BECCS-strategin. Det är alltså viktigt att det även satsas tillräckligt med forskningsmedel på tekniker som redan idag bedöms som tekniskt möjliga att implementera – inte minst för att bidra till kostnadsminskningar och hög tillförlitlighet – och att forskningssatsningar kopplas till förutsättningar som gäller i svensk process- och energiindustri. 8. Det bör så snart som möjligt planeras för ett svenskt demonstrationsprojekt som omfattar hela kedjan; avskiljning, transport och lagring. Givet de långa ledtiderna i energi- och processindustrin är det viktigt att snarast ta fram en färdplan mot demonstration. En sådan färdplan ska vara så heltäckande som möjligt och innehålla en utvärdering och plan för val av industri/anläggning, teknikval, finansiering, juridik och miljökonsekvensbeskrivning och andra aspekter som bedöms relevanta. I nuläget (2018) är det Stockholm Exergi, Preem och Cementa som har kommunicerat CCS och BECCS som del av deras framtida åtgärder för att minska utsläppen och dessa kan därför utgöra kandidater för demonstration. 9. Det bör snarast utredas hur de hinder som kopplar till juridik, styrmedel och regleringar kan övervinnas. Speciellt viktigt är att utreda hur nuvarande barriärer kopplat till Londonprotokollet och båttransport av koldioxid inom EU-ETS kan övervinnas. Det bör också studeras hur det kan skapas incitament för negativa utsläpp. Studier av allmänhetens uppfattning om CCS – där det är viktigt att hela kedjan avskiljning, transport och lagring ingår - bör kopplas till explicita implementeringsprojekt snarare än generella studier.
  •  
10.
  • Johnsson, Filip, 1960, et al. (author)
  • Linking the Effect of Reservoir Injectivity and CO 2 Transport Logistics in the Nordic Region
  • 2017
  • In: Energy Procedia. - : Elsevier BV. - 1876-6102. ; 114, s. 6860-6869
  • Conference paper (peer-reviewed)abstract
    • We compare the cost for CO 2 -transport by ship with cost for pipeline transport in the Nordic region as a function of transport volume and distance. We also calculate the pipeline volumetric break-even point yielding the minimum CO 2 volume required from a specific site for pipeline to become the less costly transport option and finally, we investigate the effect injectivity may have on the choice of reservoir and transport mode. Most stationary CO 2 -emissions in the Nordic region originate from emission intensive industries such as steel, cement and chemical plants and refineries. Typically, their emissions are modest (less than 1 Mt per year) compared to large coal fired power plants, while distances to potential storage sites are considerable, often 300 km or more. Hence, build-up of clusters of emission sources and CO 2 -volumes is likely to take time and be costly. At the same time, many of the emission sources, both fossil based and biogenic, are located along the coast line. The results imply that due to modest CO 2 -volumes and relatively long transport distances CO 2 transport by ship is the least costly transportation option for most of the sources individually as well as for most of the potential cluster combinations during ramp-up of the CCS transport and storage infrastructure. It is furthermore shown that cost of ship transport increases modestly with increasing transport distance which, in combination with poor injectivity in reservoirs in the Baltic Sea, indicate that it may be less costly to transport the CO 2 captured from Finnish and Swedish sources located along the Baltic Sea a further 800-1300 km to the west by ship for storage in aquifers with higher injectivity in the Skagerrak region or in the North Sea.
  •  
11.
  • Johnsson, Filip, 1960, et al. (author)
  • Regional Distribution of Renewable Energy and the Abundance of Fossil Fuels
  • 2016
  • In: Clean Coal Technology and Sustainable Development. Proceedings of the 8th International Symposium on Coal Combustion (ISCC). Tsinghua Univ, Beijing, Peoples rep of China, 19-22 Juli, 2015. - Singapore : Springer Singapore. - 9789811020223 ; 0, s. 11-19
  • Conference paper (peer-reviewed)abstract
    • This paper discusses the extent to which technologies developed for the exploitation of renewable energy sources ( RES) can be expected to substitute for fossil fuels, toward the goal of reducing usage of fossil fuels. We compare the changes in fuel mix for primary energy consumption and for electricity generation over the past decade between regions with large and small domestic fossil fuel resources. We conclude that for newly industrialized countries rich in domestic fossil fuels, there is only a moderate or no increase in primary energy from RES, coupled with significant increases in primary energy consumption from fossil fuels although recent but preliminary data show these trends to weaken. We use the notion of a "fossil fuel curse," which implies that it is not obvious that countries with large domestic fossil fuel resources will allow these assets to remain unexploited. This obviously imposes a tremendous threat to climate change mitigation leaving only two choices for fossil-rich economies: leave the fossil fuels in the ground and apply carbon capture technologies, both options calling for a sufficiently high cost to emit CO2 or other policy intervention in order to take place.
  •  
12.
  • Johnsson, Filip, 1960, et al. (author)
  • The importance of CO2 capture and storage: A geopolitical discussion
  • 2012
  • In: Thermal Science. - 0354-9836. ; 16:3, s. 655-668
  • Journal article (peer-reviewed)abstract
    • The CO2 capture and storage (CCS) technology is since more than ten years considered one of the key options for the future climate change mitigation. This paper discusses the implications for the further development of CCS, particularly with respect to climate change policy in an international geopolitics context. The rationale for developing CCS should be the over-abundance of fossil fuel reserves (and resources) in a climate change context. From a geopolitical point, it can be argued that the most important outcome from the successful commercialisation of CCS will be that fossil fuel-dependent economies with large fossil fuel resources will find it easier to comply with stringent greenhouse gas reduction targets (i. e. to attach a price to CO2 emissions). This should be of great importance since, from a geopolitical view, the curbing on greenhouse gas emissions cannot be isolated from security of supply and economic competition between regions. Thus, successful application of CCS may moderate geopolitical risks related to regional differences in the possibilities and thereby willingness to comply with large emission cuts. In Europe, application of CCS will enhance security of supply by fuel diversification from continued use of coal, especially domestic lignite. Introduction of CCS will also make possible negative emissions when using biomass as a fuel, i. e. in so called Biomass Energy CCS (BECCS). Yet, the development of BECCS relies on the successful development of fossil fuelled CCS since BECCS in itself is unlikely to be sufficient for establishing a cost efficient CCS infrastructure for transport and storage and because BECCS does not solve the problem with the abundant resources of fossil fuels. Results from research and development of capture, transport and storage of CO2 indicate that the barriers for commercialization of CC'S should not be technical. Instead, the main barriers for implementation of CCS seem to be how to reach public acceptance, to reduce cost and to establish a high enough price on CO2 emissions. Failure to implement CCS will require that the global community, including Europe, agrees to almost immediately to start phasing out the use of fossil fuels, an agreement which seems rather unlikely, especially considering the abundant coal reserves in developing economies such as China and India.
  •  
13.
  • Johnsson, Filip, 1960, et al. (author)
  • The importance of CO2 Capture and Storage - a geopolitical discussion
  • 2011
  • In: The 6th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems.
