SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kljun Natascha) "

Search: WFRF:(Kljun Natascha)

  • Result 1-35 of 35
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andersson, Andreas, et al. (author)
  • Air-sea gas transfer in high Arctic fjords
  • 2017
  • In: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 44:5, s. 2519-2526
  • Journal article (peer-reviewed)abstract
    • In Arctic fjords and high-latitude seas, strong surface cooling dominates during a large part of the year, generating water-side convection (w*w) and enhanced turbulence in the water. These regions are key areas for the global carbon cycle; thus, a correct description of their air-sea gas exchange is crucial. CO2-data were measured via the eddy covariance technique in marine Arctic conditions and reveal that water-side convection has a major impact on the gas transfer velocity. This is observed even at wind speeds as high as 9 m s-1, where convective motions are generally thought to be suppressed by wind-driven turbulence. The enhanced air-sea transfer of CO2 caused by water-side convection nearly doubled the CO2uptake, after scaled to open sea conditions the contribution from  to the CO2 flux remained as high as 34%; this phenomenon is expected to be highly important for the total carbon uptake in marine Arctic areas.
  •  
2.
  • Chi, Jinshu, et al. (author)
  • Forest floor fluxes drive differences in the carbon balance of contrasting boreal forest stands
  • 2021
  • In: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 306
  • Journal article (peer-reviewed)abstract
    • The forest floor provides an important interface of soil-atmosphere CO2 exchanges but their controls and contributions to the ecosystem-scale carbon budget are uncertain due to measurement limitations. In this study, we deployed eddy covariance systems below- and above-canopy to measure the spatially integrated net forest floor CO2 exchange (NFFE) and the entire net ecosystem CO2 exchange (NEE) at two mature contrasting stands located in close vicinity in boreal Sweden. We first developed an improved cospectra model to correct below-canopy flux data. Our empirical below-canopy cospectra models revealed a greater contribution of large- and small-scale eddies in the trunk space compared to their distribution in the above-canopy turbulence cospectra. We found that applying the above-canopy cospectra model did not affect the below-canopy annual CO2 fluxes at the sparse pine forest but significantly underestimated fluxes at the dense mixed spruce-pine stand. At the mixed spruce-pine stand, forest floor respiration (Rff) was higher and photosynthesis (GPPff) was lower, leading to a 1.4 times stronger net CO2 source compared to the pine stand. We further found that drought enhanced Rff more than GPPff, leading to increased NFFE. Averaged across the six site-years, forest floor fluxes contributed 82% to ecosystem-scale respiration (Reco) and 12% to gross primary production (GPP). Since the annual GPP was similar between both stands, the considerable difference in their annual NEE was due to contrasting Reco, the latter being primarily driven by the variations in NFFE. This implies that NFFE acted as the driver for the differences in NEE between these two contrasting stands. This study therefore highlights the important role of forest floor CO2 fluxes in regulating the boreal forest carbon balance. It further calls for extended efforts in acquiring high spatiotemporal resolution data of forest floor fluxes to improve predictions of global change impacts on the forest carbon cycle.
  •  
3.
  • Chi, Jinshu, et al. (author)
  • The carbon balance of a managed boreal landscape measured from a tall tower in northern Sweden
  • 2019
  • In: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923 .- 1873-2240. ; 274, s. 29-41
  • Journal article (peer-reviewed)abstract
    • Boreal forests exchange large amounts of carbon dioxide (CO2) with the atmosphere. A managed boreal landscape usually comprises various potential CO2 sinks and sources across forest stands of varying age classes, clear-cut areas, mires, and lakes. Due to this heterogeneity and complexity, large uncertainties exist regarding the net CO2 balance at the landscape scale. In this study, we present the first estimate of the net CO2 exchange over a managed boreal landscape (∼68 km2) in northern Sweden, based on tall tower eddy covariance measurements. Our results suggest that from March 1, 2016 to February 28, 2018, the heterogeneous landscape was a net CO2 sink with a 2-year mean uptake of −87 ± 6 g C m−2 yr−1. Due to an earlier and warmer spring and sunnier autumn, the landscape was a stronger CO2 sink during the first year (−122 ± 8 g C m−2) compared to the second year (−52 ± 9 g C m−2). Footprint analysis shows that 87% of the CO2 flux measurements originated from forests, whereas mires, clear-cuts, lakes, and grassland contributed 11%, 1%, 0.7%, and 0.2%, respectively. Altogether, the CO2 sink strength of the heterogeneous landscape was up to 38% lower compared to the sink strength of a mature stand surrounding the tower. Overall, this study suggests that the managed boreal landscape acted as a CO2 sink and advocates tall tower eddy covariance measurements to improve regional carbon budget estimates.
  •  
4.
  • Chi, Jinshu, et al. (author)
  • The Net Landscape Carbon Balance—Integrating terrestrial and aquatic carbon fluxes in a managed boreal forest landscape in Sweden
  • 2020
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:4, s. 2353-2367
  • Journal article (peer-reviewed)abstract
    • The boreal biome exchanges large amounts of carbon (C) and greenhouse gases (GHGs) with the atmosphere and thus significantly affects the global climate. A managed boreal landscape consists of various sinks and sources of carbon dioxide (CO2), methane (CH4), and dissolved organic and inorganic carbon (DOC and DIC) across forests, mires, lakes, and streams. Due to the spatial heterogeneity, large uncertainties exist regarding the net landscape carbon balance (NLCB). In this study, we compiled terrestrial and aquatic fluxes of CO2, CH4, DOC, DIC, and harvested C obtained from tall-tower eddy covariance measurements, stream monitoring, and remote sensing of biomass stocks for an entire boreal catchment (~68 km2) in Sweden to estimate the NLCB across the land–water–atmosphere continuum. Our results showed that this managed boreal forest landscape was a net C sink (NLCB = 39 g C m−2 year−1) with the landscape–atmosphere CO2 exchange being the dominant component, followed by the C export via harvest and streams. Accounting for the global warming potential of CH4, the landscape was a GHG sink of 237 g CO2-eq m−2 year−1, thus providing a climate-cooling effect. The CH4 flux contribution to the annual GHG budget increased from 0.6% during spring to 3.2% during winter. The aquatic C loss was most significant during spring contributing 8% to the annual NLCB. We further found that abiotic controls (e.g., air temperature and incoming radiation) regulated the temporal variability of the NLCB whereas land cover types (e.g., mire vs. forest) and management practices (e.g., clear-cutting) determined their spatial variability. Our study advocates the need for integrating terrestrial and aquatic fluxes at the landscape scale based on tall-tower eddy covariance measurements combined with biomass stock and stream monitoring to develop a holistic understanding of the NLCB of managed boreal forest landscapes and to better evaluate their potential for mitigating climate change.
  •  
5.
  •  
6.
