SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Knecht Stefan) "

Search: WFRF:(Knecht Stefan)

  • Result 1-17 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • In: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Research review (peer-reviewed)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
2.
  •  
3.
  • Aidas, Kestutis, et al. (author)
  • The Dalton quantum chemistry program system
  • 2014
  • In: WIREs Computational Molecular Science. - : Wiley. - 1759-0876 .- 1759-0884. ; 4:3, s. 269-284
  • Journal article (peer-reviewed)abstract
    • Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, MOller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from for a number of UNIX platforms.
  •  
4.
  • Aoyama, T., et al. (author)
  • The anomalous magnetic moment of the muon in the Standard Model
  • 2020
  • In: Physics reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 887, s. 1-166
  • Research review (peer-reviewed)abstract
    • We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant α and is broken down into pure QED, electroweak, and hadronic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including O(α5) with negligible numerical uncertainty. The electroweak contribution is suppressed by (mμ/MW)2 and only shows up at the level of the seventh significant digit. It has been evaluated up to two loops and is known to better than one percent. Hadronic contributions are the most difficult to calculate and are responsible for almost all of the theoretical uncertainty. The leading hadronic contribution appears at O(α2) and is due to hadronic vacuum polarization, whereas at O(α3) the hadronic light-by-light scattering contribution appears. Given the low characteristic scale of this observable, these contributions have to be calculated with nonperturbative methods, in particular, dispersion relations and the lattice approach to QCD. The largest part of this review is dedicated to a detailed account of recent efforts to improve the calculation of these two contributions with either a data-driven, dispersive approach, or a first-principle, lattice-QCD approach. The final result reads aμSM = 116 591 810(43) x 10-11 and is smaller than the Brookhaven measurement by 3.7 σ. The experimental uncertainty will soon be reduced by up to a factor four by the new experiment currently running at Fermilab, and also by the future J-PARC experiment. This and the prospects to further reduce the theoretical uncertainty in the near future - which are also discussed here - make this quantity one of the most promising places to look for evidence of new physics.
  •  
5.
  • Aquilante, Francesco, et al. (author)
  • Modern quantum chemistry with [Open]Molcas
  • 2020
  • In: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 152:21
  • Journal article (peer-reviewed)abstract
    • MOLCAS/OpenMolcas is an ab initio electronic structure program providing a large set of computational methods from Hartree-Fock and density functional theory to various implementations of multiconfigurational theory. This article provides a comprehensive overview of the main features of the code, specifically reviewing the use of the code in previously reported chemical applications as well as more recent applications including the calculation of magnetic properties from optimized density matrix renormalization group wave functions.
  •  
6.
  • Diederich, Kai, et al. (author)
  • Synergetic effects of granulocyte-colony stimulating factor and cognitive training on spatial learning and survival of newborn hippocampal neurons.
  • 2009
  • In: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 4:4
  • Journal article (peer-reviewed)abstract
    • Granulocyte-Colony Stimulating Factor (G-CSF) is an endogenous hematopoietic growth factor known for its role in the proliferation and differentiation of cells of the myeloic lineage. Only recently its significance in the CNS has been uncovered. G-CSF attenuates apoptosis and controls proliferation and differentiation of neural stem cells. G-CSF activates upstream kinases of the cAMP response element binding protein (CREB), which is thought to facilitate the survival of neuronal precursors and to recruit new neurons into the dentate gyrus. CREB is also essential for spatial long-term memory formation. To assess the role and the potential of this factor on learning and memory-formation we systemically administered G-CSF in rats engaged in spatial learning in an eight-arm radial maze. G-CSF significantly improved spatial learning and increased in combination with cognitive training the survival of newborn neurons in the hippocampus as measured by bromodeoxyuridine and doublecortin immunohistochemistry. Additionally, G-CSF improved re-acquisition of spatial information after 26 days. These findings support the hypothesis that G-CSF can enhance learning and memory formation. Due to its easy applicability and its history as a well-tolerated hematological drug, the use of G-CSF opens up new neurological treatment opportunities in conditions where learning and memory-formation deficits occur.
  •  
7.
  • Ekanem, Emmanuel, et al. (author)
  • Safety of pulsed field ablation in more than 17,000 patients with atrial fibrillation in the MANIFEST-17K study
  • 2024
  • In: Nature Medicine. - : NATURE PORTFOLIO. - 1078-8956 .- 1546-170X.