  • Conference paper (peer-reviewed)abstract
    • The CO2 capture and storage (CCS) technology is now considered to be one of the key options for climate change mitigation. This paper discusses the implications for the further development of CCS, particularly with respect to climate change policy in an international geopolitics context.The rationale for developing CCS should be the over-abundance of fossil fuel reserves (and resources) in a climate change context. From a geopolitical point, it can be argued that the most important outcome from the successful commercialisation of CCS will be that fossil fuel-dependent economies will find it easier to comply with stringent greenhouse gas (GHG) reduction targets (i.e. to attach a price to CO2 emissions). This should be of great importance since, from a geopolitical view, the curbing on GHG emissions cannot be isolated from security of supply and economic competition between regions. Thus, successful application of CCS may moderate geopolitical risks related to regional differences in the possibilities and thereby willingness to comply with large emission cuts. In Europe, application of CCS will enhance security of supply by fuel diversification from continued use of coal, especially domestic lignite. In contrast, failure to implement CCS will require that the global community, including Europe, agrees to almost immediately to start phasing out the use of fossil fuels, an agreement which seems rather unlikely, especially considering the abundant coal reserves in developing economies such as China and India.
  •  
14.
  • Johnsson, Filip, 1960, et al. (author)
  • The threat to climate change mitigation posed by the abundance of fossil fuels
  • 2019
  • In: Climate Policy. - : Informa UK Limited. - 1752-7457 .- 1469-3062. ; 19:2, s. 258-274
  • Journal article (peer-reviewed)abstract
    • ABSTRACT This article analyses the trends in primary demand for fossil fuels and renewables, comparing regions with large and small domestic fossil fuel reserves. We focus on countries that hold 80% of global fossil fuel reserves and compare them with key countries that have meagre fossil fuel reserves. We show that those countries with large domestic fossil fuel reserves have experienced a large increase in primary energy demand from fossil fuels, but only a moderate or no increase in primary energy from renewables, and in particular from non-hydro renewable energy sources (NHRES), which are assumed to represent the cornerstone of the future transformation of the global energy system. This implies a tremendous threat to climate change mitigation, with only two principal mitigation options for fossil-fuelrich economies if there is to be compliance with the temperature goals of the Paris Agreement: (1) leave the fossil fuels in the ground; and (2) apply carbon capture and storage (CCS) technologies. Combinations of these two options to exploit their respective possibilities synergistically will require strong initiatives and incentives to transform a certain amount of the domestic fossil fuel reserves (including the associated infrastructure) into stranded assets and to create an extensive CCS infrastructure. Our conclusion is that immediate and disruptive changes to the use of fossil fuels and investments in non-carbon-emitting technologies are required if global warming is to be limited to well below 2°C. Collective actions along value chains in business to divert from fossil fuels may be a feasible strategy. Key policy insights . The main obstacle to compliance with any reasonable warming target is the abundance of fossil fuels, which has maintained and increased momentum towards new fossil-fuelled processes. . So far, there has been no increase in the share of NHRES in total global primary energy demand, with a clear decline in the NHRES share in India and China. . There is an immediate need for the global community to develop fossil fuel strategies and policies. . Policies must account for the global trade flow of products that typically occurs from the newly industrialized fossil fuel-rich countries to the developed countries.
  •  
15.
  • Jordal, Kristin, et al. (author)
  • Legal and regulatory framework for Swedish/Norwegian CCS cooperation
  • 2022
  • Reports (other academic/artistic)abstract
    • A description is provided of the legal/regulatory situation, as of early December 2021, for CO2 transport from Sweden/Preem AB to Norway/Northern Lights. CO2 transport from Sweden to Norway for the purpose of geological storage under the seabed is since 2019 legal, thanks to the provisional application of the amended Article 6 of the London Protocol, provided that the necessary unilateral declarations are deposited from Norway and Sweden to IMO and that Sweden and Norway enter a bilateral agreement on the matter. Economic incentives for CCS include the EU-ETS for fossil CO2 and the Swedish support for Bio-CCS through reverse auctioning.
  •  
16.
  • Jönsson, Johanna, 1981, et al. (author)
  • Perspectives on the potential for CCS in the European pulp and paper industry
  • 2013
  • In: Systems Perspectives on Biorefineries 2013. - 9789198097320 ; , s. 81-91
  • Book chapter (other academic/artistic)abstract
    • The Pulp and Paper Industry (PPI), like other energy-intensive industry branches, is suitable for implementation of carbon capture and storage (CCS) since they have large on-site emissions of CO2 and usually also excess heat available which can be utilised in the capture process. Further, since a large share of the CO2 emissions associated with the European PPI originates from biomass, if CCS is implemented the levels of CO2 in the atmosphere can be further reduced in com- parison to implementing CCS only on fossil emission sources, i.e. provided the biomass is grown in a sustainable way. This fact makes CCS within the European PPI an interesting alternative.1 This chapter assumes that world governments adopt policy measures that stimulate significant CO2 reductions and the purpose of this chapter is to discuss CCS as an option for the PPI to significantly reduce its CO2 emissions. The chapter gives an introduction to CCS in general and CCS in the PPI in particular. Some main opportunities and challenges are presented and discussed and an example of the potential for CCS in the European PPI is presented. The chapter ends with a list of main conclusions.
  •  
17.
  •  
18.
  • Kjärstad, Jan, 1956, et al. (author)
  • CCS in the Skagerrak/Kattegat-region - Assessment of an intraregional CCS infrastructure and legal framework
  • 2011
  • In: Energy Procedia, 10th International Conference on Greenhouse Gas Control Technologies; Amsterdam; 19-23 September 2010, 4, 2793-2800. - : Elsevier BV. - 1876-6102.
  • Conference paper (peer-reviewed)abstract
    • This paper provides some initial results from the project "CCS in the Skagerrak/Kattegat-region" which is an intraregional CCS project partly funded by the EU. The project assesses the prospects for Carbon Capture and Storage (CCS) from industry and power plants located in the Skagerrak region which comprises northern Denmark, south-east coast of Norway and the west coast of Sweden. The project is a joint cooperation between universities, research institutes and industries in the region. The methodology used in one of the project work packages is presented together with some initial results on legal aspects. CCS in the Skagerrak region may potentially account for a third of combined emission reduction commitments by 2020 in the three countries involved in the project. Yet, much of the emissions in the region occur from industry (in addition to power plants) and it is still not clear how these industries will be treated under the ETS. Based on current knowledge, a good storage option would be in the Hanstholm aquifer on Denmark's northwest coast. The phasing-in of capture plants over time is central to the development of a cost efficient CCS infrastructure. However, many of the sources in the region are located at a port facilitating use of boat transport through the build-up period. The initial legal analysis show that significant regulatory uncertainties exist in the region with regard to CCS and it is not obvious that the implementation of the EU CCS directive into national law by June 2011 will alleviate these uncertainties. Finally, the project may provide a significant test case for what type of political and regulatory cooperation that will be required if CCS is to be deployed in a transboundary context under conditions of sufficient public acceptance and well-designed regulation. © 2011 Published by Elsevier Ltd. © 2011 Published by Elsevier Ltd.
  •  
19.
  •  
20.
  • Kjärstad, Jan, 1956, et al. (author)
  • Conditions for CCS and Bio-CCS in Sweden
  • 2021
  • In: 15th Greenhouse Gas Control Technologies Conference 2021, GHGT 2021.
  • Conference paper (peer-reviewed)abstract
    • This paper presents a recently started project (ZEROC) with the aim to investigate the role of key mitigation measures - including CCS - in the Swedish and Norwegian industries and the supporting infrastructure required for these measures including CO2 transport infrastructure. As basis for the analysis in the project, this paper gives an overview of conditions for CCS on Swedish industrial emission sources, both fossil and biogenic, and CCS role in not only reaching zero CO2-emissions in the Swedish industry but also in the longer term to contribute with negative emissions and what kind of CCS infrastructure that is likely to be required for such a development to take place. The ZEROC project has a broad participation from relevant industries both in Norway and Sweden.