  • Duncanson, Laura, et al. (author)
  • Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission
  • 2022
  • In: Remote Sensing of Environment. - : Elsevier BV. - 0034-4257 .- 1879-0704. ; 270
  • Journal article (peer-reviewed)abstract
    • NASA's Global Ecosystem Dynamics Investigation (GEDI) is collecting spaceborne full waveform lidar data with a primary science goal of producing accurate estimates of forest aboveground biomass density (AGBD). This paper presents the development of the models used to create GEDI's footprint-level (~25 m) AGBD (GEDI04_A) product, including a description of the datasets used and the procedure for final model selection. The data used to fit our models are from a compilation of globally distributed spatially and temporally coincident field and airborne lidar datasets, whereby we simulated GEDI-like waveforms from airborne lidar to build a calibration database. We used this database to expand the geographic extent of past waveform lidar studies, and divided the globe into four broad strata by Plant Functional Type (PFT) and six geographic regions. GEDI's waveform-to-biomass models take the form of parametric Ordinary Least Squares (OLS) models with simulated Relative Height (RH) metrics as predictor variables. From an exhaustive set of candidate models, we selected the best input predictor variables, and data transformations for each geographic stratum in the GEDI domain to produce a set of comprehensive predictive footprint-level models. We found that model selection frequently favored combinations of RH metrics at the 98th, 90th, 50th, and 10th height above ground-level percentiles (RH98, RH90, RH50, and RH10, respectively), but that inclusion of lower RH metrics (e.g. RH10) did not markedly improve model performance. Second, forced inclusion of RH98 in all models was important and did not degrade model performance, and the best performing models were parsimonious, typically having only 1-3 predictors. Third, stratification by geographic domain (PFT, geographic region) improved model performance in comparison to global models without stratification. Fourth, for the vast majority of strata, the best performing models were fit using square root transformation of field AGBD and/or height metrics. There was considerable variability in model performance across geographic strata, and areas with sparse training data and/or high AGBD values had the poorest performance. These models are used to produce global predictions of AGBD, but will be improved in the future as more and better training data become available.
  •  
7.
  • Franz, D, et al. (author)
  • Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe´s terrestrial ecosystems: a review
  • 2018
  • In: International Agrophysics. - : Walter de Gruyter GmbH. - 0236-8722 .- 2300-8725. ; 32, s. 439-455
  • Journal article (peer-reviewed)abstract
    • Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO2, CH4, N2O, H2O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.
  •  
8.
  • Haszpra, Laszlo, et al. (author)
  • Real-world wintertime CO, N2O, and CO2 emissions of a central European village
  • 2022
  • In: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-8548. ; 15:17, s. 5019-5031
  • Journal article (peer-reviewed)abstract
    • Although small rural settlements are only minor individual sources of greenhouse gases and air pollution, their high overall occurrence can significantly contribute to the total emissions of a region or country. Emissions from a rural lifestyle may be remarkably different than those of urban and industrialized regions, but nevertheless they have hardly been studied so far. Here, flux measurements at a tall-tower eddy covariance monitoring site and the footprint model FFP are used to determine the real-world wintertime CO, N2O, and CO2 emissions of a small village in western Hungary. The recorded emission densities, dominantly resulting from residential heating, are 3.5, 0.043, and 72 μg m-2 s-1 for CO, N2O, and CO2, respectively. While the measured CO and CO2 emissions are comparable to those calculated using the assumed energy consumption and applying the according emission factors, the nitrous oxide emissions exceed the expected value by a magnitude. This may indicate that the nitrous oxide emissions are significantly underestimated in the emission inventories, and modifications in the methodology of emission calculations are necessary. Using a three-dimensional forward transport model, we further show that, in contrast to the flux measurements, the concentration measurements at the regional background monitoring site are only insignificantly influenced by the emissions of the nearby village.
  •  
9.
  • Helbig, Manuel, et al. (author)
  • Integrating continuous atmospheric boundary layer and tower-based flux measurements to advance understanding of land-atmosphere interactions
  • 2021
  • In: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923. ; 307
  • Research review (peer-reviewed)abstract
    • The atmospheric boundary layer mediates the exchange of energy, matter, and momentum between the land surface and the free troposphere, integrating a range of physical, chemical, and biological processes and is defined as the lowest layer of the atmosphere (ranging from a few meters to 3 km). In this review, we investigate how continuous, automated observations of the atmospheric boundary layer can enhance the scientific value of co-located eddy covariance measurements of land-atmosphere fluxes of carbon, water, and energy, as are being made at FLUXNET sites worldwide. We highlight four key opportunities to integrate tower-based flux measurements with continuous, long-term atmospheric boundary layer measurements: (1) to interpret surface flux and atmospheric boundary layer exchange dynamics and feedbacks at flux tower sites, (2) to support flux footprint modelling, the interpretation of surface fluxes in heterogeneous and mountainous terrain, and quality control of eddy covariance flux measurements, (3) to support regional-scale modeling and upscaling of surface fluxes to continental scales, and (4) to quantify land-atmosphere coupling and validate its representation in Earth system models. Adding a suite of atmospheric boundary layer measurements to eddy covariance flux tower sites, and supporting the sharing of these data to tower networks, would allow the Earth science community to address new emerging research questions, better interpret ongoing flux tower measurements, and would present novel opportunities for collaborations between FLUXNET scientists and atmospheric and remote sensing scientists.
  •  
10.
  • Islam, Md. Rafikul, et al. (author)
  • Integrated Assessment of Climate Change and Forest Management Impacts on Carbon Fluxes and Biomass in a Southern Boreal Forest
  • 2024
  • Conference paper (other academic/artistic)abstract
    • Boreal forests play a crucial role in global carbon sequestration and storage, yet their vulnerability to climate change remains a significant concern. We present results from simulations with the process-based dynamic global vegetation model LPJ-GUESS of the combined effects of climate change and forest management on the carbon sink capacity of a boreal forest in southern Sweden. We compared two future climate change scenarios (RCP 4.5 and RCP 8.5) along with four forest management options against a baseline scenario without management interventions. Our findings indicate that projected temperature increases (+2 to +4°C) in the late 21st century will diminish the net carbon sink strength, particularly in old-growth forests. Clear-cut and subsequent reforestation resulted in a substantial decline (57-67%) in vegetation carbon during 2022-2100. The carbon compensation point (CCP) was reached 12-16 years after the clear-cut, indicating a period of carbon debt before the ecosystems resumed acting as a net carbon sink. Specific reforestation strategies, such as pine plantations, enhanced the overall net carbon sink by 7-20% relative to the baseline during 2022-2100. The carbon parity point, without considering harvested carbon, was reached 56-73 years after the clear-cut, highlighting the extended period required for the reforestation to achieve a carbon stock equivalent to the uncut baseline. These findings highlight the substantial influence of forest management on the net carbon budget, surpassing that of climate change alone. The adoption of relevant reforestation strategies could enhance carbon uptake, simultaneously improving forest productivity and ensuring the forest's vital role in carbon sequestration and storage amid a changing climate.
  •  
11.
