SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Klein Fabrice) "

Search: WFRF:(Klein Fabrice)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Böhm, Johann, et al. (author)
  • Mutation spectrum in the large GTPase dynamin 2, and genotype-phenotype correlation in autosomal dominant centronuclear myopathy.
  • 2012
  • In: Human mutation. - : Hindawi Limited. - 1098-1004 .- 1059-7794. ; 33:6, s. 949-59
  • Journal article (peer-reviewed)abstract
    • Centronuclear myopathy (CNM) is a genetically heterogeneous disorder associated with general skeletal muscle weakness, type I fiber predominance and atrophy, and abnormally centralized nuclei. Autosomal dominant CNM is due to mutations in the large GTPase dynamin 2 (DNM2), a mechanochemical enzyme regulating cytoskeleton and membrane trafficking in cells. To date, 40 families with CNM-related DNM2 mutations have been described, and here we report 60 additional families encompassing a broad genotypic and phenotypic spectrum. In total, 18 different mutations are reported in 100 families and our cohort harbors nine known and four new mutations, including the first splice-site mutation. Genotype-phenotype correlation hypotheses are drawn from the published and new data, and allow an efficient screening strategy for molecular diagnosis. In addition to CNM, dissimilar DNM2 mutations are associated with Charcot-Marie-Tooth (CMT) peripheral neuropathy (CMTD1B and CMT2M), suggesting a tissue-specific impact of the mutations. In this study, we discuss the possible clinical overlap of CNM and CMT, and the biological significance of the respective mutations based on the known functions of dynamin 2 and its protein structure. Defects in membrane trafficking due to DNM2 mutations potentially represent a common pathological mechanism in CNM and CMT.
  •  
2.
  • Gommenginger, Christine, et al. (author)
  • SEASTAR: A mission to study ocean submesoscale dynamics and small-scale atmosphere-ocean processes in coastal, shelf and polar seas
  • 2019
  • In: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6:JUL
  • Journal article (other academic/artistic)abstract
    • High-resolution satellite images of ocean color and sea surface temperature reveal an abundance of ocean fronts, vortices and filaments at scales below 10 km but measurements of ocean surface dynamics at these scales are rare. There is increasing recognition of the role played by small scale ocean processes in ocean-atmosphere coupling, upper-ocean mixing and ocean vertical transports, with advanced numerical models and in situ observations highlighting fundamental changes in dynamics when scales reach 1 km. Numerous scientific publications highlight the global impact of small oceanic scales on marine ecosystems, operational forecasts and long-term climate projections through strong ageostrophic circulations, large vertical ocean velocities and mixed layer re-stratification. Small-scale processes particularly dominate in coastal, shelf and polar seas where they mediate important exchanges between land, ocean, atmosphere and the cryosphere e.g. freshwater, pollutants. As numerical models continue to evolve towards finer spatial resolution and increasingly complex coupled atmosphere-wave-ice-ocean systems, modern observing capability lags behind, unable to deliver the high-resolution synoptic measurements of total currents, wind vectors and waves needed to advance understanding, develop better parameterizations and improve model validations, forecasts and projections. SEASTAR is a satellite mission concept that proposes to directly address this critical observational gap with synoptic two-dimensional imaging of total ocean surface current vectors and wind vectors at 1 km resolution and coincident directional wave spectra. Based on major recent advances in squinted along-track Synthetic Aperture Radar interferometry, SEASTAR is an innovative, mature concept with unique demonstrated capabilities, seeking to proceed towards spaceborne implementation within Europe and beyond.
  •  
3.
  • Dima, Danai, et al. (author)
  • Subcortical volumes across the lifespan : Data from 18,605 healthy individuals aged 3-90 years.
  • 2022
  • In: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 43:1, s. 452-469
  • Journal article (peer-reviewed)abstract
    • Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.
  •  
4.
  • Frangou, Sophia, et al. (author)
  • Cortical thickness across the lifespan : Data from 17,075 healthy individuals aged 3-90 years
  • 2022
  • In: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193. ; 43:1, s. 431-451
  • Journal article (peer-reviewed)abstract
    • Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.
  •  
5.
  • Hibar, Derrek P., et al. (author)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
6.
  • Marto, João Pedro, et al. (author)
  • Safety and Outcome of Revascularization Treatment in Patients With Acute Ischemic Stroke and COVID-19: The Global COVID-19 Stroke Registry.