  •  
21.
  • Kjärstad, Jan, 1956, et al. (author)
  • Development of a methodology to analyze the geographical distribution of CCS plants and ramp-up of CO2-flow over time
  • 2014
  • In: Energy Procedia. - : Elsevier BV. - 1876-6102. ; 63, s. 6871-6877
  • Conference paper (peer-reviewed)abstract
    • Development of large scale CO2 transport systems will obviously depend on geographical distribution of CCS installations and CO2 volumes over time and their location relative to appropriate storage sites with sufficient injectivity. However, installation of CCS at any facility is likely to be based on company specific planning and company specific strategies with the risk that there will be a considerable geographical spread of such installations over time leading to several small scale and single source-sink transport systems which will be more costly, affect the surroundings more and potentially also lead to increased local opposition to CCS. Additionally, such a development is also likely to require longer overall lead times since each system will have to be treated individually by for instance permitting authorities. This paper presents a methodology to distribute capture installations and captured volumes geographically over time in order to identify, analyze and visualize potential problems related to large scale build-up of CCS installations within Europe.
  •  
22.
  • Kjärstad, Jan, 1956, et al. (author)
  • Establishing an integrated CCS transport infrastructure in northern Europe - Challenges and possibilities
  • 2011
  • In: Energy Procedia. - : Elsevier BV. - 1876-6102. ; 4, s. 2417-2424
  • Conference paper (peer-reviewed)abstract
    • This paper examines cost, challenges and possibilities for the development of an integrated CCS transport infrastructure for the power, cement, refinery and steel and iron sectors in six EU member states: Belgium, Czech Republic, Germany, Netherlands, Poland and Slovakia. Input for ramp-up of CCS within the power sector has been provided by Chalmers Electricity Investment model (ELIN) while ramp-up of CCS in the three industry sectors is based on general assumptions. For each country, three types of CCS infrastructure systems have been assessed; for the power sector only, integrated for the power sector and the three industry sectors and finally, for the three industry sectors only. Transport cost has been calculated to range between € 1.0 and € 4.1 per ton CO2 in the power sector and to between € 1.6 and € 15.9 per ton in the industry sector. The low cost systems indicate a favorable distribution of sources and sinks while high cost systems are a result of low volumes and offshore transport requirements. Transport cost in the integrated system ranged from € 1.2 to € 4.5 per ton implying that there seems to be little to gain for the power sector by integrating transport networks with the industry in the countries investigated, simply due to the location of sources and sinks and the fact that captured volumes from the industry sources are usually considerably smaller than captured volumes from power plants. The results reveal that the development of a CCS infrastructure to a large extent will depend on the phase-in of actual capture plants over time. The ownership concentration within the power sector in most of the countries investigated in this report may facilitate the build-up of a large centralized transport infrastructure.
  •  
23.
  • Kjärstad, Jan, 1956, et al. (author)
  • Fossil Fuels: Climate Change and Security of Supply
  • 2012
  • In: International Journal of Sustainable Water and Environmental Systems. - 1923-7545. ; 4:1, s. 79-87
  • Journal article (peer-reviewed)abstract
    • This paper is based on an extensive assessment of the global fossil fuel markets, i.e. of the coal, gas and oil markets. The main conclusions from the work presented in this paper are that from a climate change perspective there is an abundance of fossil fuels, coal in particular. The CO2-emission potential of proven reserves of fossil fuels are up to twice as high as the global carbon budget in the 21st century required to limit the temperature increase to 2.9°C (mean estimate). Yet, apart from possibly natural gas and in spite of a large resource base, it will be increasingly difficult to meet baseline demand projections particularly for oil and cost of producing fossil fuels are likely to rise. As a consequence, in most regions there is an increasing focus on security of supply rather than on phasing out fossil fuels. Globally, there are few concrete signs that we are actually moving away from a dependency on fossil fuels and it appears extremely challenging to meet climate change targets limiting the global temperature increase to 2°C. This is partly due to the unwillingness of the developed world to agree on a strong enough political framework controlling emission reductions and partly due to low per capita demand in expanding undeveloped countries coupled with large populations and large domestic coal resources.
  •  
24.
  •  
25.
  • Kjärstad, Jan, 1956, et al. (author)
  • Modelling large-scale CCS development in Europe linking technoeconomic modelling to transport infrastructure
  • 2013
  • In: Energy Procedia. - : Elsevier BV. - 1876-6102. ; 37, s. 2941-2948
  • Conference paper (peer-reviewed)abstract
    • This paper a studies the potential lay-out of CCS infrastructure in Europe, by combining techno-economic modelling of Europs's electricity sector with a detailed modelling and analysis of a CO2 transport infrastructure. First, the electricity sector is described using the Chalmers Electricity Investment Model, which, for each EU member state, yields the technology mix including CCS - until the year 2050. The model gives the lowest system cost under a given CO2 emission reduction target. Thus, the model gives the annual flows of CO2 being captured by country and fuel. Secondly, these flows are used as input to InfraCCS, a cost optimization tool for bulk CO2 pipelines. Finally, the results from InfraCCS are applied along with Chalmers databases on power plants and CO2 storage sites to design the development over time of a detailed CO2 transport network across Europe considering the spatial distribution of power plants and storage locations. Two scenarios are studied: with and without onshore aquifer storage. The work shows that the spatial distribution of capture plants over time along with individual reservoir storage capacity and injectivity are key factors determining routing and timing of the pipeline network. The results of this work imply that uncertainties in timing for installation of capture equipment in combination with uncertainties related to accurate data on storage capacity and injectivity on reservoir level risk to seriously limit the build-up of large-scale pan-European CO2 transportation networks. The study gives that transport cost will more than double if aquifer storage is restricted to offshore reservoirs. Thus, it is found that the total investments for the pan-European pipeline system is € 31 billion.when storage in onshore aquifers is allowed and € 72 billion. if aquifer storage is restricted to offshore reservoirs with corresponding specific cost of € 5.1 to € 12.2 CO2 transported.
  •  
26.