  • Islam, Md Rafikul, et al. (author)
  • Projected effects of climate change and forest management on carbon fluxes and biomass of a boreal forest
  • 2024
  • In: Agricultural and Forest Meteorology. - 0168-1923. ; 349
  • Journal article (peer-reviewed)abstract
    • Boreal forests are key to global carbon (C) sequestration and storage. However, the potential impacts of climate change on these forests could be profound. Nearly 70 % of the European boreal forests are intensively managed, but our understanding of the combined effects of forest management and climate change on the forest's integral role as a C sink is still limited. In this study, we aim to fill this gap with simulations of the process-based dynamic global vegetation model LPJ-GUESS. We evaluated the effects of four forest management options under two different climate scenarios (RCP 4.5 and RCP 8.5), at a southern boreal forest stand in Sweden. These options were compared against a baseline without clear-cut or management interventions. We found that the projected increase in temperatures (+2 to +4 °C) during the latter part of the 21st century will reduce the net C sink strength, particularly in the unmanaged forest. The standing biomass C for reforestations was projected to be 57–67 % lower in 2100 than in the old forest in 2022. The study also revealed that the C sequestration potential of replanted pine forests may surpass that of 200-years old forests in the far future (2076–2100). The study did not detect statistically significant differences in overall net C exchange between the clear-cut with subsequent reforestation options and the baseline, even though specific reforestation strategies, such as pine plantations, enhanced the overall net C sink by 7–20 % relative to the baseline during 2022–2100. These findings underscore the profound influence of forest management on the net C budget, surpassing that of climate change scenarios alone. By adopting pertinent reforestation strategies, C uptake could be augmented, with concurrently improved forest productivity, resulting in favourable outcomes for the forest's critical role in C sequestration and storage amidst a changing climate.
  •  
12.
  • Junttila, Sofia, et al. (author)
  • Comparison of Light Use Efficiency, Plant Phenology Index, and Light Response Function-Based GPP Models in the Northern Forest Landscape
  • 2021
  • In: ; , s. 6917-6920
  • Conference paper (peer-reviewed)abstract
    • Remote sensing-based models are an adequate tool to estimate carbon dioxide (CO2) uptake by terrestrial ecosystems, and to upscale the results from ecosystem to regional or global scales. In this study we compare three models driven by Sentinel-2 derived vegetation indices together with eddy covariance (EC) measured CO2 flux and radiation data in order to estimate gross primary production (GPP) in northern Europe forest ecosystems. By integrating high spatial resolution satellite data with cutting-edge footprint analysis and an accurate GPP model, we aim at more precise estimation of GPP at regional level.
  •  
13.
  • Junttila, Sofia, et al. (author)
  • Estimating local-scale forest GPP in Northern Europe using Sentinel-2: Model comparisons with LUE, APAR, the plant phenology index, and a light response function
  • 2023
  • In: Science of Remote Sensing. - : Elsevier BV. - 2666-0172. ; 7
  • Journal article (peer-reviewed)abstract
    • Northern forest ecosystems make up an important part of the global carbon cycle. Hence, monitoring local-scale gross primary production (GPP) of northern forest is essential for understanding climatic change impacts on terrestrial carbon sequestration and for assessing and planning management practices. Here we evaluate and compare four methods for estimating GPP using Sentinel-2 data in order to improve current available GPP es-timates: four empirical regression models based on either the 2-band Enhanced Vegetation Index (EVI2) or the plant phenology index (PPI), an asymptotic light response function (LRF) model, and a light-use efficiency (LUE) model using the MOD17 algorithm. These approaches were based on remote sensing vegetation indices, air temperature (Tair), vapor pressure deficit (VPD), and photosynthetically active radiation (PAR). The models were parametrized and evaluated using in-situ data from eleven forest sites in North Europe, covering two common forest types, evergreen needleleaf forest and deciduous broadleaf forest. Most of the models gave good agreement with eddy covariance-derived GPP. The VI-based regression models performed well in evergreen needleleaf forest (R2 = 0.69-0.78, RMSE = 1.97-2.28 g C m 2 d 1, and NRMSE = 9-11.0%, eight sites), whereas the LRF and MOD17 performed slightly worse (R2 = 0.65 and 0.57, RMSE = 2.49 and 2.72 g C m 2 d 1, NRMSE = 12 and 13.0%, respectively). In deciduous broadleaf forest all models, except the LRF, showed close agreements with the observed GPP (R2 = 0.75-0.80, RMSE = 2.23-2.46 g C m 2 d 1, NRMSE = 11-12%, three sites). For the LRF model, R2 = 0.57, RMSE = 3.21 g C m 2 d 1, NRMSE = 16%. The results highlighted the necessity of improved models in evergreen needleleaf forest where the LUE approach gave poorer results., The simplest regression model using only PPI performed well beside more complex models, suggesting PPI to be a process indicator directly linked with GPP. All models were able to capture the seasonal dynamics of GPP well, but underesti-mation of the growing season peaks were a common issue. The LRF was the only model tending to overestimate GPP. Estimation of interannual variability in cumulative GPP was less accurate than the single-year models and will need further development. In general, all models performed well on local scale and demonstrated their feasibility for upscaling GPP in northern forest ecosystems using Sentinel-2 data.
  •  
14.
  • Junttila, Sofia, et al. (author)
  • Upscaling Northern Peatland CO2 Fluxes Using Satellite Remote Sensing Data
  • 2021
  • In: Remote Sensing. - : MDPI AG. - 2072-4292. ; 13:4
  • Journal article (peer-reviewed)abstract
    • Peatlands play an important role in the global carbon cycle as they contain a large soil carbon stock. However, current climate change could potentially shift peatlands from being carbon sinks to carbon sources. Remote sensing methods provide an opportunity to monitor carbon dioxide (CO2) exchange in peatland ecosystems at large scales under these changing conditions. In this study, we developed empirical models of the CO2 balance (net ecosystem exchange, NEE), gross primary production (GPP), and ecosystem respiration (ER) that could be used for upscaling CO2 fluxes with remotely sensed data. Two to three years of eddy covariance (EC) data from five peatlands in Sweden and Finland were compared to modelled NEE, GPP and ER based on vegetation indices from 10 m resolution Sentinel-2 MSI and land surface temperature from 1 km resolution MODIS data. To ensure a precise match between the EC data and the Sentinel-2 observations, a footprint model was applied to derive footprint-weighted daily means of the vegetation indices. Average model parameters for all sites were acquired with a leave-one-out-cross-validation procedure. Both the GPP and the ER models gave high agreement with the EC-derived fluxes (R-2 = 0.70 and 0.56, NRMSE = 14% and 15%, respectively). The performance of the NEE model was weaker (average R-2 = 0.36 and NRMSE = 13%). Our findings demonstrate that using optical and thermal satellite sensor data is a feasible method for upscaling the GPP and ER of northern boreal peatlands, although further studies are needed to investigate the sources of the unexplained spatial and temporal variation of the CO2 fluxes.
  •  
15.
