SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kumar Ajith) "

Search: WFRF:(Kumar Ajith)

  • Result 1-24 of 24
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Murali, Damu, et al. (author)
  • Flow Over Flat and Curved Plates: A Flow Visualization Study
  • 2022
  • In: Journal of Aerospace Engineering. - : ASCE. - 0893-1321 .- 1943-5525. ; 35:4
  • Journal article (peer-reviewed)abstract
    • Visualization experiments are conducted in a water channel to investigate the wake vortex characteristics of a flat plate and convex and concave curved plates. Three parameters—vortex size (Sv��), vortex length (Lv��), and Strouhal number (St��)—are investigated in this study to deduce the effect of plate curvature and orientation. These parameters are estimated for both the upper and lower vortices by keeping the chord length (Lc��) fixed and changing the plate diameter (D). Various plate configurations are demonstrated by altering the Lc/D��/D ratio from 0 to 1; Lc/D=0��/D=0, 6/13, 3/4, and 1. The Reynolds number (Re) based on chord length remains unchanged at 5,878 throughout the analysis. For each case of the Lc/D��/D ratio, the angle of flow incidence of the plate (α�) is varied from 0° to 30° in steps of 5°. For the convex plate, the combined effect of curvature and orientation is found to enhance the vortex shedding frequency by 70.7%, whereas vortices shrink by 26.71%, and the vortex length is reduced by 25.38%. The manipulations achieved for concave plates reveal comparatively lesser enhancement in shedding frequency; however, concave surfaces are observed to be more suitable for stretching the vortices toward the downstream. The modifications thus achieved have significant practical relevance in various applications. A shedding mechanism that partially interrupts Gerrard’s mechanism is also found to operate with concave plate configurations.
  •  
2.
  • Aasi, J., et al. (author)
  • Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data
  • 2013
  • In: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 87:4
  • Journal article (peer-reviewed)abstract
    • This paper presents results of an all-sky search for periodic gravitational waves in the frequency range [50, 1190] Hz and with frequency derivative range of similar to[-20, 1.1] x 10(-10) Hz s(-1) for the fifth LIGO science run (S5). The search uses a noncoherent Hough-transform method to combine the information from coherent searches on time scales of about one day. Because these searches are very computationally intensive, they have been carried out with the Einstein@Home volunteer distributed computing project. Postprocessing identifies eight candidate signals; deeper follow-up studies rule them out. Hence, since no gravitational wave signals have been found, we report upper limits on the intrinsic gravitational wave strain amplitude h(0). For example, in the 0.5 Hz-wide band at 152.5 Hz, we can exclude the presence of signals with h(0) greater than 7.6 x 10(-25) at a 90% confidence level. This search is about a factor 3 more sensitive than the previous Einstein@Home search of early S5 LIGO data.
  •  
3.
  • Aasi, J., et al. (author)
  • Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network
  • 2013
  • In: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 88:6
  • Journal article (peer-reviewed)abstract
    • Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational-wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance, that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a "blind injection'' where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron-star and black-hole binary parameter space over the component mass range 1M(circle dot)-25M(circle dot) and the full range of spin parameters. The cases reported in this study provide a snapshot of the status of parameter estimation in preparation for the operation of advanced detectors.
  •  
4.
  • Aasi, J., et al. (author)
  • Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009-2010
  • 2013
  • In: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 87:2
  • Journal article (peer-reviewed)abstract
    • We report a search for gravitational waves from the inspiral, merger and ringdown of binary black holes (BBH) with total mass between 25 and 100 solar masses, in data taken at the LIGO and Virgo observatories between July 7, 2009 and October 20, 2010. The maximum sensitive distance of the detectors over this period for a (20, 20)M-circle dot coalescence was 300 Mpc. No gravitational wave signals were found. We thus report upper limits on the astrophysical coalescence rates of BBH as a function of the component masses for nonspinning components, and also evaluate the dependence of the search sensitivity on component spins aligned with the orbital angular momentum. We find an upper limit at 90% confidence on the coalescence rate of BBH with nonspinning components of mass between 19 and 28M(circle dot) of 3:3 x 10(-7) mergers Mpc(-3) yr(-1).
