SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Klingstrom J.) "

Search: WFRF:(Klingstrom J.)

  • Result 1-50 of 68
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Abudurexiti, A, et al. (author)
  • Taxonomy of the order Bunyavirales: update 2019
  • 2019
  • In: Archives of virology. - : Springer Science and Business Media LLC. - 1432-8798 .- 0304-8608. ; 164:7, s. 1949-1965
  • Journal article (peer-reviewed)
  •  
6.
  • Hepojoki, J, et al. (author)
  • Acute hantavirus infection induces galectin-3-binding protein
  • 2014
  • In: The Journal of general virology. - : Microbiology Society. - 1465-2099 .- 0022-1317. ; 95:Pt 11, s. 2356-2364
  • Journal article (peer-reviewed)abstract
    • Hantaviruses are zoonotic viruses that cause life-threatening diseases when transmitted to humans. Severe hantavirus infection is manifested by impairment of renal function, pulmonary oedema and capillary leakage. Both innate and adaptive immune responses contribute to the pathogenesis, but the underlying mechanisms are not fully understood. Here, we showed that galectin-3-binding protein (Gal-3BP) was upregulated as a result of hantavirus infection bothin vitroandin vivo. Gal-3BP is a secreted glycoprotein found in human serum, and increased Gal-3BP levels have been reported in chronic viral infections and in several types of cancer. Ourin vitroexperiments showed that, whilst Vero E6 cells (an African green monkey kidney cell line) constitutively expressed and secreted Gal-3BP, this protein was detected in primary human cells only as a result of hantavirus infection. Analysis of Gal-3BP levels in serum samples of cynomolgus macaques infected experimentally with hantavirus indicated that hantavirus infection induced Gal-3BP alsoin vivo. Finally, analysis of plasma samples collected from patients hospitalized because of acute hantavirus infection showed higher Gal-3BP levels during the acute than the convalescent phase. Furthermore, the Gal-3BP levels in patients with haemorrhagic fever with renal syndrome correlated with increased complement activation and with clinical variables reflecting the severity of acute hantavirus infection.
  •  
7.
  • Medina, LMP, et al. (author)
  • Targeted plasma proteomics reveals signatures discriminating COVID-19 from sepsis with pneumonia
  • 2023
  • In: Respiratory research. - : Springer Science and Business Media LLC. - 1465-993X. ; 24:1, s. 62-
  • Journal article (peer-reviewed)abstract
    • BackgroundCOVID-19 remains a major public health challenge, requiring the development of tools to improve diagnosis and inform therapeutic decisions. As dysregulated inflammation and coagulation responses have been implicated in the pathophysiology of COVID-19 and sepsis, we studied their plasma proteome profiles to delineate similarities from specific features.MethodsWe measured 276 plasma proteins involved in Inflammation, organ damage, immune response and coagulation in healthy controls, COVID-19 patients during acute and convalescence phase, and sepsis patients; the latter included (i) community-acquired pneumonia (CAP) caused by Influenza, (ii) bacterial CAP, (iii) non-pneumonia sepsis, and (iv) septic shock patients.ResultsWe identified a core response to infection consisting of 42 proteins altered in both COVID-19 and sepsis, although higher levels of cytokine storm-associated proteins were evident in sepsis. Furthermore, microbiologic etiology and clinical endotypes were linked to unique signatures. Finally, through machine learning, we identified biomarkers, such as TRIM21, PTN and CASP8, that accurately differentiated COVID-19 from CAP-sepsis with higher accuracy than standard clinical markers.ConclusionsThis study extends the understanding of host responses underlying sepsis and COVID-19, indicating varying disease mechanisms with unique signatures. These diagnostic and severity signatures are candidates for the development of personalized management of COVID-19 and sepsis.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  • Vangeti, S, et al. (author)
  • Monocyte subset redistribution from blood to kidneys in patients with Puumala virus caused hemorrhagic fever with renal syndrome
  • 2021
  • In: PLoS pathogens. - : Public Library of Science (PLoS). - 1553-7374. ; 17:3, s. e1009400-
  • Journal article (peer-reviewed)abstract