  • Kelly, Julia, et al. (author)
  • Boreal forest soil carbon fluxes one year after a wildfire : Effects of burn severity and management
  • 2021
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 27:17, s. 4181-4195
  • Journal article (peer-reviewed)abstract
    • The extreme 2018 hot drought that affected central and northern Europe led to the worst wildfire season in Sweden in over a century. The Ljusdal fire complex, the largest area burnt that year (8995 ha), offered a rare opportunity to quantify the combined impacts of wildfire and post-fire management on Scandinavian boreal forests. We present chamber measurements of soil CO2 and CH4 fluxes, soil microclimate and nutrient content from five Pinus sylvestris sites for the first growing season after the fire. We analysed the effects of three factors on forest soils: burn severity, salvage-logging and stand age. None of these caused significant differences in soil CH4 uptake. Soil respiration, however, declined significantly after a high-severity fire (complete tree mortality) but not after a low-severity fire (no tree mortality), despite substantial losses of the organic layer. Tree root respiration is thus key in determining post-fire soil CO2 emissions and may benefit, along with heterotrophic respiration, from the nutrient pulse after a low-severity fire. Salvage-logging after a high-severity fire had no significant effects on soil carbon fluxes, microclimate or nutrient content compared with leaving the dead trees standing, although differences are expected to emerge in the long term. In contrast, the impact of stand age was substantial: a young burnt stand experienced more extreme microclimate, lower soil nutrient supply and significantly lower soil respiration than a mature burnt stand, due to a thinner organic layer and the decade-long effects of a previous clear-cut and soil scarification. Disturbance history and burn severity are, therefore, important factors for predicting changes in the boreal forest carbon sink after wildfires. The presented short-term effects and ongoing monitoring will provide essential information for sustainable management strategies in response to the increasing risk of wildfire.
  •  
16.
  • Kelly, Julia, et al. (author)
  • Can thermal imagery improve ecosystem respiration modelling and UAV-based upscaling?
  • 2019
  • Conference paper (other academic/artistic)abstract
    • Temperature is a key constraint on ecosystem respiration but is typically measured at only one or a few points across a study site. Given the exponential relationship between temperature and respiration, small differences in temperature across a heterogeneous ecosystem may result in large differences in respiration fluxes. These differences are not captured in current respiration models which use single measurements of air or soil temperature to represent a whole ecosystem. As a result, uncertainties are introduced when upscaling modelled respiration estimates or partitioning eddy covariance fluxes.Thermal cameras provide a new method for observing the spatial variability of surface temperature across an ecosystem at a high temporal resolution. We used thermal images, air and soil temperature data to model chamber respiration measurements collected over the growing season at a peatland in central Sweden. The measurements covered the two main vegetation communities (bryophyte-dominated hollows and graminoid-dominated hummocks) present at the site. We tested whether surface temperature data from the tower-based thermal camera predicted ecosystem respiration more accurately than air or soil temperature. We also assessed the impact of vegetation heterogeneity on the modelled fluxes by comparing model accuracy when including either one or bothvegetation communities in a single model. Finally, we upscaled our modelled predictions to the whole site using a vegetation classification and thermal data collected with an Umanned Aerial Vehicle (UAV). We could thus quantify the uncertainties in modelled fluxes when using single versus spatially-distributed temperature estimates at the ecosystem scale.
  •  
17.
  • Kelly, Julia, et al. (author)
  • Challenges and Best Practices for Deriving Temperature Data from an Uncalibrated UAV Thermal Infrared Camera
  • 2019
  • In: Remote Sensing. - : MDPI AG. - 2072-4292. ; 11:5
  • Journal article (peer-reviewed)abstract
    • Miniaturized thermal infrared (TIR) cameras that measure surface temperature are increasingly available for use with unmanned aerial vehicles (UAVs). However, deriving accurate temperature data from these cameras is non-trivialsince they are highly sensitive to changes in their internal temperature and low-cost models are often not radiometrically calibrated. We present the results of laboratory and field experiments that tested the extent of the temperature-dependency of a non-radiometric FLIR Vue Pro 640. We found that a simple empirical line calibration using at least three ground calibration points was sufficient to convert camera digital numbers to temperature values for images captured during UAV flight. Although the camera performed well under stable laboratory conditions (accuracy +/- 0.5 degrees C), the accuracy declined to +/- 5 degrees C under the changing ambient conditions experienced during UAV flight. The poor performance resulted from the non-linear relationship between camera output and sensor temperature, which was affected by wind and temperature-drift during flight. The camera's automated non-uniformity correction (NUC) could not sufficiently correct for these effects. Prominent vignetting was also visible in images captured under both stable and changing ambient conditions. The inconsistencies in camera output over time and across the sensor will affect camera applications based on relative temperature differences as well as user-generated radiometric calibration. Based on our findings, we present a set of best practices for UAV TIR camera sampling to minimize the impacts of the temperature dependency of these systems.
  •  
18.
  • Kelly, Julia, et al. (author)
  • Modelling and upscaling ecosystem respiration using thermal cameras and UAVs: Application to a peatland during and after a hot drought
  • 2021
  • In: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923. ; 300
  • Journal article (peer-reviewed)abstract
    • Field-based thermal infrared cameras provide surface temperature information at very high spatial and temporal resolution and could complement existing phenological camera and spectral sensor networks. Since temperature is one of the main drivers of ecosystem respiration (ER), field-based thermal cameras offer a new opportunity to model and upscale ER in unprecedented detail. We present such an approach based on manual chamber CO2 flux measurements and thermal imagery from a tower-based camera and from Unmanned Aerial Vehicle (UAV) flights. Data were collected over two growing seasons, including the hot drought of 2018, for the two main vegetation microforms (hummock and hollow) of a hemi-boreal peatland in Sweden. Thermal imagery proved suitable for modelling ER in this ecosystem: ER model accuracies were similar when air, soil or surface temperature measurements were used as input. Our findings allowed us to upscale ER using UAV-derived thermal images and we present maps of ER at sub-decimeter resolution (<7 cm). The significantly different ER measured for each microform highlighted the importance of modelling their ER separately. Not accounting for these differences and the microforms' spatial distribution across the peatland led to a bias in upscaled ER of up to 18%. As a result of the severity and timing of the hot drought in 2018, we observed reductions in the ER of both microforms, but more so for hummocks (-48%) than for hollows (-15%), and modelled ER leveled off at high temperatures. These findings indicate that peatland carbon loss during hot droughts may be lower than expected and strongly relates to vegetation composition. The presented upscaling approach offers a new method to analyse how ER varies across a peatland or within a flux-tower footprint, and to interpret biases that occur when using coarse resolution satellite data to upscale chamber or tower-based flux measurements.
  •  
19.