  • Kjärstad, Jan, 1956, et al. (author)
  • Prospects of the European Gas Market
  • 2007
  • In: Energy Policy. - : Elsevier BV. - 0301-4215. ; 35:2, s. 869-888
  • Journal article (peer-reviewed)abstract
    • AbstractThis paper discusses prospects for increased consumption of natural gas within the European Union (EU) up to 2030. Particular emphasis is on the power generation sector, where the main growth in demand is expected to occur, on supply and infrastructural constraints and on future price of natural gas.It can be concluded that EU gas-import needs will increase substantially up to 2010, driven by a combination of rapid increase in demand in southern Europe and declining production in northern Europe. As a result there will be an increased import dependency which will affect security of supply, not only in the gas sector but also in the electricity sector. Gas demand after 2010 will partially depend on the level of continued CO2 emission restrictions, a possible nuclear phase-out in the UK, Germany and Belgium and to what extent the option to store CO2 in subsurface reservoirs will be applied. However, supplies of gas are plentiful, at least in the medium-term up to 2010/2015, and a number of new countries will emerge as substantial suppliers to the European gas market, increasing competition and possibly leading to a situation of oversupply between 2008 and 2012 which in turn may create a downward pressure on gas prices. In addition, the US market may, pending on demand and indigenous production, experience considerable oversupply between around 2008 and 2015, reducing the possibilities of conducting arbitrage between the two main markets in the Atlantic basin and further contributing to a downward pressure on the gas price. On the other hand, the oil price will continue to be a major determinant of the gas price and a tight oil supply/demand balance will create an upward pressure on the gas price. Global liquefaction and regasification capacity is expected to more than double between now and 2010 leading to a more flexible and global gas trading and increasing spot sales and although the cost of LNG has decreased substantially over the past three decades it is still more costly than piped gas at distances up to 3000—4000 km within comparable regions. Thus, an increased use of LNG will contribute to an increase in average gas prices locally. Problems related to gas production capacity together with abundant supply to the EU markets and increased competition points to that Russia will loose market share in the short run, in particular as piped Russian gas is not competitive on the main growth markets, i.e. UK, and Italy/Spain. Nevertheless, in the long run, it can be expected that the EU dependency on gas from Russia as well as on the Middle East will increase. The vulnerability in supply security and the high dependency on Russian gas has been highlighted by the latest events (January 2006) with Russia cutting supplies to Ukraine.A critical factor is the large and timely investments required along the entire fuel chain in order to meet rapidly increasing demand, often in regions with uncertain investment conditions. Also, the producing countries are likely to invest according to national interest rather than to supply an increasing global demand.Keywords: Natural gas; Power generation; Europe; Security of supply
  •  
27.
  • Kjärstad, Jan, 1956, et al. (author)
  • Ramp-up of large-scale CCS infrastructure in Europe
  • 2009
  • In: GREENHOUSE GAS CONTROL TECHNOLOGIES 9. - : Elsevier BV. - 1876-6102. ; 1:1, s. 4201-4208
  • Conference paper (peer-reviewed)abstract
    • This paper investigates conditions for a rapid ramp-up of a large-scale CO2 transport and storage infrastructure within the power and heat sector in EU's Member States (MS). First, each MS is investigated individually with respect to the relevance of CCS in the power and heat sector. Second, the potential cost of CO2 transport and storage is evaluated and categorised into three levels for each MS with particular emphasis being put on power plant clusters, ownership concentration, source-sink distance and onshore storage potential. The chosen cost category for each member state is then used as input in a techno-economic modelling to evaluate the future electricity supply system in Europe as described elsewhere (Odenberger et al., 2008a). Finally, based on the modelling results, the study develops a detailed CO2 transportation and storage infrastructure for Germany and UK and discusses issues related to the ramp-up of such infrastructure. The analysis shows that most MS have identified structures that may be suitable for subsurface storage of CO2. Fourteen MS have so far identified onshore reservoirs only. Several MS have clusters of large power plants along with considerable national or regional concentration of plant ownership, factors that may both facilitate the ramp-up of a bulk CCS infrastructure. Phasing in of CCS plants over time will obviously play a key role in building up large-scale transport infrastructure. CCS plants are likely to be located on existing sites and coal plants currently under construction may choose to retrofit the plant for CCS instead of building new plants. CO2 pipeline trajectories are likely to follow existing trajectories for natural gas pipelines, minimising interference with the surroundings and facilitate and speed up permitting processes. Timing, conflicts of interest and public acceptance, especially onshore, are other factors that may become an issue with regard to transport and storage of CO2. According to model results, some 5.2 Gt CO2 is transported and stored in Germany between 2020 and 2050 while the corresponding figure in the UK is 3.7 Gt. Based on assumed injectivity, total system costs up to 2050 range between (sic) 18 and (sic) 23 billion in Germany and between (sic) 20 and (sic) 30 billion in the UK while specific costs range between (sic) 3.4 and (sic) 4.4 per ton of CO2 in Germany and between (sic) 5.4 and (sic) 8.1 in the UK. Finally, the modelling results indicate a rapid switch from gas based to coal based power generation with CCS. It is, however, likely that the large fuel switch from gas to coal will be moderated considerably by market dynamics and issues related to the fuel supply chain. (C) 2008 Elsevier Ltd. All rights reserved.
  •  
28.
  • Kjärstad, Jan, 1956, et al. (author)
  • Recommendations on CO2 transport solutions
  • 2015
  • Reports (other academic/artistic)abstract
    • The aim of this report is 1) to recommend transport solutions for CO2 sources in the Nordic region, here defined as the least costly transport mode for the selected CCS cases in NORDICCS and 2) to analyze the potential for establishment of CO2 clusters by means of a transportation network around the selected CCS cases in order to reduce the transportation cost. Comparing cost for pipeline transport with cost for ship transport, it is concluded that both for the majority of the selected cases as well as for most of the emission sources in the region, ship transport will be the least costly transport mode for each source individually. It is also concluded that ship transport is the most appropriate transport mode for most of the potential clusters in the region during a ramp-up phase. This is closely related to underutilization of pipelines and risk taking in connection with underutilized pipelines. For distances shorter than 100 km and volumes smaller than 1 Mtpa, e.g. corresponding to a typical collection system containing multiple coastal sources, it has been calculated that onshore pipeline in most cases will be the least costly transport solution. More generally, it can be stated that the break-even distance where ship transport becomes least costly than pipeline transport increases as the volume increases. Yet, it should be emphasized that discharge from a ship offshore and positioning of smaller ships during injection will need to be demonstrated. An obvious but still important conclusion is that constrained storage capability may have a profound impact on design and cost of a CO2 transport system. In fact, a poor storage capability in the reservoirs in the Baltic Sea may render ship transport to Gassum and Utsira a less costly transport and storage option than the reservoirs in the Baltic Sea. Finally, it is concluded that in the Nordic region, the Kattegat-Skagerrak area probably offers the best opportunities for a Nordic CCS system, possibly driven initially by CO2 EOR which potentially may require a start-up already in 2020.
  •  
29.
  • Kjärstad, Jan, 1956, et al. (author)
  • Resources and future supply of oil
  • 2009
  • In: Energy Policy. - : Elsevier BV. - 0301-4215. ; 37:2, s. 441-464
  • Journal article (peer-reviewed)abstract
    • This paper examines global oil resources and the future global oil supply/demand balance. The paper builds upon several comprehensive databases designed during the work and considerable efforts have been made to review what must be considered the most reliable data. Global oil resources have been investigated on three levels; country, company and field levels.Although no decisive conclusions or quantitative assessments can be made with respect to the global oil resource base, remaining resources appear to be sufficient to meet demand up to 2030 as projected in the 2006 (and 2007) world energy outlook by the IEA. Significant resources have already been discovered beyond proven reserves, many prospective regions remain to be fully explored and there are vast volumes of recoverable unconventional oil. However, it is also concluded that global supply of oil probably will continue to be tight, both in the medium term as well as in the long term mainly as a consequence of above-ground factors such as investment constraints, geopolitical tensions, limited access to reserves and mature super-giant fields. Production of unconventional oil and synthetic fuels is not believed to significantly alter this situation. Although an increasing number of recent reports have indicated an imminent or “soon to come” peak in global oil supply, it has not been found that any of these reports have contributed with any new information on oil resources or oil supply ability. Nevertheless, there is a distinct possibility that global oil production may peak or plateau in a relatively near future, not caused by limited resources but because too many factors over long time constrain investments into exploration and production.The lack of transparency within the oil industry obviously prevents any accurate analysis of future production and supply ability. Moreover, our ability to analyse the sector will become more difficult in the future as oil increasingly will have to be sourced from countries with a poor transparency. The world will become increasingly dependent on a few countries in the Middle East and on Russia not only for the supply of oil but also for the supply of gas which to a large extent will be utilised for power and heat generation. A responsible policy should under these circumstances seek to enhance energy security which should be directed towards promoting energy efficiency measures (reduce demand) in combination with increased utilisation of indigenous fuel resources such as renewables and fossil fuels in combination with CO2 capture and storage. Such a policy would both facilitate the transmission to a more sustainable energy system in the future as well as enhance energy security.