  • Journal article (peer-reviewed)abstract
    • Pulsed field ablation (PFA) is an emerging technology for the treatment of atrial fibrillation (AF), for which pre-clinical and early-stage clinical data are suggestive of some degree of preferentiality to myocardial tissue ablation without damage to adjacent structures. Here in the MANIFEST-17K study we assessed the safety of PFA by studying the post-approval use of this treatment modality. Of the 116 centers performing post-approval PFA with a pentaspline catheter, data were received from 106 centers (91.4% participation) regarding 17,642 patients undergoing PFA (mean age 64, 34.7% female, 57.8% paroxysmal AF and 35.2% persistent AF). No esophageal complications, pulmonary vein stenosis or persistent phrenic palsy was reported (transient palsy was reported in 0.06% of patients; 11 of 17,642). Major complications, reported for similar to 1% of patients (173 of 17,642), were pericardial tamponade (0.36%; 63 of 17,642) and vascular events (0.30%; 53 of 17,642). Stroke was rare (0.12%; 22 of 17,642) and death was even rarer (0.03%; 5 of 17,642). Unexpected complications of PFA were coronary arterial spasm in 0.14% of patients (25 of 17,642) and hemolysis-related acute renal failure necessitating hemodialysis in 0.03% of patients (5 of 17,642). Taken together, these data indicate that PFA demonstrates a favorable safety profile by avoiding much of the collateral damage seen with conventional thermal ablation. PFA has the potential to be transformative for the management of patients with AF.
  •  
8.
  • Freitag, Leon, et al. (author)
  • Orbital entanglement and CASSCF analysis of the Ru-NO bond in a Ruthenium nitrosyl complex
  • 2015
  • In: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 17:22, s. 14383-14392
  • Journal article (peer-reviewed)abstract
    • Complete active space self-consistent field (CASSCF) wavefunctions and an orbital entanglement analysis obtained from a density-matrix renormalisation group (DMRG) calculation are used to understand the electronic structure, and, in particular, the Ru-NO bond of a Ru nitrosyl complex. Based on the configurations and orbital occupation numbers obtained for the CASSCF wavefunction and on the orbital entropy measurements evaluated for the DMRG wavefunction, we unravel electron correlation effects in the Ru coordination sphere of the complex. It is shown that Ru-NO pi bonds show static and dynamic correlation, while other Ru-ligand bonds feature predominantly dynamic correlation. The presence of static correlation requires the use of multiconfigurational methods to describe the Ru-NO bond. Subsequently, the CASSCF wavefunction is analysed in terms of configuration state functions based on localised orbitals. The analysis of the wavefunctions in the electronic singlet ground state and the first triplet state provides a picture of the Ru-NO moiety beyond the standard representation based on formal oxidation states. A distinct description of the Ru and NO fragments is advocated. The electron configuration of Ru is an equally weighted superposition of Ru-II and Ru-III configurations, with the Ru-III configuration originating from charge donation mostly from Cl ligands. However, and contrary to what is typically assumed, the electronic configuration of the NO ligand is best described as electroneutral.
  •  
9.
  • Galván, Ignacio Fdez., et al. (author)
  • OpenMolcas : From Source Code to Insight
  • 2019
  • In: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 15:11, s. 5925-5964
  • Journal article (peer-reviewed)abstract
    • In this Article we describe the OpenMolcas environment and invite the computational chemistry community to collaborate. The open-source project already includes a large number of new developments realized during the transition from the commercial MOLCAS product to the open-source platform. The paper initially describes the technical details of the new software development platform. This is followed by brief presentations of many new methods, implementations, and features of the OpenMolcas program suite. These developments include novel wave function methods such as stochastic complete active space self-consistent field, density matrix renormalization group (DMRG) methods, and hybrid multiconfigurational wave function and density functional theory models. Some of these implementations include an array of additional options and functionalities. The paper proceeds and describes developments related to explorations of potential energy surfaces. Here we present methods for the optimization of conical intersections, the simulation of adiabatic and nonadiabatic molecular dynamics, and interfaces to tools for semiclassical and quantum mechanical nuclear dynamics. Furthermore, the Article describes features unique to simulations of spectroscopic and magnetic phenomena such as the exact semiclassical description of the interaction between light and matter, various X-ray processes, magnetic circular dichroism, and properties. Finally, the paper describes a number of built-in and add-on features to support the OpenMolcas platform with postcalculation analysis and visualization, a multiscale simulation option using frozen-density embedding theory, and new electronic and muonic basis sets.