  • 2023
  • In: Neurology. - 1526-632X. ; 100:7
  • Journal article (peer-reviewed)abstract
    • COVID-19-related inflammation, endothelial dysfunction, and coagulopathy may increase the bleeding risk and lower the efficacy of revascularization treatments in patients with acute ischemic stroke (AIS). We aimed to evaluate the safety and outcomes of revascularization treatments in patients with AIS and COVID-19.This was a retrospective multicenter cohort study of consecutive patients with AIS receiving intravenous thrombolysis (IVT) and/or endovascular treatment (EVT) between March 2020 and June 2021 tested for severe acute respiratory syndrome coronavirus 2 infection. With a doubly robust model combining propensity score weighting and multivariate regression, we studied the association of COVID-19 with intracranial bleeding complications and clinical outcomes. Subgroup analyses were performed according to treatment groups (IVT-only and EVT).Of a total of 15,128 included patients from 105 centers, 853 (5.6%) were diagnosed with COVID-19; of those, 5,848 (38.7%) patients received IVT-only and 9,280 (61.3%) EVT (with or without IVT). Patients with COVID-19 had a higher rate of symptomatic intracerebral hemorrhage (SICH) (adjusted OR 1.53; 95% CI 1.16-2.01), symptomatic subarachnoid hemorrhage (SSAH) (OR 1.80; 95% CI 1.20-2.69), SICH and/or SSAH combined (OR 1.56; 95% CI 1.23-1.99), 24-hour mortality (OR 2.47; 95% CI 1.58-3.86), and 3-month mortality (OR 1.88; 95% CI 1.52-2.33). Patients with COVID-19 also had an unfavorable shift in the distribution of the modified Rankin score at 3 months (OR 1.42; 95% CI 1.26-1.60).Patients with AIS and COVID-19 showed higher rates of intracranial bleeding complications and worse clinical outcomes after revascularization treatments than contemporaneous non-COVID-19 patients receiving treatment. Current available data do not allow direct conclusions to be drawn on the effectiveness of revascularization treatments in patients with COVID-19 or to establish different treatment recommendations in this subgroup of patients with ischemic stroke. Our findings can be taken into consideration for treatment decisions, patient monitoring, and establishing prognosis.The study was registered under ClinicalTrials.gov identifier NCT04895462.
  •  
7.
  • Satizabal, Claudia L., et al. (author)
  • Genetic architecture of subcortical brain structures in 38,851 individuals
  • 2019
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:11, s. 1624-
  • Journal article (peer-reviewed)abstract
    • Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.
  •  
8.
  • Wierenga, Lara M., et al. (author)
  • Greater male than female variability in regional brain structure across the lifespan
  • 2022
  • In: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193. ; 43:1, s. 470-499
  • Journal article (peer-reviewed)abstract
    • For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed significant patterns of greater male than female between-subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.
  •  
9.
  • 2019
  • Journal article (peer-reviewed)
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9
Type of publication
journal article (9)
Type of content
peer-reviewed (8)
other academic/artistic (1)
Author/Editor
Franke, Barbara (5)
Ching, Christopher R ... (5)
Agartz, Ingrid (5)
Brouwer, Rachel M (5)
Westlye, Lars T (5)
Thompson, Paul M (5)
show more...
Andreassen, Ole A (5)
de Geus, Eco J. C. (5)
Martin, Nicholas G. (5)
Boomsma, Dorret I. (5)
Heslenfeld, Dirk J. (5)
Jahanshad, Neda (5)
Veltman, Dick J (5)
Sachdev, Perminder S ... (5)
Wittfeld, Katharina (5)
Wright, Margaret J. (5)
Brodaty, Henry (5)
de Zubicaray, Greig ... (5)
Ehrlich, Stefan (5)
Fisher, Simon E. (5)
Holmes, Avram J. (5)
McMahon, Katie L. (5)
Strike, Lachlan T. (5)
Wen, Wei (5)
Buitelaar, Jan K (5)
Smoller, Jordan W (5)
Den Braber, Anouk (5)
Hoekstra, Pieter J. (5)
Saykin, Andrew J. (5)
Cannon, Dara M (4)
McDonald, Colm (4)
Andersson, Micael (4)
van der Wee, Nic J. ... (4)
Doan, Nhat Trung (4)
Meyer-Lindenberg, An ... (4)
Nyberg, Lars, 1966- (4)
Wassink, Thomas H (4)
Heinz, Andreas (4)
Crespo-Facorro, Bene ... (4)
Tordesillas-Gutierre ... (4)
Stein, Dan J (4)
Medland, Sarah E (4)
Schmaal, Lianne (4)
Schumann, Gunter (4)
Buckner, Randy L. (4)
Espeseth, Thomas (4)
Glahn, David C. (4)
van Haren, Neeltje E ... (4)
Hibar, Derrek P. (4)
Dale, Anders M. (4)
show less...
University
Karolinska Institutet (6)
Umeå University (5)
Uppsala University (5)
University of Gothenburg (3)
Chalmers University of Technology (2)
Halmstad University (1)
show more...
Stockholm University (1)
Lund University (1)
show less...
Language
English (9)
Research subject (UKÄ/SCB)
Medical and Health Sciences (8)
Natural sciences (3)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view