  •  
30.
  • Kjärstad, Jan, 1956, et al. (author)
  • Ship transport – a low cost and low risk CO2 transport option in the Nordic countries
  • 2016
  • In: International Journal of Greenhouse Gas Control. - : Elsevier BV. - 1750-5836. ; 54, s. 168-184
  • Journal article (peer-reviewed)abstract
    • This paper investigates CO2 transport options and associated costs for CO2-sources in the Nordic region. Cost for ship and pipeline transport is calculated both from specific sites and as a function of volume and distance. We also investigate the pipeline volumetric break-even point which yields the CO2 volume required from a specific site for pipeline to become a less costly transport option than ship transport. Finally, we analyze possible effects from injectivity on the choice of reservoir and transport mode. The emission volumes from the Nordic emission sources (mostly industries) are modest, typically between 0.1 to 1.0 Mt per year, while distances to feasible storage sites are relatively long, 300 km or, in many cases, considerably more. Combined, this implies both that build-up of an inland CO2 collection system by pipeline will render high cost and that it is likely to take time to establish transportation volumes large enough to make pipeline transport cost efficient (since this will require multiple sources connected to the same system). At the same time, many of the large emission sources, both fossil based and biogenic, are located along the coast line.It is shown that CO2 transport by ship is the least costly transportation option not only for most of the sources individually but also for most of the potential cluster combinations during ramp-up of the CCS transport and storage infrastructure. It is also shown that cost of ship transport only increases modestly with increasing transport distance. Analyzing the effect of injectivity it was found that poor injectivity in reservoirs in the Baltic Sea may render it less costly to transport the CO2 captured from Finnish and Swedish sources located along the Baltic Sea by ship a further 800-1300 km to the west for storage in better suited aquifers in the Skagerrak region or in the North Sea.
  •  
31.
  • Kjärstad, Jan, 1956, et al. (author)
  • Sustainable use of energy carriers in the Kattegat/Skagerrak-region - a regional case study
  • 2013
  • In: The 8th Conference on Sustainable Development of Energy, Water and Environment Systems, SDEWES Conference Dubrovnik, Croatia, September 22-27, 2013.
  • Conference paper (other academic/artistic)abstract
    • This paper reports on a recently initiated interregional project on sustainable use of energy carriers in the Kattegat/Skagerrak-region (KASK) in Norway and Sweden. The work analyses and models large-scale integration of renewable power, the potential of process integration and energy efficiency improvements in key industries in the region and identifies cost efficient solutions for an energy efficient building stock. Energy and emission statistics along with energy and climate plans are used to investigate how well the current “path” with regard to energy use and GHG emissions fits within the corresponding plans for the region. The statistics is also used to define a Reference Energy System (RES) for the region which gives a structured mapping of the energy system of the region, comprising supply, conversion and end-use of the different energy carriers/sources in the region. Based on the analysis the aim of the project is to propose one or more pathways in the short, medium and long term towards a sustainable energy system in the region. The initial work shows that final energy use for parts of the region has actually increased by 25% since 1990 while GHG emissions have declined only marginally, by 3%. Furthermore, although most municipalities in the region have targets or at least visions on significant reductions both with regard to energy use and GHG emissions they lack a clear description (pathway) of how to reach these targets (visions). This clearly indicates that thorough analysis of the energy system in the region could provide valuable insights to decision makers and stakeholders on requirements and challenges for transforming the energy system to reach the visions.
  •  
32.
  • Kjärstad, Jan, 1956, et al. (author)
  • The European power plant infrastructure - Presentation of the Chalmers energy infrastructure database with applications
  • 2007
  • In: Energy Policy. - : Elsevier BV. - 0301-4215. ; 35:7, s. 3643-3664
  • Journal article (peer-reviewed)abstract
    • This paper presents a newly established database of the European power plant infrastructure (power plants, fuel infrastructure, fuel resources and CO, storage options) for the EU25 member states (MS) and applies the database in a general discussion of the European power plant and natural gas infrastructure as well as in a simple simulation analysis of British and German power generation up to the year 2050 with respect to phase-out of existing generation capacity, fuel mix and fuel dependency. The results are discussed with respect to age structure of the current production plants, CO2 emissions, natural gas dependency and CO2 capture and storage (CCS) under stringent CO2 emission constraints. The analysis of the information from the power plant database, which includes planned projects, shows large variations in power plant infrastructure between the MS and a clear shift to natural gas-fuelled power plants during the last decade. The data indicates that this shift may continue in the short-term up to 2010 since the majority of planned plants are natural gas fired. The gas plants are, however, geographically concentrated to southern and northwest Europe. The data also shows large activities in the upstream gas sector to accommodate the ongoing shift to gas with pipelines, liquefaction plants and regasification terminals being built and gas fields being prepared for production. At the same time, utilities are integrating upwards in the fuel chain in order to secure supply while oil and gas companies are moving downwards the fuel chain to secure access to markets. However, it is not yet possible to state whether the ongoing shift to natural gas will continue in the medium term, i.e. after 2010, since this will depend on a number of factors as specified below. Recently there have also been announcements for construction of a number of new coal plants. The results of the simulations for the German and British power sector show that combination of a relatively low growth rate in power generation, ambitious national plans on renewables together with a strong expansion in the use of natural gas can meet national reduction targets in CO2 emissions. However, for both countries this will result in a strong dependency on natural gas. Successful application Of CO2 capture will reduce this dependency, since this would allow for a significant amount of coal-based generation, which will contribute to security of supply. (c) 2007 Published by Elsevier Ltd.
  •  
33.
  • Kjärstad, Jan, 1956, et al. (author)
  • The role of biomass to replace fossil fuels in a regional energy system - the case of West Sweden
  • 2016
  • In: Thermal Science. - 0354-9836. ; 20:4, s. 1023-1036
  • Journal article (peer-reviewed)abstract
    • This paper analyses and discusses the potential role of biomass in the energy supply for two counties in the West of Sweden. More specifically this work analysis the role of biomass for a scenario that meets the CO2 emission reduction targets up to year 2050, i.e. the role of biomass is estimated as part of an overall emission reduction portfolio (other renewables, less energy use in industry and in the building stock, measures in the transportation sector and CCS in the industry). The region follows the Swedish national target for GHG-emissions, namely zero net emissions by 2050 and, thus, this is the main motivation for enhancing the use of renewables including biomass. The region also complies with the national target of a transport sector independent of fossil fuels by 2030.It is concluded that the region could double its production capacity of solid biomass to 2030 – from a current level of 6TWh to 12 TWh. Modelling of the electricity sector in the region indicates that bio-based electricity generation in CHPs could, in a cost-efficient way, be raised from 1.2 TWh in 2012 to between 2.2 and 3.7 TWh in 2050 and that generation of DH in CHPs would increase from around 4 TWh in 2012 (fossil plus bio/waste) to between 4.5 and 7.5 TWh in 2050 (bio/waste only). Assuming a conversion efficiency of 0.35 for bio-based electricity generation imply a biomass consumption in 2050 ranging from 6.3 to 10.6 TWh for the two scenarios investigated. In both cases, this is well below the production potential for biomass within the region. For the transport sector it is shown in order for the region to reach zero CO2 emissions by 2050, that a series of actions will be required to significantly reduce demand in combination with use of electricity and biofuels. It is estimated that the transport sector in the region will consume some 12.8 TWh biomass annually from 2030 onwards. It is also concluded that such a transformation is unlikely to occur only in the West of Sweden but rather it can be expected that such a development in West Sweden will be part of an overall European transformation of the transport sector. It is concluded that total biomass consumption in the region could potentially more than triple from 14 TWh in 2010 to 48 TWh in 2040, considering the electricity and transport sectors and under the assumption that all heat (DH and industrial heat) should be generated by biomass. Yet, assuming that biomass also replace the fossil based raw materials used by the industry in the region this would raise demand to more than 170 TWh from 2040 onwards, which would imply significant logistical challenges and which can be compared with the current 132 TWh total Swedish biomass supply for energy purposes.