  •  
5.
  • Aasi, J., et al. (author)
  • The characterization of Virgo data and its impact on gravitational-wave searches
  • 2012
  • In: Classical and Quantum Gravity. - : IOP Publishing. - 1361-6382 .- 0264-9381. ; 29:15
  • Journal article (peer-reviewed)abstract
    • Between 2007 and 2010 Virgo collected data in coincidence with the LIGO and GEO gravitational-wave (GW) detectors. These data have been searched for GWs emitted by cataclysmic phenomena in the universe, by non-axisymmetric rotating neutron stars or from a stochastic background in the frequency band of the detectors. The sensitivity of GW searches is limited by noise produced by the detector or its environment. It is therefore crucial to characterize the various noise sources in a GW detector. This paper reviews the Virgo detector noise sources, noise propagation, and conversion mechanisms which were identified in the three first Virgo observing runs. In many cases, these investigations allowed us to mitigate noise sources in the detector, or to selectively flag noise events and discard them from the data. We present examples from the joint LIGO-GEO-Virgo GW searches to show how well noise transients and narrow spectral lines have been identified and excluded from the Virgo data. We also discuss how detector characterization can improve the astrophysical reach of GW searches.
  •  
6.
  • Abadie, J., et al. (author)
  • Search for Gravitational Waves Associated with Gamma-Ray Bursts during LIGO Science Run 6 and Virgo Science Runs 2 and 3
  • 2012
  • In: Astrophysical Journal. - 0004-637X. ; 760:1
  • Journal article (peer-reviewed)abstract
    • We present the results of a search for gravitational waves associated with 154 gamma-ray bursts (GRBs) that were detected by satellite-based gamma-ray experiments in 2009-2010, during the sixth LIGO science run and the second and third Virgo science runs. We perform two distinct searches: a modeled search for coalescences of either two neutron stars or a neutron star and black hole, and a search for generic, unmodeled gravitational-wave bursts. We find no evidence for gravitational-wave counterparts, either with any individual GRB in this sample or with the population as a whole. For all GRBs we place lower bounds on the distance to the progenitor, under the optimistic assumption of a gravitational-wave emission energy of 10(-2) M-circle dot c(2) at 150 Hz, with a median limit of 17 Mpc. For short-hard GRBs we place exclusion distances on binary neutron star and neutron-star-black-hole progenitors, using astrophysically motivated priors on the source parameters, with median values of 16 Mpc and 28 Mpc, respectively. These distance limits, while significantly larger than for a search that is not aided by GRB satellite observations, are not large enough to expect a coincidence with a GRB. However, projecting these exclusions to the sensitivities of Advanced LIGO and Virgo, which should begin operation in 2015, we find that the detection of gravitational waves associated with GRBs will become quite possible.
  •  
7.
  • Adrian-Martinez, S., et al. (author)
  • A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007
  • 2013
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :6
  • Journal article (peer-reviewed)abstract
    • We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.
  •  
8.
  • Evans, P. A., et al. (author)
  • Swift Follow-up Observations of Candidate Gravitational-wave Transient Events
  • 2012
  • In: The Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 203:2
  • Journal article (peer-reviewed)abstract
    • We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors (within less than 10 minutes) and their candidate sky locations were observed by the Swift observatory (within 12 hr). Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a "blind injection challenge." With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime, multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.
  •  
9.
  • Hudson, Lawrence N, et al. (author)
  • The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project
  • 2017
  • In: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 7:1, s. 145-188
  • Journal article (peer-reviewed)abstract
    • The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
  •  
10.
  • 2017
  • In: Physical Review D. - 2470-0010 .- 2470-0029. ; 96:2
  • Journal article (peer-reviewed)
  •  
11.