  • Kelly, Julia, et al. (author)
  • Sensitivity of peatland respiration to vegetation community and temperature metric during a hot drought
  • 2020
  • Conference paper (other academic/artistic)abstract
    • The majority of the world’s peatlands are located in northern regions where climate change is occurring most rapidly. Therefore, there is an urgent need to understand whether, and under what conditions, peatlands will remain carbon sinks or become carbon sources. The uncertainties in our predictions stem from a variety of sources, including uncertainty about the competing effects of rising air temperature on ecosystem respiration (Re) and gross primary production. Furthermore, peatlands contain a mixture of plant communities that respond differently to changes in temperature and precipitation. Such heterogeneity complicates attempts to upscale peatland carbon fluxes and predict the future peatland carbon balance.We focus on understanding the sensitivity of peatland Re to temperature and how it relates to vegetation community and the choice of temperature metric. We assess how these relationships changed during and after the severe heatwave and drought (‘hot drought’) in 2018. We conducted manual dark chamber CO2 efflux measurements in Mycklemossen, an oligotrophic mire in southern Sweden in 2018 and in 2019, when weather conditions were closer to the long-term mean. The measurements covered the two main vegetation communities at the site: hummocks (vascular-plant dominated) and hollows (Sphagnum-dominated). We statistically compared the fluxes for both years and vegetation communities, then modelled them using three temperature metrics (air, surface, soil). We found that Re decreased during the hot drought for both vegetation communities, with maximum fluxes of 0.18 and 0.34 mgCO2 m-2 s-1 in 2018 and 2019, respectively. However, the change in Re during the hot drought was dependent on vegetation community: hummock Re decreased substantially more than hollow Re (mean decrease: 48% and 15%, respectively). As a result, hollow Re was highest during drought whereas hummock Re was highest during non-drought conditions. Despite significant differences in Re between the vegetation communities, we found no significant differences in temperature between hummock and hollow vegetation, apart from in July and August 2018, at the peak of the hot drought. Nevertheless, hollow Re was more temperature-sensitive than hummock Re both during and after the hot drought. Furthermore, the temperature sensitivity of modelled Re depended on the choice of driving temperature, such that the surface temperature driven model produced the lowest whilst the soil temperature driven model produced the highest temperature sensitivity. Differences in temperature sensitivity of Re between the drought and non-drought conditions were similarly dependent on the temperature metric used to drive the Re model. We found that peatland Re almost halved during a hot drought. Our results show that predictions of peatland response to warming must account for the proportion of different vegetation communities present, and how this may change, due to their differing responses to warming. The choice of driving temperature in peatland Re models does not impact model accuracy but it does influence the temperature-sensitivity, and thus the impact of temperature variations on the modelled flux. Modellers should therefore base parameter choices on vegetation community and driving temperature. Furthermore, comparisons of Re sensitivity to warming between studies using different driving temperatures may be misleading.
  •  
20.
  • Kelly, Julia, et al. (author)
  • Wildfire impacts on the carbon budget of a managed Nordic boreal forest
  • 2024
  • In: Agricultural and Forest Meteorology. - 0168-1923. ; 351
  • Journal article (peer-reviewed)abstract
    • Wildfire is one of the most important disturbances affecting boreal forests. Most previous research on boreal forest fires has occurred in North American forests which have different fire regimes, tree species and are less intensively managed than their Eurasian counterparts. Recent extreme fire years have highlighted the vulnerability of the Nordic boreal forest to climatic shifts that are increasing forest fire frequency and severity. The Ljusdal fire (2018) was one of the largest wildfires in recorded history in Sweden. We established eddy covariance flux towers to track the impacts of this fire on the carbon balance of two Pinus sylvestris sites subject to different fire severities and forest management strategies 1–4 years post-fire. The ‘SLM’ site was a mature stand that experienced low-severity fire (trees survived) followed by salvage-logging and reseeding, whilst the ‘HY’ site was 10 years old when it experienced high-severity fire (all trees killed) then was replanted with seedlings. During the study period, both sites were net carbon sources at the annual scale. It took up to 4 years after the fire until the first day of net CO2 uptake was recorded at each site. We estimated that it will take 13 years (8, 21; mean ± 95 % confidence intervals) after the fire until the sites reach a neutral annual carbon balance. It will take up to 32 years (19, 53) at HY and 46 years (31, 70) at SLM to offset the carbon lost during and after the fire and salvage-logging. In addition, our measurements showed that more carbon was emitted in the first 4 years after the fire compared to the carbon lost from combustion during the fire. Quantifying carbon fluxes during the initial years after fire is therefore crucial for estimating the net impact of wildfire on the carbon budget of boreal forests.
  •  
21.
  •  
22.
  • Klosterhalfen, Anne, et al. (author)
  • Two-level eddy covariance measurements reduce bias in land-atmosphere exchange estimates over a heterogeneous boreal forest landscape
  • 2023
  • In: Agricultural and Forest Meteorology. - 0168-1923 .- 1873-2240. ; 339
  • Journal article (peer-reviewed)abstract
    • Estimates of land-atmosphere exchanges of carbon, energy, water vapor, and other greenhouse gases based on the eddy covariance (EC) technique rely on the fundamental assumption that the flux footprint area is homogeneous. We investigated the impact of source area heterogeneity on flux estimates in single-level EC measurements over a managed boreal forest landscape. For this purpose, we compared single-level measurements with those from a two-level approach consisting of concurrent EC measurements at 60 and 85 m above the ground. This two-level set-up provided a unique opportunity to obtain nearly congruent diel footprint areas by combining data from the higher and lower levels during day- and nighttime, respectively. We found that the variation in the averaged footprint area between day- and nighttime was reduced by up to 89% in the two-level approach compared to the single-level data at the higher level (85 m). Considering spring, summer, and fall months, the resulting relative potential bias in flux observations due to landscape heterogeneity was highest at short time steps (≤ daily) ranging between 35% and 325% for half-hourly data. During winter months, when stable atmospheric regimes prevailed during day and night, the footprints within the diel course nearly overlapped also at a given single level and hence no improvement of flux estimates was found. The absolute cumulated sums for the study period (excluding winter months) of gross primary production, ecosystem respiration, latent heat, and sensible heat flux were underestimated by about 28%, 52%, 5%, and 3%, respectively, whereas that of net ecosystem CO2 exchange was overestimated by about 109% in the single-level approach. Overall this study suggests that footprint heterogeneity may introduce considerable bias in single-level flux estimates — particularly at short time scales — with large implications for model-data fusion studies, site comparisons, and up- or downscaling of land-atmosphere exchange processes.
  •  
23.