  •  
34.
  • Kjärstad, Jan, 1956, et al. (author)
  • Transforming the energy system in Västra Götaland and Halland – linking short term actions to long term goals
  • 2015
  • Reports (other academic/artistic)abstract
    • This study analyzes pathways to meet EU, national and regional targets for CO2 emissions, energy efficiency and penetration of renewable energy in the Swedish part of the Kattegat-Skagerrak region (KASK-SE), i.e. more specifically in the counties of Västra Götaland (VGR) and Halland. Special focus is placed on four areas: The potential for energy savings in the building sector, energy savings and fuel shifting in the energy intensive industry, large-scale deployment of renewables in the electricity generation sector and greenhouse gas emission reductions in the transport sector. The energy savings are through the implementation of different energy efficiency measures.
  •  
35.
  • Kjärstad, Jan, 1956, et al. (author)
  • Transport of CO2 in the nordic region
  • 2014
  • In: Energy Procedia. - : Elsevier BV. - 1876-6102. ; 63, s. 2683-2690
  • Conference paper (peer-reviewed)abstract
    • NORDICCS is a virtual CCS networking platform aiming for increased CCS deployment in the five Nordic countries. This paper reports from work investigating options for CO2 transport infrastructure in the Nordic region. Five specific CCS cases have been selected from which capture is analyzed in detail and from which CO2 transport cost has been calculated assuming CO2 being captured only at the site itself or, assuming the selected capture site develops into a CO2-hub with CO2 from several adjacent sources. In the latter case cost has been calculated defining for what volumes pipeline transport becomes less costly than corresponding ship transport. Additionally, cost for both pipeline and ship transport has been calculated as a function of distance and volume in order to apply these calculations to derive the least costly transport mode for the fifty-five largest sources in the region with a coastal location. Also, the effect on cost for systems that will require ramp-up (i.e. transported volumes increase over time) has been calculated. Finally, an analysis of the potential for build-up of clusters in the region was performed. The work clearly shows that ship transport is the least costly transport option, not only for the five selected cases individually but also for most of the emission sources located along the coastline. The work also shows that ship transport is the least costly transport option for most of the potential clusters in the region during the ramp-up phase. An obvious but still important conclusion is that constrained storage capability and injectivity may have a profound impact on design and cost of a CO2 transport system.
  •  
36.
  •  
37.
  • Löfblad, Ebba, et al. (author)
  • Samverkan kring infrastruktur för transport och lagring av koldioxid
  • 2022
  • Reports (other academic/artistic)abstract
    • Negativa utsläpp kommer sannolikt att krävas för att för att Sverige ska kunna uppnå sina klimatmål. Det här projektet har utrett möjligheterna för fjärrvärmebranschen att bidra med negativa utsläpp genom avskiljning, transport och lagring av biogen koldioxid från kraft‐ och fjärrvärmeanläggningar inklusive avfallsförbränningsanläggningar. Uppvärmningssektorn har som vision att år 2045 vara en kolsänka som hjälper till att minska de totala svenska växthusgasutsläppen. Inom sektorn finns stor potential för bio‐CCS eftersom en betydande andel av Sveriges biogena utsläpp kan härledas till punktutsläpp inom sektorn. Men för att realisera potentialen och uppvärmningssektorns vision om att bli en kolsänka krävs konkreta insatser. Målet med projektet har varit att ta fram ett kunskapsunderlag som visar hur fjärrvärmesektorn kan bli en kolsänka till år 2045 genom avskiljning och lagring av biogen koldioxid från förbränning av biobränslen och avfall. Underlaget har legat till grund för fjärrvärmesektorns arbete med att utveckla en strategi för bio‐CCS vid kraft‐ och värmeproduktion inklusive förbränning av avfall. Projektet ger konkret vägledning till fjärrvärmeföretagen när det gäller implementering av bio‐CCS. I arbetet har ingått att visa på robusta utvecklingsvägar för utbyggnaden av bio‐CCS och hur bio‐CCS från år 2030 kan drivas på affärsmässiga grunder. Arbetet har omfattat sex arbetspaket samt en sammanfattande syntes kring ekonomi, teknik, infrastruktur, policy, regelverk och hållbarhetsaspekter för storskalig introduktion och användning av bio‐CCS i fjärrvärmebranschen. En mindre kunskapssammanställning kring CCU har också genomförts inom projektet.
  •  
38.
  • Mandova, Hana, et al. (author)
  • Achieving carbon-neutral iron and steelmaking in Europe through the deployment of bioenergy with carbon capture and storage
  • 2019
  • In: Journal of Cleaner Production. - : Elsevier. - 0959-6526 .- 1879-1786. ; 218, s. 118-129
  • Journal article (peer-reviewed)abstract
    • The 30 integrated steel plants operating in the European Union (EU) are among the largest single-point CO 2 emitters in the region. The deployment of bioenergy with carbon capture and storage (bio-CCS) could significantly reduce their emission intensities. In detail, the results demonstrate that CO 2 emission reduction targets of up to 20% can be met entirely by biomass deployment. A slow CCS technology introduction on top of biomass deployment is expected, as the requirement for emission reduction increases further. Bio-CCS could then be a key technology, particularly in terms of meeting targets above 50%, with CO 2 avoidance costs ranging between €60 and €100 t CO2 −1 at full-scale deployment. The future of bio-CCS and its utilisation on a larger scale would therefore only be viable if such CO 2 avoidance cost were to become economically appealing. Small and medium plants in particular, would economically benefit from sharing CO 2 pipeline networks. CO 2 transport, however, makes a relatively small contribution to the total CO 2 avoidance cost. In the future, the role of bio-CCS in the European iron and steelmaking industry will also be influenced by non-economic conditions, such as regulations, public acceptance, realistic CO 2 storage capacity, and the progress of other mitigation technologies. 
  •  
39.
  • Mandova, Hana, et al. (author)
  • Modelling bio-CCS deployment across iron and steel plants in Europe
  • 2018
  • In: GHGT 2018 - 14th International Conference on Greenhouse Gas Control Technologies. - : Elsevier.