    • Innate immune cells like monocytes patrol the vasculature and mucosal surfaces, recognize pathogens, rapidly redistribute to affected tissues and cause inflammation by secretion of cytokines. We previously showed that monocytes are reduced in blood but accumulate in the airways of patients with Puumala virus (PUUV) caused hemorrhagic fever with renal syndrome (HFRS). However, the dynamics of monocyte infiltration to the kidneys during HFRS, and its impact on disease severity are currently unknown. Here, we examined longitudinal peripheral blood samples and renal biopsies from HFRS patients and performed in vitro experiments to investigate the fate of monocytes during HFRS. During the early stages of HFRS, circulating CD14–CD16+ nonclassical monocytes (NCMs) that patrol the vasculature were reduced in most patients. Instead, CD14+CD16– classical (CMs) and CD14+CD16+ intermediate monocytes (IMs) were increased in blood, in particular in HFRS patients with more severe disease. Blood monocytes from patients with acute HFRS expressed higher levels of HLA-DR, the endothelial adhesion marker CD62L and the chemokine receptors CCR7 and CCR2, as compared to convalescence, suggesting monocyte activation and migration to peripheral tissues during acute HFRS. Supporting this hypothesis, increased numbers of HLA-DR+, CD14+, CD16+ and CD68+ cells were observed in the renal tissues of acute HFRS patients compared to controls. In vitro, blood CD16+ monocytes upregulated CD62L after direct exposure to PUUV whereas CD16– monocytes upregulated CCR7 after contact with PUUV-infected endothelial cells, suggesting differential mechanisms of activation and response between monocyte subsets. Together, our findings suggest that NCMs are reduced in blood, potentially via CD62L-mediated attachment to endothelial cells and monocytes are recruited to the kidneys during HFRS. Monocyte mobilization, activation and functional impairment together may influence the severity of disease in acute PUUV-HFRS.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  • Tuiskunen, Anne, et al. (author)
  • Self-priming of reverse transcriptase impairs strand-specific detection of dengue virus RNA
  • 2010
  • In: Journal of General Virology. - : Microbiology Society. - 0022-1317 .- 1465-2099. ; 91:4, s. 1019-1027
  • Journal article (peer-reviewed)abstract
    • Dengue virus infection is the most frequent arthropod-borne infection affecting humans in the world. Our understanding of the pathophysiological events leading to mild or severe outcomes of the disease remains limited by the fact that viral target cells in the human body are poorly characterized. One of the most sensitive strategies for detecting cells supporting active replication of this positive-strand RNA virus is the search for the replicative intermediate, an antigenome of negative polarity, by RT-PCR. However, a phenomenon described as ‘false priming' of the reverse transcriptase (RT) prevents strand-specific detection. The results of the current study showed that this event corresponds to cDNA synthesis that is independent of any primer addition. This property was general to all RNAs tested and was not associated with small free nucleic acids, such as tRNAs and microRNAs. Rather, it corresponded to initiation of cDNA synthesis from the 3′ end of the RNA template, and a model is proposed in which the template RNA snaps back upon itself and creates a transient RNA primer suitable for the RT. Such a property would explain why many assays proposed for detection of a replicative intermediate are not specific, and may help in the development of a molecular biology protocol that could allow replication studies of RNA viruses of human interest, such as dengue virus, hepatitis C virus and enteroviruses.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  • Barsoe, S, et al. (author)
  • RT-qPCR assay for detection of mink astrovirus in outbreaks of diarrhea on Danish mink farms
  • 2021
  • In: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 16:5, s. e0252022-
  • Journal article (peer-reviewed)abstract
    • Diarrhea in mink kits is a major cause of disease and mortality in the mink production. The etiology remains unknown in most outbreaks due to a lack of diagnostic assays. In the current study we present an RT-qPCR method to detect mink astrovirus in fecal samples from mink kits with diarrhea. All sampled animals were classified based on age and patoanatomical evaluation as having pre-weaning diarrhea, diarrhea in the growth period or as having no macroscopic signs of diarrhea. Fecal samples were analyzed for MiAstV with RT-qPCR, next generation sequencing and electron microscopy in parallel. Mink astrovirus was detected with RT-qPCR in 92 out of 203 samples. This detection was confirmed by next generation sequencing in a high proportion of samples (22/27), and by visualization of astrovirus particles with EM in some of the samples. Mink astrovirus was highly prevalent (68%) among kits in the outbreaks of pre-weaning diarrhea, in particular outbreaks from May, while less prevalent in outbreaks in June. Mink astrovirus was detected in outbreaks of diarrhea in the growth period, though in a much lesser extent than in the pre-weaning period. The role of mink astrovirus in the diarrhea disease complex of mink remain to be investigated, and for that purpose this sensitive and robust RT-qPCR can be a valuable tool in the future.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  •  
42.