  • Lakomiec, Patryk, et al. (author)
  • Field-scale CH4 emission at a subarctic mire with heterogeneous permafrost thaw status
  • 2021
  • In: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 18:20, s. 5811-5830
  • Journal article (peer-reviewed)abstract
    • The Arctic is exposed to even faster temperature changes than most other areas on Earth. Constantly increasing temperature will lead to thawing permafrost and changes in the methane (CH4) emissions from wetlands. One of the places exposed to those changes is the Abisko–Stordalen Mire in northern Sweden, where climate and vegetation studies have been conducted since the 1970s.In our study, we analyzed field-scale methane emissions measured by the eddy covariance method at Abisko–Stordalen Mire for 3 years (2014–2016). The site is a subarctic mire mosaic of palsas, thawing palsas, fully thawed fens, and open water bodies. A bimodal wind pattern prevalent at the site provides an ideal opportunity to measure mire patches with different permafrost status with one flux measurement system. The flux footprint for westerly winds was dominated by elevated palsa plateaus, while the footprint was almost equally distributed between palsas and thawing bog-like areas for easterly winds. As these patches are exposed to the same climatic and weather conditions, we analyzed the differences in the responses of their methane emission for environmental parameters.The methane fluxes followed a similar annual cycle over the 3 study years, with a gentle rise during spring and a decrease during autumn, without emission bursts at either end of the ice-free season. The peak emission during the ice-free season differed significantly for the two mire areas with different permafrost status: the palsa mire emitted 19 mg-C m−2 d−1 and the thawing wet sector 40 mg-C m−2 d−1. Factors controlling the methane emission were analyzed using generalized linear models. The main driver for methane fluxes was peat temperature for both wind sectors. Soil water content above the water table emerged as an explanatory variable for the 3 years for western sectors and the year 2016 in the eastern sector. The water table level showed a significant correlation with methane emission for the year 2016 as well. Gross primary production, however, did not show a significant correlation with methane emissions.Annual methane emissions were estimated based on four different gap-filing methods. The different methods generally resulted in very similar annual emissions. The mean annual emission based on all models was 3.1 ± 0.3 g-C m−2 a−1 for the western sector and 5.5 ± 0.5 g-C m−2 a−1 for the eastern sector. The average annual emissions, derived from these data and a footprint climatology, were 2.7 ± 0.5 and 8.2 ± 1.5 g-C m−2 a−1 for the palsa and thawing surfaces, respectively. Winter fluxes were relatively high, contributing 27 %–45 % to the annual emissions.
  •  
24.
  • Lembrechts, Jonas J., et al. (author)
  • Global maps of soil temperature
  • 2022
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28:9, s. 3110-3144
  • Journal article (peer-reviewed)abstract
    • Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean=3.0±2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6±2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7±2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
  •  
25.
  • Mahoney, Craig, et al. (author)
  • Slope Estimation from ICESat/GLAS
  • 2014
  • In: Remote Sensing. - : MDPI AG. - 2072-4292. ; 6:10, s. 10051-10069
  • Journal article (peer-reviewed)abstract
    • We present a novel technique to infer ground slope angle from waveform LiDAR, known as the independent slope method (ISM). The technique is applied to large footprint waveforms (similar to 60 m mean diameter) from the Ice, Cloud and Land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) to produce a slope dataset of near-global coverage at 0.5 degrees x 0.5 degrees resolution. ISM slope estimates are compared against high resolution airborne LiDAR slope measurements for nine sites across three continents. ISM slope estimates compare better with the aircraft data (R-2 = 0.87 and RMSE = 5.16 degrees) than the Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) inferred slopes (R-2 = 0.71 and RMSE = 8.69 degrees). ISM slope estimates are concurrent with GLAS waveforms and can be used to correct biophysical parameters, such as tree height and biomass. They can also be fused with other DEMs, such as SRTM, to improve slope estimates.
  •  
26.
  • Petersen, Ross, et al. (author)
  • Vertical distribution of sources and sinks of volatile organic compounds within a boreal forest canopy
  • 2023
  • In: Atmospheric Chemistry and Physics. - 1680-7324. ; 23:13, s. 7839-7858
  • Journal article (peer-reviewed)abstract
    • The ecosystem-atmosphere flux of biogenic volatile organic compounds (BVOCs) has important impacts on tropospheric oxidative capacity and the formation of secondary organic aerosols, influencing air quality and climate. Here we present within-canopy measurements of a set of dominant BVOCs in a managed spruce- and pine-dominated boreal forest located at the ICOS (Integrated Carbon Observation System) station Norunda in Sweden, collected using proton-transfer-reaction mass spectrometry (PTR-MS) during 2014-2016 and vertical emission profiles derived from these data. Ozone concentrations were simultaneously measured in conjunction with these PTR-MS measurements. The main BVOCs investigated with the PTR-MS were isoprene, monoterpenes, methanol, acetaldehyde, and acetone. The distribution of BVOC sources and sinks in the forest canopy was explored using Lagrangian dispersion matrix methods, in particular continuous near-field theory. The forest canopy was found to contribute ca. 86% to the total monoterpene emission in summertime, whereas the below-canopy and canopy emissions were comparable (ca. 42% and 58%, respectively) during the fall period. This result indicates that boreal forest litter and other below-canopy emitters are a principal source of total forest monoterpene emissions during the fall months. During night, our results for methanol, acetone, and acetaldehyde seasonally present strong sinks in the forest canopy, especially in the fall, likely due to the nighttime formation of dew on vegetation surfaces.
  •  
27.
  •  
28.
  • Rebmann, Corinna, et al. (author)
  • ICOS eddy covariance flux-station site setup : A review
  • 2018
  • In: International Agrophysics. - : Walter de Gruyter GmbH. - 0236-8722 .- 2300-8725. ; 32:4, s. 471-494
  • Research review (peer-reviewed)abstract
    • The Integrated Carbon Observation System Research Infrastructure aims to provide long-Term, continuous observations of sources and sinks of greenhouse gases such as carbon dioxide, methane, nitrous oxide, and water vapour. At ICOS ecosystem stations, the principal technique for measurements of ecosystem-Atmosphere exchange of GHGs is the eddy-covariance technique. The establishment and setup of an eddy-covariance tower have to be carefully reasoned to ensure high quality flux measurements being representative of the investigated ecosystem and comparable to measurements at other stations. To fulfill the requirements needed for flux determination with the eddy-covariance technique, variations in GHG concentrations have to be measured at high frequency, simultaneously with the wind velocity, in order to fully capture turbulent fluctuations. This requires the use of high-frequency gas analysers and ultrasonic anemometers. In addition, to analyse flux data with respect to environmental conditions but also to enable corrections in the post-processing procedures, it is necessary to measure additional abiotic variables in close vicinity to the flux measurements. Here we describe the standards the ICOS ecosystem station network has adopted for GHG flux measurements with respect to the setup of instrumentation on towers to maximize measurement precision and accuracy while allowing for flexibility in order to observe specific ecosystem features.
  •  
29.