  • Conference paper (peer-reviewed)abstract
    • Iron and steel production is highly reliant on coal, which makes integrated steel plants one of the largest single point CO2 emitters. Technologies that would significantly reduce their coal consumption are currently still at pilot scale. Hence opportunities for bioenergy and CCS as emission reduction strategies are evaluated, as they could be directly integrated within the existing iron and steelmaking setup. At the same time, their co-application – referred to as bio-CCS – can further enhance the emission reduction potential of each one of them. This can result in low-carbon steelmaking emitting over 80% less emissions in comparison to today, which would satisfy the EU targets set for 2050. This work gives an overview of modelling bio-CCS systems, specifically incorporated within the techno-economic BeWhere model, focusing on the deployment of bio-CCS across the integrated steel plants in Europe. The obtained results give an estimate of the average CO2 avoidance cost of 86 € tCO2-1, but high variation is present across the individually plants, ranging between 62 and 114 € tCO2-1. Overall, bio-CCS provides an opportunity to achieve net-zero CO2 emissions occurring on-site (when assuming carbon neutrality of biomass). Modelling possibilities for bio-CCS integration is complex, due to a sophisticated and unique setup of energy usage across each integrated plant together with multiple social-technical factors that may limit their CO2 transport and storage. Introduction of numerous assumptions is hence necessary to overcome those barriers, particularly related to issues on data availability.
  •  
40.
  • Mazzetti, M.J., et al. (author)
  • NORDICCS CCS roadmap
  • 2014
  • In: Energy Procedia. - : Elsevier BV. - 1876-6102. ; 51, s. 1-13
  • Conference paper (peer-reviewed)abstract
    • The Nordic CCS roadmap is developed in the NORDICCS project, a collaborative research project between leading CCS research institutions in the five Nordic countries. The roadmap will outline jointly developed Nordic strategies for widespread implementation of CCS in the Nordic countries in order to help Nordic industries meet a carbon constrained future with a high price on carbon emissions. It will identify pathways and milestones for large-scale Nordic implementation of CCS resulting in beneficial economies of scale that will increase the likelihood of implementation. Several novel cases will be presented that reveal future Nordic opportunities, including industrial CCS where emitters have large point sources of CO2 localized in clusters, and natural gas sweetening with the potential for use of Enhanced Oil Recovery (EOR) to defray the costs. Recommendations will be made for actions relating to joint political work in the Nordic region for improving the framework conditions for CCS.
  •  
41.
  • Odenberger, Mikael, 1977, et al. (author)
  • Prospects for CCS in the EU energy roadmap to 2050
  • 2013
  • In: Energy Procedia. - : Elsevier BV. - 1876-6102. ; 37, s. 7573-7581
  • Conference paper (peer-reviewed)abstract
    • The aim of this paper is to estimate the prospects of carbon capture and storage (CCS) in the European electricity supply system taking into account possible forthcoming policy based on the recent EU Energy Roadmap communication, which suggests a 93 to 99% reduction in CO2 emissions relative 1990 levels from the electricity sector by the year 2050. Furthermore, the effect of whether or not onshore storage will be accepted is investigated. The work is based on techno-economic modeling of the European electricity generation sector under different assumptions (scenarios) of the future with respect to electricity demand and fuel prices. The results indicate that the contribution from CCS on a member state level depends on local conditions, e.g., access to local fuels like lignite, and whether or not onshore storage will be allowed. Excluding on-shore storage in aquifers, the modeling results give that CCS is centralized around the North Sea. Natural gas fired conventional power plants is likely to be a serious competitor to coal CCS in the short to medium term providing large emission reduction opportunities by fuel shifting from existing coal power plants to new high efficient gas fired combined cycles. Such development can be a barrier for early deployment of CCS, and hence, result in a delay in commercialization of CCS. The scenarios presented in the Energy Roadmap prescribe power systems almost without net CO2 emissions by 2050, which implies that CCS technologies by the year 2050 must be of a zero-emission type. The modeling presented here indicates in general a large increase in technologies with low CO2 emissions, renewables as well as a significant contribution from CCS technologies, where CCS in the investigated scenarios have the potential to contribute as much as 25-35% of total electricity generation at around year 2050.
  •  
42.
  •  
43.
  • Odenberger, Mikael, 1977, et al. (author)
  • Ramp-up of CO2 capture and storage within Europe
  • 2008
  • In: International Journal of Greenhouse Gas Control. - : Elsevier BV. - 1750-5836. ; 2:4, s. 417-438
  • Journal article (peer-reviewed)abstract
    • This paper investigates the role of CO2 capture and storage (CCS) technologies as part of a portfolio for reducing CO2 emissions from the European electricity generation system until the year 2050. Special emphasis is put on the ramp-up of CCS with respect to timing of investments and requirement of corresponding CO2 transportation and storage infrastructure. The investigation comprises scenario analysis through modeling possible development of the electricity supply system for EU25 and together with a more detailed analysis of Northern Europe (Germany, UK, Denmark, Finland, Sweden and Norway). The modeling has been carried out with a techno-economic model (minimizing the system cost) including a detailed description of the present stationary European electricity generation system as obtained from the Chalmers Energy Infrastructure database.It is concluded that CCS can play a significant role in reducing CO2 emissions at a cost in the range of 20–60 €/t over the period studied. In EU25 as much as 39 Gt CO2 may be captured over the period 2020–2050 implying a steep ramp-up, i.e. most CCS capacity is added during the first two decades after 2020 from which it is assumed to be commercially available. Corresponding capture in Germany and UK amounts to 9 and 4 Gt, respectively. The analysis show that a transportation infrastructure can be put in place for about 2–5 €/t CO2. However, the steep ramp-up obtained from the model obviously do not take into account other issues which must be resolved for a large scale implementation of CCS. Examples of such issues are discussed in the paper and concern establishment of a legal framework regulating subsurface storage of CO2, inclusion of captured CO2 in the European Union emission trading scheme and issues related to fuel markets and fuel supply to accommodate an increased use of coal as a fuel.
  •  
44.
  • Rootzén, Johan, 1978, et al. (author)
  • A Strategy for Early Deployment of BECCS in Basic Industry - A Swedish Case Study
  • 2018
  • In: International Conference on Negative CO2 Emissions Gothenburg, May 22-24 2018.
  • Conference paper (peer-reviewed)abstract
    • This work discusses the potential for deployment of BECCS in Swedish basic industry as part of the portfolio of technologies and policy measures required to meet near zero emission targets. Since existing policy measures are too weak to incentivize investments in CCS/BECCS at a scale that would be in parity with the emission reductions required, and, since measures that could stimulate reductions in biogenic carbon dioxide emissions are still absent, we also explore key steps required to lay the groundwork for CCS/BECCS deployment. This includes; e.g., RD&D funding, governmental risk sharing and state funding to 1st of the kind projects, support for niche markets (e.g. through public/private procurement), market making for zero- (and/or negative-) CO2 products, and adaptation of infrastructure policies.
  •  
45.
  • Rootzén, Johan, 1978, et al. (author)
  • Assessment of the potential for CO2 capture in European heavy industries
  • 2009
  • In: Proceedings of the 5th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems, Dubrovnik, Croatia, September 29 - October 3 2009. - 9789536313983
  • Conference paper (peer-reviewed)abstract
    • This study aims to assess the role of CO2 capture and storage (CCS) technologies in reducing CO2 emissions from the European industry sectors. Emphasis is here placed on three branches of industry with promising prospects for CCS; mineral oil refineries, iron and steel, and cement production. A relatively small number (~270) of large installations (>500 000 tCO2/year) dominates emissions from these three branches. Together these installations emit 432 MtCO2/year, 8% of EU’s total greenhouse gas emissions. If realizing the full potential of emerging CO2 capture technologies some 270-330 Mt CO2 emissions could be avoided annually. Further, several regions have been singled out as particularly suitable to facilitate integrated CO2 transport networks. The best matches between sources and sinks are currently found in regions bordering the North Sea.