  • Abadie, J., et al. (author)
  • All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run
  • 2012
  • In: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 85:12
  • Journal article (peer-reviewed)abstract
    • We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration less than or similar to 1 s over the frequency band 64-5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc(3) for sample populations of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range similar to 5 x 10(-22) Hz(-1/2) to similar to 1 x 10(-20) Hz(-1/2). The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors.
  •  
12.
  • Abadie, J., et al. (author)
  • All-sky search for periodic gravitational waves in the full S5 LIGO data
  • 2012
  • In: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 85:2
  • Journal article (peer-reviewed)abstract
    • We report on an all-sky search for periodic gravitational waves in the frequency band 50-800 Hz and with the frequency time derivative in the range of 0 through -6 x 10(-9) Hz/s. Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. After recent improvements in the search program that yielded a 10x increase in computational efficiency, we have searched in two years of data collected during LIGO's fifth science run and have obtained the most sensitive all-sky upper limits on gravitational-wave strain to date. Near 150 Hz our upper limit on worst-case linearly polarized strain amplitude h(0) is 1 x 10(-24), while at the high end of our frequency range we achieve a worst-case upper limit of 3.8 x 10(-24) for all polarizations and sky locations. These results constitute a factor of 2 improvement upon previously published data. A new detection pipeline utilizing a loosely coherent algorithm was able to follow up weaker outliers, increasing the volume of space where signals can be detected by a factor of 10, but has not revealed any gravitational-wave signals. The pipeline has been tested for robustness with respect to deviations from the model of an isolated neutron star, such as caused by a low-mass or long-period binary companion.
  •  
13.
  • Abadie, J., et al. (author)
  • First low-latency LIGO plus Virgo search for binary inspirals and their electromagnetic counterparts
  • 2012
  • In: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 541
  • Journal article (peer-reviewed)abstract
    • Aims. The detection and measurement of gravitational-waves from coalescing neutron-star binary systems is an important science goal for ground-based gravitational-wave detectors. In addition to emitting gravitational-waves at frequencies that span the most sensitive bands of the LIGO and Virgo detectors, these sources are also amongst the most likely to produce an electromagnetic counterpart to the gravitational-wave emission. A joint detection of the gravitational-wave and electromagnetic signals would provide a powerful new probe for astronomy. Methods. During the period between September 19 and October 20, 2010, the first low-latency search for gravitational-waves from binary inspirals in LIGO and Virgo data was conducted. The resulting triggers were sent to electromagnetic observatories for followup. We describe the generation and processing of the low-latency gravitational-wave triggers. The results of the electromagnetic image analysis will be described elsewhere. Results. Over the course of the science run, three gravitational-wave triggers passed all of the low-latency selection cuts. Of these, one was followed up by several of our observational partners. Analysis of the gravitational-wave data leads to an estimated false alarm rate of once every 6.4 days, falling far short of the requirement for a detection based solely on gravitational-wave data.
  •  
14.
  • Abadie, J., et al. (author)
  • Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts
  • 2012
  • In: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 539
  • Journal article (peer-reviewed)abstract
    • Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and Virgo community in association with several partners. In this paper, we describe and evaluate the methods used to promptly identify and localize GW event candidates and to request images of targeted sky locations. Methods. During two observing periods (Dec. 17, 2009 to Jan. 8, 2010 and Sep. 2 to Oct. 20, 2010), a low-latency analysis pipeline was used to identify GW event candidates and to reconstruct maps of possible sky locations. A catalog of nearby galaxies and Milky Way globular clusters was used to select the most promising sky positions to be imaged, and this directional information was delivered to EM observatories with time lags of about thirty minutes. A Monte Carlo simulation has been used to evaluate the low-latency GW pipeline's ability to reconstruct source positions correctly. Results. For signals near the detection threshold, our low-latency algorithms often localized simulated GW burst signals to tens of square degrees, while neutron star/neutron star inspirals and neutron star/black hole inspirals were localized to a few hundred square degrees. Localization precision improves for moderately stronger signals. The correct sky location of signals well above threshold and originating from nearby galaxies may be observed with similar to 50% or better probability with a few pointings of wide-field telescopes.