  • Shahbaz, Muhammad, et al. (author)
  • Spatial heterogeneity of soil carbon exchanges and their drivers in a boreal forest
  • 2022
  • In: Science of the Total Environment. - : Elsevier BV. - 1879-1026 .- 0048-9697. ; 831
  • Journal article (peer-reviewed)abstract
    • Boreal forests have a large impact on the global greenhouse gas balance and their soils constitute an important carbon (C) reservoir. Mature boreal forests are typically a net CO2 sink, but there are also examples of boreal forests that are persistent CO2 sources. The reasons remain often unknown, presumably due to a lack of understanding of how biotic and abiotic drivers interact to determine the microbial respiration of soil organic matter (SOM). This study aimed at identifying the main drivers of microbial SOM respiration and CO2 and CH4 soil chamber-fluxes within dry and wet sampling areas at the mature boreal forest of Norunda, Sweden, a persistent net CO2 source. The spatial heterogeneity of the drivers was assessed with a geostatistical approach combined with stepwise multiple regression. We found that heterotrophic soil respiration increased with SOM content and nitrogen (N) availability, while the SOM reactivity, i.e., SOM specific respiration, was determined by soil moisture and N availability. The latter suggests that microbial activity was N rather than C limited and that microbial N mining might be driving old-SOM decomposition, which was observed through a positive correlation between soil respiration and its δ13C values. SOM specific heterotrophic respiration was lower in wet than in dry areas, while no such dependencies were found for chamber-based soil CO2 fluxes, implying that oxygen depletion resulted in lower SOM reactivity. The chamber-based soil CH4 flux differed significantly between the wet and dry areas. In the wet area, we observed net CH4 emission that was positively related to soil moisture and NH4+-N content. Taken together, our findings suggest that N availability has a strong regulatory effect on soil CO2 and CH4 emissions at Norunda, and that microbial decomposition of old-SOM to release bioavailable N might be partly responsible for the net CO2 emission at the site.
  •  
30.
  • Shendryk, Iurii, et al. (author)
  • Low-Density LiDAR and Optical Imagery for Biomass Estimation over Boreal Forest in Sweden
  • 2014
  • In: Forests. - : MDPI AG. - 1999-4907. ; 5:5, s. 992-1010
  • Journal article (peer-reviewed)abstract
    • Knowledge of the forest biomass and its change in time is crucial to understanding the carbon cycle and its interactions with climate change. LiDAR (Light Detection and Ranging) technology, in this respect, has proven to be a valuable tool, providing reliable estimates of aboveground biomass (AGB). The overall goal of this study was to develop a method for assessing AGB using a synergy of low point density LiDAR-derived point cloud data and multi-spectral imagery in conifer-dominated forest in the southwest of Sweden. Different treetop detection algorithms were applied for forest inventory parameter extraction from a LiDAR-derived canopy height model. Estimation of AGB was based on the power functions derived from tree parameters measured in the field, while vegetation classification of a multi-spectral image (SPOT-5) was performed in order to account for dependences of AGB estimates on vegetation types. Linear regression confirmed good performance of a newly developed grid-based approach for biomass estimation (R-2 = 0.80). Results showed AGB to vary from below 1 kg/m(2) in very young forests to 94 kg/m(2) in mature spruce forests, with RMSE of 4.7 kg/m(2). These AGB estimates build a basis for further studies on carbon stocks as well as for monitoring this forest ecosystem in respect of disturbance and change in time. The methodology developed in this study can be easily adopted for assessing biomass of other conifer-dominated forests on the basis of low-density LiDAR and multispectral imagery. This methodology is hence of much wider applicability than biomass derivation based on expensive and currently still scarce high-density LiDAR data.
  •  
31.
  • Stoy, Paul C., et al. (author)
  • Methane efflux from an American bison herd
  • 2021
  • In: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 18:3, s. 961-975
  • Journal article (peer-reviewed)abstract
    • American bison (Bison bison L.) have recovered from the brink of extinction over the past century. Bison reintroduction creates multiple environmental benefits, but impacts on greenhouse gas emissions are poorly understood. Bison are thought to have produced some 2 Tg yr-1 of the estimated 9 15 Tg yr-1 of pre-industrial enteric methane emissions, but few measurements have been made due to their mobile grazing habits and safety issues associated with measuring non-domesticated animals. Here, we measure methane and carbon dioxide fluxes from a bison herd on an enclosed pasture during daytime periods in winter using eddy covariance. Methane emissions from the study area were negligible in the absence of bison (mean ± standard deviation = -0.0009 ± 0.008 μmol m-2 s-1) and were significantly greater than zero, 0.048 ± 0.082 μmol m-2 s-1, with a positively skewed distribution, when bison were present. We coupled bison location estimates from automated camera images with two independent flux footprint models to calculate a mean per-animal methane efflux of 58.5 μmol s-1 per bison, similar to eddy covariance measurements of methane efflux from a cattle feedlot during winter. When we sum the observations over time with conservative uncertainty estimates we arrive at 81 g CH4 per bison d-1 with 95 % confidence intervals between 54 and 109 g CH4 per bison d-1. Uncertainty was dominated by bison location estimates (46 % of the total uncertainty), then the flux footprint model (33 %) and the eddy covariance measurements (21 %), suggesting that making higher-resolution animal location estimates is a logical starting point for decreasing total uncertainty. Annual measurements are ultimately necessary to determine the full greenhouse gas burden of bison grazing systems. Our observations highlight the need to compare greenhouse gas emissions from different ruminant grazing systems and demonstrate the potential for using eddy covariance to measure methane efflux from non-domesticated animals.
  •  
32.
  • Stöckl, Stefan, et al. (author)
  • Including the Urban Canopy Layer in a Lagrangian Particle Dispersion Model
  • 2022
  • In: Boundary-Layer Meteorology. - : Springer Science and Business Media LLC. - 0006-8314 .- 1573-1472. ; 185:1, s. 1-34
  • Journal article (peer-reviewed)abstract
    • In this study we introduce a novel extension of an existing Lagrangian particle dispersion model for application over urban areas by explicitly taking into account the urban canopy layer. As commonly done, the original model uses the zero-plane displacement as a lower boundary condition, while the extension reaches to the ground. To achieve this, spatially-averaged parametrizations of flow and turbulence characteristics are created by fitting functions to observational and numerical data. The extended model is verified with respect to basic model assumptions (well-mixed condition) and its behaviour is investigated for unstable/neutral/stable atmospheric stabilities. A sensitivity study shows that the newly introduced model parameters characterizing the canopy turbulence impact the model output less than previously existing model parameters. Comparing concentration predictions to the Basel Urban Boundary Layer Experiment—where concentrations were measured near roof level—shows that the modified model performs slightly better than the original model. More importantly, the extended model can also be used to explicitly treat surface sources (traffic) and assess concentrations within the urban canopy and near the surface (pedestrian level). The small improvement with respect to roof level concentrations suggests that the parametrized canopy profiles for flow and turbulence characteristics realistically represent the dispersion environment on average.
  •  
33.