  •  
10.
  • Geschwindner, Stefan, et al. (author)
  • Characterisation of de novo mutations in the C-terminal domain of proprotein convertase subtilisin/kexin type 9.
  • 2015
  • In: Protein Engineering Design & Selection. - : Oxford University Press (OUP). - 1741-0126 .- 1741-0134.
  • Journal article (peer-reviewed)abstract
    • Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes the degradation of the hepatic low-density lipoprotein receptor (LDL-R) and is therefore a prominent therapeutic target for reducing LDL-cholesterol. The C-terminal domain of PCSK9 is unlikely to be involved in a direct extracellular interaction with the LDL-R. We probed the importance of the C-terminus for the degradation of the LDL-R by designing seven de novo mutants of PCSK9 that fill potential druggable cavities. The mutants were tested for their ability to diminish LDL uptake in human HepG2 cells and for affinity towards a calcium independent mutant of the EGF(A) domain of the human LDL-R. The later was done by a newly developed surface plasmon resonance-based assay format. We identified three mutant proteins (G517R, V610R and V644R) with decreased ability to block LDL uptake into HepG2 cells. These mutations define areas outside the direct interaction area between PCSK9 and the LDL-R that could be targeted to inhibit the PCSK9 triggered degradation of the LDL-R. We also describe the mechanistic rationalisation of the affinity changes seen with the natural occurring human D374Y (gain of function) mutation causing severe hypercholesterolaemia. The action of this mutant is due to a significantly decreased dissociation rate constant, whereas the mutation does not affect the association rate constant.
  •  
11.
  • Hedegard, Erik Donovan, et al. (author)
  • Theoretical Fe-57 Mossbauer spectroscopy: isomer shifts of [Fe]- hydrogenase intermediates
  • 2014
  • In: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084. ; 16:10, s. 4853-4863
  • Journal article (peer-reviewed)abstract
    • Mossbauer spectroscopy is an indispensable spectroscopic technique and analytical tool in iron coordination chemistry. The linear correlation between the electron density at the nucleus ("contact density'') and experimental isomer shifts has been used to link calculated contact densities to experimental isomer shifts. Here we have investigated relativistic methods of systematically increasing sophistication, including the eXact 2-Component (X2C) Hamiltonian and a finite-nucleus model, for the calculation of isomer shifts of iron compounds. While being of similar accuracy as the full four-component treatment, X2C calculations are far more efficient. We find that effects of spin-orbit coupling can safely be neglected, leading to further speedup. Linear correlation plots using effective densities rather than contact densities versus experimental isomer shift lead to a correlation constant a = -0.294 a(0)(-3) mm s(-1) (PBE functional) which is close to an experimentally derived value. Isomer shifts of similar quality can thus be obtained both with and without fitting, which is not the case if one pursues a priori a non-relativistic model approach. As an application for a biologically relevant system, we have studied three recently proposed [ Fe]-hydrogenase intermediates. The structures of these intermediates were extracted from QM/MM calculations using large QM regions surrounded by the full enzyme and a solvation shell of water molecules. We show that a comparison between calculated and experimentally observed isomer shifts can be used to discriminate between different intermediates, whereas calculated atomic charges do not necessarily correlate with Mossbauer isomer shifts. Detailed analysis reveals that the difference in isomer shifts between two intermediates is due to an overlap effect.
  •  
12.
  •  
13.