  •  
15.
  • Abadie, J., et al. (author)
  • Search for gravitational waves from intermediate mass binary black holes
  • 2012
  • In: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 85:10
  • Journal article (peer-reviewed)abstract
    • We present the results of a weakly modeled burst search for gravitational waves from mergers of nonspinning intermediate mass black holes in the total mass range 100-450 M-circle dot and with the component mass ratios between 1: and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the intermediate mass black holes mergers as a function of the component masses. In the most efficiently detected bin centered on 88 + 88 M-circle dot, for nonspinning sources, the rate density upper limit is 0.13 per Mpc(3) per Myr at the 90% confidence level.
  •  
16.
  • Abadie, J., et al. (author)
  • Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3
  • 2012
  • In: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 85:8
  • Journal article (peer-reviewed)abstract
    • We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25M(circle dot); this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3 x 10(-4), 3.1 x 10(-5), and 6.4 x 10(-6) Mpc(-3) yr(-1), respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.
  •  
17.
  • Abadie, J., et al. (author)
  • Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600-1000 Hz
  • 2012
  • In: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 85:12
  • Journal article (peer-reviewed)abstract
    • A stochastic background of gravitational waves is expected to arise from a superposition of many incoherent sources of gravitational waves, of either cosmological or astrophysical origin. This background is a target for the current generation of ground-based detectors. In this article we present the first joint search for a stochastic background using data from the LIGO and Virgo interferometers. In a frequency band of 600-1000 Hz, we obtained a 95% upper limit on the amplitude of Omega(GW)(f) = Omega(3)(f/900 Hz)(3), of Omega(3) < 0.32, assuming a value of the Hubble parameter of h(100) = 0.71. These new limits are a factor of seven better than the previous best in this frequency band.
  •  
18.
  • Bahuguna, Jyotika, et al. (author)
  • Uncoupling the roles of firing rates and spike bursts in shaping the STN-GPe beta band oscillations
  • 2020
  • In: PloS Computational Biology. - : Public Library of Science. - 1553-734X .- 1553-7358. ; 16:3
  • Journal article (peer-reviewed)abstract
    • The excess of 15-30 Hz (beta-band) oscillations in the basal ganglia is one of the key signatures of Parkinson's disease (PD). The STN-GPe network is integral to generation and modulation of beta band oscillations in basal ganglia. However, the role of changes in the firing rates and spike bursting of STN and GPe neurons in shaping these oscillations has remained unclear. In order to uncouple their effects, we studied the dynamics of STN-GPe network using numerical simulations. In particular, we used a neuron model, in which firing rates and spike bursting can be independently controlled. Using this model, we found that while STN firing rate is predictive of oscillations but GPe firing rate is not. The effect of spike bursting in STN and GPe neurons was state-dependent. That is, only when the network was operating in a state close to the border of oscillatory and non-oscillatory regimes, spike bursting had a qualitative effect on the beta band oscillations. In these network states, an increase in GPe bursting enhanced the oscillations whereas an equivalent proportion of spike bursting in STN suppressed the oscillations. These results provide new insights into the mechanisms underlying the transient beta bursts and how duration and power of beta band oscillations may be controlled by an interplay of GPe and STN firing rates and spike bursts. Author summary The STN-GPe network undergoes a change in firing rates as well as increased bursting during excessive beta band oscillations during Parkinson's disease. In this work we uncouple their effects by using a novel neuron model and show that presence of oscillations is contingent on the increase in STN firing rates, however the effect of spike bursting on oscillations depends on the network state. In a network state on the border of oscillatory and non-oscillatory regime, GPe spike bursting strengthens oscillations. The effect of spike bursting in the STN depends on the proportion of GPe neurons bursting. These results suggest a mechanism underlying a transient beta band oscillation bursts often seen in experimental data.