  • Sundqvist, Elin, et al. (author)
  • Methane exchange in a boreal forest estimated by gradient method
  • 2015
  • In: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 67
  • Journal article (peer-reviewed)abstract
    • Forests are generally considered to be net sinks of atmospheric methane (CH4) because of oxidation by methanotrophic bacteria in well-aerated forests soils. However, emissions from wet forest soils, and sometimes canopy fluxes, are often neglected when quantifying the CH4 budget of a forest. We used a modified Bowen ratio method and combined eddy covariance and gradient methods to estimate net CH4 exchange at a boreal forest site in central Sweden. Results indicate that the site is a net source of CH4. This is in contrast to soil, branch and leaf chamber measurements of uptake of CH4. Wetter soils within the footprint of the canopy are thought to be responsible for the discrepancy. We found no evidence for canopy emissions per se. However, the diel pattern of the CH4 exchange with minimum emissions at daytime correlated well with gross primary production, which supports an uptake in the canopy. More distant source areas could also contribute to the diel pattern; their contribution might be greater at night during stable boundary layer conditions.
  •  
34.
  • Sundqvist, Elin, et al. (author)
  • Upscaling of methane exchange in a boreal forest using soil chamber measurements and high-resolution LiDAR elevation data
  • 2015
  • In: Agricultural and Forest Meteorology. - : Elsevier BV. - 1873-2240 .- 0168-1923. ; 214, s. 393-401
  • Journal article (peer-reviewed)abstract
    • Forest soils are generally considered to be net sinks of methane (CH4), but CH4 fluxes vary spatially depending on soil conditions. Measuring CH4 exchange with chambers, which are commonly used for this purpose, might not result in representative fluxes at site scale. Appropriate methods for upscaling CH4 fluxes from point measurements to site scale are therefore needed. At the boreal forest research site, Norunda, chamber measurements of soils and vegetation indicate that the site is a net sink of CH4, while tower gradient measurements indicate that the site is a net source of CH4. We investigated the discrepancy between chamber and tower gradient measurements by upscaling soil CH4 exchange to a 100 ha area based on an empirical model derived from chamber measurements of CH4 exchange and measurements of soil moisture, soil temperature and water table depth. A digital elevation model (DEM) derived from high-resolution airborne Light Detection and Ranging (LiDAR) data was used to generate gridded water table depth and soil moisture data of the study area as input data for the upscaling. Despite the simplistic approach, modeled fluxes were significantly correlated to four out of five chambers with R>0.68. The upscaling resulted in a net soil sink of CH4 of -10 mu mol m(-2) h(-1), averaged over the entire study area and time period June-September, 2010). Our findings suggest that additional contributions from CH4 soil sources outside the upscaling study area and possibly CH4 emissions from vegetation could explain the net emissions measured by tower gradient measurements. (C) 2015 Elsevier B.V. All rights reserved.
  •  
35.
  • Vestin, Patrik, et al. (author)
  • Impacts of Clear-Cutting of a Boreal Forest on Carbon Dioxide, Methane and Nitrous Oxide Fluxes
  • 2020
  • In: Forests. - : MDPI AG. - 1999-4907. ; 11:9
  • Journal article (peer-reviewed)abstract
    • The 2015 Paris Agreement encourages stakeholders to implement sustainable forest management policies to mitigate anthropogenic emissions of greenhouse gases (GHG). The net effects of forest management on the climate and the environment are, however, still not completely understood, partially as a result of a lack of long-term measurements of GHG fluxes in managed forests. During the period 2010-2013, we simultaneously measured carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes using the flux-gradient technique at two clear-cut plots of different degrees of wetness, located in central Sweden. The measurements started approx. one year after clear-cutting, directly following soil scarification and planting. The study focused on robust inter-plot comparisons, spatial and temporal dynamics of GHG fluxes, and the determination of the global warming potential of a clear-cut boreal forest. The clear-cutting resulted in significant emissions of GHGs at both the wet and the dry plot. The degree of wetness determined, directly or indirectly, the relative contribution of each GHG to the total budgets. Faster establishment of vegetation on the wet plot reduced total emissions of CO2 as compared to the dry plot but this was partially offset by higher CH4 emissions. Waterlogging following clear-cutting likely caused both plots to switch from sinks to sources of CH4. In addition, there were periods with N2O uptake at the wet plot, although both plots were net sources of N2O on an annual basis. We observed clear diel patters in CO2, CH4 and N2O fluxes during the growing season at both plots, with the exception of CH4 at the dry plot. The total three-year carbon budgets were 4107 gCO(2)-equivalent m(-2) and 5274 gCO(2)-equivalent m(-2) at the wet and the dry plots, respectively. CO2 contributed 91.8% to the total carbon budget at the wet plot and 98.2% at the dry plot. For the only full year with N2O measurements, the total GHG budgets were 1069.9 gCO(2)-eqvivalents m(-2) and 1695.7 gCO(2)-eqvivalents m(-2) at the wet and dry plot, respectively. At the wet plot, CH4 contributed 3.7%, while N2O contributed 7.3%. At the dry plot, CH4 and N2O contributed 1.5% and 7.6%, respectively. Our results emphasize the importance of considering the effects of the three GHGs on the climate for any forest management policy aiming at enhancing the mitigation potential of forests.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-35 of 35
Type of publication
journal article (28)
conference paper (4)
research review (2)
other publication (1)
Type of content
peer-reviewed (30)
other academic/artistic (4)
pop. science, debate, etc. (1)
Author/Editor
Lindroth, Anders (11)
Eklundh, Lars (9)
Peichl, Matthias (7)
Nilsson, Mats (6)
Laudon, Hjalmar (3)
Cai, Zhanzhang (3)
show more...
Holst, Thomas (3)
Ottosson Löfvenius, ... (2)
Aurela, M. (2)
Lohila, A. (2)
Tagesson, Torbern (2)
Ardö, Jonas (2)
Lehner, Irene (2)
Holst, Jutta (2)
Persson, Andreas (2)
Jönsson, Anna Maria (2)
Wallerman, Jörgen (2)
Lundmark, Tomas (2)
Aalto, Juha (1)
Hylander, Kristoffer (1)
Luoto, Miska (1)
Jones, M. (1)
Herbst, M. (1)
Nemitz, E. (1)
Dorrepaal, Ellen (1)
Goetz, Scott J. (1)
Shahbaz, Muhammad (1)
Laurila, T. (1)
Metzger, S. (1)
Nelson, D. (1)
Meier, P (1)
Xie, X. H. (1)
Kiese, R. (1)
Rakos, Niklas (1)
De Frenne, Pieter (1)
Pavelka, Marian (1)
Montagnani, Leonardo (1)
Hellström, Margareta (1)
Papale, Dario (1)
Pihlatie, M. (1)
Bastviken, David (1)
Baker, Timothy R. (1)
Merinero, Sonia (1)
Vesala, T. (1)
Merbold, L. (1)
Kutsch, W. (1)
Larson, Keith (1)
Alatalo, Juha M. (1)
Linder, Sune (1)
Opedal, Øystein H. (1)
show less...
University
Lund University (33)
Swedish University of Agricultural Sciences (10)
University of Gothenburg (8)
Stockholm University (4)
Uppsala University (2)
Umeå University (1)
show more...
Mid Sweden University (1)
show less...
Language
English (35)
Research subject (UKÄ/SCB)
Natural sciences (34)
Agricultural Sciences (8)
Engineering and Technology (3)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view