  • Magnusson, Erika, 1999, et al. (author)
  • Towards efficient quantum computing for quantum chemistry: reducing circuit complexity with transcorrelated and adaptive ansatz techniques
  • 2024
  • In: Faraday Discussions. - 1359-6640 .- 1364-5498. ; In Press
  • Journal article (peer-reviewed)abstract
    • The near-term utility of quantum computers is hindered by hardware constraints in the form of noise. One path to achieving noise resilience in hybrid quantum algorithms is to decrease the required circuit depth - the number of applied gates - to solve a given problem. This work demonstrates how to reduce circuit depth by combining the transcorrelated (TC) approach with adaptive quantum ansätze and their implementations in the context of variational quantum imaginary time evolution (AVQITE). The combined TC-AVQITE method is used to calculate ground state energies across the potential energy surfaces of H4, LiH, and H2O. In particular, H4 is a notoriously difficult case where unitary coupled cluster theory, including singles and doubles excitations, fails to provide accurate results. Adding TC yields energies close to the complete basis set (CBS) limit while reducing the number of necessary operators - and thus circuit depth - in the adaptive ansätze. The reduced circuit depth furthermore makes our algorithm more noise-resilient and accelerates convergence. Our study demonstrates that combining the TC method with adaptive ansätze yields compact, noise-resilient, and easy-to-optimize quantum circuits that yield accurate quantum chemistry results close to the CBS limit.
  •  
14.
  • Nykänen, Anton, et al. (author)
  • Toward Accurate Post-Born-Oppenheimer Molecular Simulations on Quantum Computers: An Adaptive Variational Eigensolver with Nuclear-Electronic Frozen Natural Orbitals
  • 2023
  • In: Journal of Chemical Theory and Computation. - 1549-9626 .- 1549-9618. ; 19:24, s. 9269-9277
  • Journal article (peer-reviewed)abstract
    • Nuclear quantum effects such as zero-point energy and hydrogen tunneling play a central role in many biological and chemical processes. The nuclear-electronic orbital (NEO) approach captures these effects by treating selected nuclei quantum mechanically on the same footing as electrons. On classical computers, the resources required for an exact solution of NEO-based models grow exponentially with system size. By contrast, quantum computers offer a means of solving this problem with polynomial scaling. However, due to the limitations of current quantum devices, NEO simulations are confined to the smallest systems described by minimal basis sets, whereas realistic simulations beyond the Born-Oppenheimer approximation require more sophisticated basis sets. For this purpose, we herein extend a hardware-efficient ADAPT-VQE method to the NEO framework in the frozen natural orbital (FNO) basis. We demonstrate on H2 and D2 molecules that the NEO-FNO-ADAPT-VQE method reduces the CNOT count by several orders of magnitude relative to the NEO unitary coupled cluster method with singles and doubles while maintaining the desired accuracy. This extreme reduction in the CNOT gate count is sufficient to permit practical computations employing the NEO method─an important step toward accurate simulations involving nonclassical nuclei and non-Born-Oppenheimer effects on near-term quantum devices. We further show that the method can capture isotope effects, and we demonstrate that inclusion of correlation energy systematically improves the prediction of difference in the zero-point energy (ΔZPE) between isotopes.
  •  
15.
  • Pham, Tuan D, et al. (author)
  • Structural simplexity of the brain
  • 2010
  • In: Journal of neuroscience methods. - : Elsevier BV. - 0165-0270. ; 188:1, s. 113-126
  • Journal article (peer-reviewed)abstract
    • Simplexity is an emerging concept that expresses a possible complementary relationship between complexity and simplicity. The brain has been known as the most complex structure, and tremendous effort has been spent to study how it works. By understanding complex function of the brain, one can hope to unravel the mystery of its diseases and its biological systems. We propose herein an entropy-based framework for analysis of complexity with a particular application to the study of white matter changes of the human brain. In this analysis, the proposed approach takes into account both morphological structure and image intensity values of MRI scans to construct the complexity profiles of the brain. It has been realized that the quantity and spatial distribution of white matter changes play an important role in cognitive decline (i.e. dementia) and other neuropsychiatric disorders (i.e. multiple sclerosis, depression) as well as in other dementia disorders such as Alzheimers disease. Thus, the results can be utilized as a tool for automated quantification and comparison of various spatial distributions and orientations of age-related white matter changes where manual analysis is difficult and leads to different sensitivities for the respective MRI-based information of the brain.
  •  
16.