  •  
19.
  • Chahal, Harvinder S., et al. (author)
  • Brief Report : AIP Mutation in Pituitary Adenomas in the 18th Century and Today
  • 2011
  • In: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 364:1, s. 43-50
  • Journal article (peer-reviewed)abstract
    • Gigantism results when a growth hormone-secreting pituitary adenoma is present before epiphyseal fusion. In 1909, when Harvey Cushing examined the skeleton of an Irish patient who lived from 1761 to 1783, *RF 1-3* he noted an enlarged pituitary fossa. We extracted DNA from the patient's teeth and identified a germline mutation in the aryl hydrocarbon-interacting protein gene (AIP). Four contemporary Northern Irish families who presented with gigantism, acromegaly, or prolactinoma have the same mutation and haplotype associated with the mutated gene. Using coalescent theory, we infer that these persons share a common ancestor who lived about 57 to 66 generations earlier.
  •  
20.
  • Dhada, Maharshi, et al. (author)
  • Weibull recurrent neural networks for failure prognosis using histogram data
  • 2023
  • In: Neural Computing & Applications. - : Springer Science and Business Media LLC. - 0941-0643 .- 1433-3058. ; 35:4, s. 3011-3024
  • Journal article (peer-reviewed)abstract
    • Weibull time-to-event recurrent neural networks (WTTE-RNN) is a simple and versatile prognosis algorithm that works by optimising a Weibull survival function using a recurrent neural network. It offers the combined benefits of the sequential nature of the recurrent neural network, and the ability of the Weibull loss function to incorporate censored data. The goal of this paper is to present the first industrial use case of WTTE-RNN for prognosis. Prognosis of turbocharger conditions in a fleet of heavy-duty trucks is presented here, where the condition data used in the case study were recorded as a time series of sparsely sampled histograms. The experiments include comparison of the prediction models trained using data from the entire fleet of trucks vs data from clustered sub-fleets, where it is concluded that clustering is only beneficial as long as the training dataset is large enough for the model to not overfit. Moreover, the censored data from assets that did not fail are also shown to be incorporated while optimising the Weibull loss function and improve prediction performance. Overall, this paper concludes that WTTE-RNN-based failure predictions enable predictive maintenance policies, which are enhanced by identifying the sub-fleets of similar trucks.
  •  
21.
  • Kumar, Ajith, et al. (author)
  • Flow control using hot splitter plates in the wake of a circular cylinder: A hybrid strategy
  • 2024
  • In: Physics of fluids. - : AIP Publishing. - 1070-6631 .- 1089-7666. ; 36:1
  • Journal article (peer-reviewed)abstract
    • A novel and effective hybrid technique, which involves active surface heating strategies in conjunction with the use of passive splitter plates in the wake of the cylinder, is proposed. In this report, we present the results of a numerical investigation on the two-dimensional, laminar mixed convection flow over a circular cylinder with a hot rigid splitter plate attached to it on the wake side. A projection algorithm-based finite volume method is employed to obtain the solution of the coupled, nonlinear governing partial differential equations subjected to Courant–Friedrichs–Lewy conditions. The isothermal heating of the splitter plate under the influence of the gravity field generates an upward buoyancy force in the wake of the cylinder. For different length-to-diameter (L/D) ratios, the effect of heating on aerodynamic, wake, and heat transfer characteristics has been studied for a wide range of parameters; 75  ≤ Re ≤ 150, 0  ≤ Ri ≤ 1, and 0.5  ≤ L/D ≤ 1 at Pr = 0.7. It is observed that the hot splitter plate would bring about conspicuous changes such as asymmetry in the vortex shedding behind the cylinder at low Reynolds numbers. The outcomes demonstrate a notable improvement in convective heat transfer and drag, with gains of up to 7% and 15%, respectively. It is found that the rate of heat transfer and vortex shedding frequency decrease with an increase in L/D ratio. Correlations for the estimation of Strouhal number and Nusselt number have also been proposed which helps provide a more thorough understanding of thermal and aerodynamic features of the hybrid approach.