  •  
46.
  • Rootzén, Johan, 1978, et al. (author)
  • Prospects for CO2 capture in European industry
  • 2011
  • In: Management of Environmental Quality. - : Emerald. - 1477-7835. ; 22:1, s. 18-32
  • Journal article (peer-reviewed)abstract
    • Purpose – The aim of this study is to assess the role of CO2 capture and storage (CCS) technologies in the reduction of CO2 emissions from European industries.Design/methodology/approach – A database covering all industrial installations included in the EU ETS has been created. Potential capture sources have been identified and the potential for CO2 capture has been estimated based on branch- and plant-specific conditions. Emphasis is placed here on three branches of industry with promising prospects for CCS: mineral oil refineries, iron and steel, and cement manufacturers.Findings – A relatively small number (~270) of large installations (>500,000?tCO2/year) dominates emissions from the three branches investigated in this study. Together these installations emit 432?MtCO2/year, 8 percent of EU's total greenhouse gas emissions. If the full potential of emerging CO2 capture technologies was realized, some 270-330?MtCO2 emissions could be avoided annually. Further, several regions have been singled out as particularly suitable to facilitate integrated CO2 transport networks. The most promising prospects for an early deployment of CCS are found in the regions bordering the North Sea.Research limitations/implications – Replacement/retrofitting of the existing plant stock will involve large investments and deployment will take time. It is thus important to consider how the current industry structure influences the potential to reduce CO2 in the short- medium and long term. It is concluded that the age structure of the existing industry plant stock and its implications for the timing and deployment rate of CO2 capture and other mitigation measures are important and should therefore be further investigated.Practical implications – CCS has been recognized as a key option for reducing CO2 emissions within the EU. This assessment shows that considerable emission reductions could be achieved by targeting large point sources in some of the most emission-intensive industries. Yet, a number of challenges need to be resolved in all parts of the CCS chain. Efforts need to be intensified from all stakeholders to gain more experience with the technological, economical and social aspects of CCS.Originality/value – This study provides a first estimate of the potential role for CO2 capture technologies in lowering CO2 emissions from European heavy industry. By considering wider system aspects as well as plant-specific conditions the assessment made in this study gives a realistic overview of the prospects and practical limitations of CCS in EU industry.
  •  
47.
  • Sköldberg, Håkan, et al. (author)
  • BIO-CCS I FJÄRRVÄRMESEKTORN – SYNTES
  • 2022
  • Reports (other academic/artistic)abstract
    • Den svenska fjärrvärmesektorn har stor potential att bidra med negativa koldioxidutsläpp genom bio-CCS, minst 10 Mton per år. Den största osäkerheten beträffande möjligheterna för bio-CCS gäller marknads förutsättningarna. Uppvärmningsbranschen har en vision om att år 2045 utgöra en kolsänka. Ett sätt att åstadkomma detta är genom att avskilja och lagra koldioxidutsläpp med biogent ursprung. Ett antal fjärrvärmeföretag har redan olika långt gångna planer på att satsa på bio-CCS. De har sett ett värde i att samarbeta kring hur detta kan åstadkommas. Ett led i detta är projektet Bio-CCS i fjärrvärmesektorn som består av ett gediget underlag baserat på forskning kring olika aspekter av frågan samt en strategi baserad på det underlaget. I denna rapport redovisas en syntes av detta forskningsarbete. Projektet visar att fjärrvärmesektorn har stor teoretisk potential att bidra med negativa koldioxidutsläpp, minst 10 Mton per år. I huvudsak är avskiljning, transport och lagring av koldioxid beprövad teknik även om tillämpningen i detta fall är ny. Även om bio-CCS är förknippad med energianvändning så bidrar tekniken sett ur ett systemperspektiv med stor nytta för att minska koldioxid[1]utsläppen. Bio-CCS är en relativt dyr teknik och det är angeläget att utnyttja samverkan och kluster för att exempelvis skapa ökad kostnadseffektivitet i transport och mellanlagring. Tillgång till lagringsplatser är en förutsättning för framgång och flera alternativ bedöms bli tillgängliga. Det kan dock uppstå konkurrens om tillgången till lagringsplatserna. De regelmässiga förutsättningarna för bio-CCS i Sverige har förbättrats avsevärt de senaste dryga decenniet. Flera regelmässiga hinder kvarstår dock. En del utgör mindre barriärer, andra är av mer betydande karaktär. Den största osäkerheten beträffande möjligheterna för bio-CCS gäller ekonomin. Flera potentiella finansieringsmetoder har studerats, både stöd, regleringar och frivilligmarknader. Det finns fortfarande oklarheter kring syftet med planerade stöd och det framtida ägandet av de negativa utsläppen. Det genomförda projektet har skapat ett forum för kunskapsuppbyggnad, erfarenhetsutbyte och nätverkande, vilket de deltagande företagen bedömt vara mycket värdefullt.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-47 of 47
Type of publication
conference paper (24)
journal article (12)
reports (9)
book chapter (2)
Type of content
peer-reviewed (31)
other academic/artistic (16)
Author/Editor
Kjärstad, Jan, 1956 (47)
Johnsson, Filip, 196 ... (36)
Odenberger, Mikael, ... (9)
Eldrup, N.H. (6)
Harvey, Simon, 1965 (5)
Skagestad, R. (5)
show more...
Lundqvist, Karin (3)
Jordal, Kristin (3)
Seglem, Heidi (3)
Aagaard, P (2)
Wang, Chuan (2)
Berndes, Göran, 1966 (2)
Romson, Åsa (2)
Hansson, Julia, 1978 (2)
Holm, Johan (2)
Gode, Jenny (2)
Biermann, Max, 1989 (2)
Hoballah, Rayane (2)
Reyes-Lúa, Adriana (2)
Roussanaly, Simon (2)
Anantharaman, Rahul (2)
Wanderley, Ricardo (2)
Steen, Linnea (2)
Berntsson, Thore, 19 ... (1)
Thunman, Henrik, 197 ... (1)
Wetterlund, Elisabet ... (1)
Wetterlund, Elisabet ... (1)
Leckner, Bo G, 1936 (1)
Johansson, Helene (1)
Òsk Gardarsdòttir, S ... (1)
Unger, Thomas (1)
Jönsson, Johanna, 19 ... (1)
Klintbom, Patrik (1)
Karlsson, Henrik (1)
Håkansson, Åsa (1)
Langlet, David, 1977 (1)
Johansson, Daniella, ... (1)
Sjöblom, Jonas, 1968 (1)
Wolf, Jens (1)
Möllersten, Kenneth (1)
Beiron, Johanna, 199 ... (1)
Onarheim, K. (1)
Fostås, Berit (1)
Fu, Chao (1)
Gorset, Oddvar (1)
Skagestad, Ragnhild, ... (1)
Bisaillon, Mattias (1)
Sahlin, Jenny (1)
Nehler, Therese (1)
Edvall, Maria (1)
show less...
University
Chalmers University of Technology (47)
Luleå University of Technology (2)
University of Gothenburg (1)
Uppsala University (1)
RISE (1)
Language
English (41)
Swedish (6)
Research subject (UKÄ/SCB)
Engineering and Technology (40)
Social Sciences (12)
Natural sciences (11)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view