  • Pham, Tuan D., et al. (author)
  • The hidden-Markov brain comparison and inference of white matter hyperintensities on magnetic resonance imaging (MRI)
  • 2011
  • In: Journal of Neural Engineering. - : IOP Publishing. - 1741-2560 .- 1741-2552. ; 8:1, s. 1-10
  • Journal article (peer-reviewed)abstract
    • Rating and quantification of cerebral white matter hyperintensities on magnetic resonance imaging (MRI) are important tasks in various clinical and scientific settings. As manual evaluation is time consuming and imprecise, much effort has been made to automate the quantification of white matter hyperintensities. There is rarely any report that attempts to study the similarity/dissimilarity of white matter hyperintensity patterns that have different sizes, shapes and spatial localizations on the MRI. This paper proposes an original computational neuroscience framework for such a conceptual study with a standpoint that the prior knowledge about white matter hyperintensities can be accumulated and utilized to enable a reliable inference of the rating of a new white matter hyperintensity observation. This computational approach for rating inference of white matter hyperintensities, which appears to be the first study, can be utilized as a computerized rating-assisting tool and can be very economical for diagnostic evaluation of brain tissue lesions.
  •  
17.
  • Saue, Trond, et al. (author)
  • The DIRAC code for relativistic molecular calculations
  • 2020
  • In: The Journal of chemical physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 152:20, s. 204104-204104
  • Journal article (peer-reviewed)abstract
    • DIRAC is a freely distributed general-purpose program system for one-, two-, and four-component relativistic molecular calculations at the level of Hartree-Fock, Kohn-Sham (including range-separated theory), multiconfigurational self-consistent-field, multireference configuration interaction, electron propagator, and various flavors of coupled cluster theory. At the self-consistent-field level, a highly original scheme, based on quaternion algebra, is implemented for the treatment of both spatial and time reversal symmetry. DIRAC features a very general module for the calculation of molecular properties that to a large extent may be defined by the user and further analyzed through a powerful visualization module. It allows for the inclusion of environmental effects through three different classes of increasingly sophisticated embedding approaches: the implicit solvation polarizable continuum model, the explicit polarizable embedding model, and the frozen density embedding model.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-17 of 17
Type of publication
journal article (15)
research review (2)
Type of content
peer-reviewed (17)
Author/Editor
Knecht, Stefan (11)
Saue, Trond (3)
Aquilante, Francesco (3)
Freitag, Leon (3)
Reiher, Markus (3)
Wang, Mei (2)
show more...
Lundberg, Marcus, 19 ... (2)
Kominami, Eiki (2)
Veryazov, Valera (2)
Bonaldo, Paolo (2)
Minucci, Saverio (2)
De Milito, Angelo (2)
Kågedal, Katarina (2)
Liu, Wei (2)
Clarke, Robert (2)
Kumar, Ashok (2)
Kongsted, Jacob (2)
Angeli, Celestino (2)
Bast, Radovan (2)
Pedersen, Thomas B. (2)
Brest, Patrick (2)
Simon, Hans-Uwe (2)
Mograbi, Baharia (2)
Malmqvist, Per-Åke (2)
Melino, Gerry (2)
Albert, Matthew L (2)
Lopez-Otin, Carlos (2)
Liu, Bo (2)
Ghavami, Saeid (2)
Harris, James (2)
Baune, Bernhard T (2)
Zhang, Hong (2)
Zorzano, Antonio (2)
Bozhkov, Peter (2)
Petersen, Morten (2)
Fernández Galván, Ig ... (2)
Autschbach, Jochen (2)
Chibotaru, Liviu F. (2)
Lindh, Roland, Profe ... (2)
Norell, Jesper (2)
Olivucci, Massimo (2)
Pierloot, Kristine (2)
Schapiro, Igor (2)
Stein, Christopher J ... (2)
Ungur, Liviu (2)
Vacher, Morgane (2)
Valentini, Alessio (2)
Galvan, Ignacio Fdez ... (2)
Przyklenk, Karin (2)
Pham, Tuan D. (2)
show less...
University
Lund University (8)
Linköping University (6)
Uppsala University (5)
Royal Institute of Technology (4)
Stockholm University (3)
University of Gothenburg (2)
show more...
Chalmers University of Technology (2)
Karolinska Institutet (2)
Swedish University of Agricultural Sciences (2)
Umeå University (1)
show less...
Language
English (17)
Research subject (UKÄ/SCB)
Natural sciences (12)
Medical and Health Sciences (4)
Engineering and Technology (2)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view