  •  
22.
  • Murali, Damu, et al. (author)
  • Influence of Slip and Orientation on Entropy Generation Due to Natural Convection in a Square Cavity
  • 2022
  • In: ASME Journal of Heat and Mass Transfer. - : ASME. - 2832-8450 .- 2832-8469. ; 145:3
  • Journal article (peer-reviewed)abstract
    • Numerical simulations are performed to deduce the effects of slip wall and orientation on entropy generation due to natural convection (NC) in a square cavity for Rayleigh number (Ra) = 105. The laterally insulated square cavity, heated at the bottom wall and cooled at the top wall, is subjected to various orientation angles (ϕ) and slip velocities characterized by the Knudsen number (Kn). The two components of entropy generation, i.e., entropy generation due to heat transfer (⁠SΘ�Θ⁠) and entropy generation due to fluid friction (⁠SΨ�Ψ⁠), are separately investigated by varying the orientation from 0 deg to 120 deg in steps of 15 deg and Knudsen number from 0 (no-slip) to 1.5 in steps of 0.5. Evidence indicates that, for most cases considered, entropy generation due to fluid friction (⁠SΨ�Ψ⁠) dominates the one due to heat transfer (⁠SΘ�Θ⁠). It is observed that the slip velocity on the isothermal walls (⁠us,iso��,iso⁠) has a strong influence on SΘ�Θ whereas the variations in SΨ�Ψ are closely connected to the change in the rate of shear strain. Interestingly, the presence of corner vortices and the secondary circulations near the core of the cavity are also found to affect the variation in entropy generation. The existence of active zones of SΘ�Θ in the vicinity of isothermal walls and their elongation and migration while changing the orientation is another unique characteristic noticed in this study. A new parameter called maximum velocity ratio (MVR) is also proposed to highlight the variation in velocity components within the enclosure.
  •  
23.
  • Murali, Damu, et al. (author)
  • On the laminar wake of curved plates
  • 2024
  • In: Physics of fluids. - : AIP Publishing. - 1070-6631 .- 1089-7666. ; 36
  • Journal article (peer-reviewed)abstract
    • Numerical simulations are performed to investigate the effect of the Reynolds number (Re) on flow over curved plates. Concave and convex plates, obtained by introducing curvature on a flat plate, are analyzed in the Reynolds number range 0.1  ≤ Re ≤ 120. It is observed that for a concave plate, the separation point is dependent on Re, while for a convex plate, the flow separates from the outermost tips for all Reynolds numbers. The analysis of time-averaged quantities reveals that concave and convex plates behave differently for the same Reynolds number. In the steady flow regime, visualization of streamlines reveals the presence of a recirculation bubble on the front side of the concave plate, even for the lowest Reynolds number (Re = 0.1). However, at higher Reynolds numbers (Re = 110, 120), the near wake of concave plate witnesses secondary and tertiary recirculating entities. The present simulations also report the unique phenomenon of vortex realignment and divergence of vortex street in the wake of a concave plate. For a convex plate, the vortex realignment is followed by the movement of upper and lower vortices as two parallel vortex streets. The existence of multiple instabilities is another highlight in the near and far wakes of the concave plate, some of which arise due to the secondary vortex interactions. A comprehensive analysis further reveals a handful of novel phenomenal occurrences in the wake of concave surfaces.
  •  
24.
  • Sahasranamam, Ajith, et al. (author)
  • Dynamical state of the network determines the efficacy of single neuron properties in shaping the network activity
  • 2016
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Journal article (peer-reviewed)abstract
    • Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is contingent on the network activity state. While spike bursting can both generate and disrupt oscillations, these patterns are ineffective in large regions of the network state space in changing the network activity qualitatively. Finally, we show that when single-neuron properties are made dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon has important implications for determining the network response to time-varying inputs and for the network sensitivity at different operating points.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-24 of 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view