  •  
43.
  •  
44.
  •  
45.
  •  
46.
  • Heyman, P, et al. (author)
  • Tula hantavirus in Belgium
  • 2002
  • In: Epidemiology and infection. - 0950-2688. ; 128:2, s. 251-256
  • Journal article (peer-reviewed)
  •  
47.
  • Hober, Sophia, Professor, 1965-, et al. (author)
  • Systematic evaluation of SARS-CoV-2 antigens enables a highly specific and sensitive multiplex serological COVID-19 assay
  • 2021
  • In: Clinical & Translational Immunology. - : Wiley. - 2050-0068. ; 10:7
  • Journal article (peer-reviewed)abstract
    • Objective. The COVID-19 pandemic poses an immense need for accurate, sensitive and high-throughput clinical tests, and serological assays are needed for both overarching epidemiological studies and evaluating vaccines. Here, we present the development and validation of a high-throughput multiplex bead-based serological assay. Methods. More than 100 representations of SARS-CoV-2 proteins were included for initial evaluation, including antigens produced in bacterial and mammalian hosts as well as synthetic peptides. The five best-performing antigens, three representing the spike glycoprotein and two representing the nucleocapsid protein, were further evaluated for detection of IgG antibodies in samples from 331 COVID-19 patients and convalescents, and in 2090 negative controls sampled before 2020. Results. Three antigens were finally selected, represented by a soluble trimeric form and the S1-domain of the spike glycoprotein as well as by the C-terminal domain of the nucleocapsid. The sensitivity for these three antigens individually was found to be 99.7%, 99.1% and 99.7%, and the specificity was found to be 98.1%, 98.7% and 95.7%. The best assay performance was although achieved when utilising two antigens in combination, enabling a sensitivity of up to 99.7% combined with a specificity of 100%. Requiring any two of the three antigens resulted in a sensitivity of 99.7% and a specificity of 99.4%. Conclusion. These observations demonstrate that a serological test based on a combination of several SARS-CoV-2 antigens enables a highly specific and sensitive multiplex serological COVID-19 assay.
  •  
48.
  • Kallio, ER, et al. (author)
  • Prolonged survival of Puumala hantavirus outside the host: evidence for indirect transmission via the environment
  • 2006
  • In: The Journal of general virology. - : Microbiology Society. - 0022-1317 .- 1465-2099. ; 87:Pt 8, s. 2127-2134
  • Journal article (peer-reviewed)abstract
    • The capability of rodent-borne viruses to survive outside the host is critical for the transmission dynamics within rodent populations and to humans. The transmission of Puumala virus (PUUV) in colonized bank voles (Clethrionomys glareolus) was investigated and additional longevity studies in cell culture with PUUV and Tula (TULV) hantaviruses were performed. Wild-type PUUV excreted by experimentally infected donor bank voles was shown to be transmitted indirectly between rodents through contaminated beddings, and maintained its infectivity to recipient voles at room temperature for 12–15 days. In cell culture supernatants, PUUV and TULV remained infectious for 5–11 days at room temperature and up to 18 days at 4 °C, but were inactivated after 24 h at 37 °C. Interestingly, a fraction of dried virus was still infectious after 1 h at 56 °C. These results demonstrated that hantavirus transmission does not require direct contact between rodents, or between rodents and humans, and that the indirect transmission of PUUV through contaminated environment takes place among the rodents for a prolonged period of time. The results also have implications for safety recommendations for work with hantaviruses and for preventive measures.
  •  
49.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 68

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view