SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lage C.) "

Search: WFRF:(Lage C.)

  • Result 1-50 of 66
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • de Rojas, I., et al. (author)
  • Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores
  • 2021
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Genetic discoveries of Alzheimer’s disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer’s disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer’s disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer’s disease. © 2021, The Author(s).
  •  
2.
  •  
3.
  • Bellenguez, C, et al. (author)
  • New insights into the genetic etiology of Alzheimer's disease and related dementias
  • 2022
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 54:4, s. 412-436
  • Journal article (peer-reviewed)abstract
    • Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.
  •  
4.
  •  
5.
  • Arking, D. E., et al. (author)
  • Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization
  • 2014
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 46:8, s. 826-836
  • Journal article (peer-reviewed)abstract
    • The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼ 8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD. © 2014 Nature America, Inc.
  •  
6.
  •  
7.
  • Brownstein, Catherine A., et al. (author)
  • An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge
  • 2014
  • In: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 15:3, s. R53-
  • Journal article (peer-reviewed)abstract
    • Background: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. Results: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. Conclusions: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Hong, S. J., et al. (author)
  • TMEM106B and CPOX are genetic determinants of cerebrospinal fluid Alzheimer's disease biomarker levels
  • 2021
  • In: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 17:10, s. 1628-1640
  • Journal article (peer-reviewed)abstract
    • Introduction Neurofilament light (NfL), chitinase-3-like protein 1 (YKL-40), and neurogranin (Ng) are biomarkers for Alzheimer's disease (AD) to monitor axonal damage, astroglial activation, and synaptic degeneration, respectively. Methods We performed genome-wide association studies (GWAS) using DNA and cerebrospinal fluid (CSF) samples from the EMIF-AD Multimodal Biomarker Discovery study for discovery, and the Alzheimer's Disease Neuroimaging Initiative study for validation analyses. GWAS were performed for all three CSF biomarkers using linear regression models adjusting for relevant covariates. Results We identify novel genome-wide significant associations between DNA variants in TMEM106B and CSF levels of NfL, and between CPOX and YKL-40. We confirm previous work suggesting that YKL-40 levels are associated with DNA variants in CHI3L1. Discussion Our study provides important new insights into the genetic architecture underlying interindividual variation in three AD-related CSF biomarkers. In particular, our data shed light on the sequence of events regarding the initiation and progression of neuropathological processes relevant in AD.
  •  
12.
  • Ebersole, Charles R., et al. (author)
  • Many Labs 5: Testing Pre-Data-Collection Peer Review as an Intervention to Increase Replicability
  • 2020
  • In: Advances in Methods and Practices in Psychological Science. - : Sage. - 2515-2467 .- 2515-2459. ; 3:3, s. 309-331
  • Journal article (peer-reviewed)abstract
    • Replication studies in psychological science sometimes fail to reproduce prior findings. If these studies use methods that are unfaithful to the original study or ineffective in eliciting the phenomenon of interest, then a failure to replicate may be a failure of the protocol rather than a challenge to the original finding. Formal pre-data-collection peer review by experts may address shortcomings and increase replicability rates. We selected 10 replication studies from the Reproducibility Project: Psychology (RP:P; Open Science Collaboration, 2015) for which the original authors had expressed concerns about the replication designs before data collection; only one of these studies had yielded a statistically significant effect (p < .05). Commenters suggested that lack of adherence to expert review and low-powered tests were the reasons that most of these RP:P studies failed to replicate the original effects. We revised the replication protocols and received formal peer review prior to conducting new replication studies. We administered the RP:P and revised protocols in multiple laboratories (median number of laboratories per original study = 6.5, range = 3-9; median total sample = 1,279.5, range = 276-3,512) for high-powered tests of each original finding with both protocols. Overall, following the preregistered analysis plan, we found that the revised protocols produced effect sizes similar to those of the RP:P protocols (Delta r = .002 or .014, depending on analytic approach). The median effect size for the revised protocols (r = .05) was similar to that of the RP:P protocols (r = .04) and the original RP:P replications (r = .11), and smaller than that of the original studies (r = .37). Analysis of the cumulative evidence across the original studies and the corresponding three replication attempts provided very precise estimates of the 10 tested effects and indicated that their effect sizes (median r = .07, range = .00-.15) were 78% smaller, on average, than the original effect sizes (median r = .37, range = .19-.50).
  •  
13.
  • Van Deerlin, Vivian M, et al. (author)
  • Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:3, s. 234-239
  • Journal article (peer-reviewed)abstract
    • Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile dementia. The predominant neuropathology is FTLD with TAR DNA-binding protein (TDP-43) inclusions (FTLD-TDP). FTLD-TDP is frequently familial, resulting from mutations in GRN (which encodes progranulin). We assembled an international collaboration to identify susceptibility loci for FTLD-TDP through a genome-wide association study of 515 individuals with FTLD-TDP. We found that FTLD-TDP associates with multiple SNPs mapping to a single linkage disequilibrium block on 7p21 that contains TMEM106B. Three SNPs retained genome-wide significance following Bonferroni correction (top SNP rs1990622, P = 1.08 x 10(-11); odds ratio, minor allele (C) 0.61, 95% CI 0.53-0.71). The association replicated in 89 FTLD-TDP cases (rs1990622; P = 2 x 10(-4)). TMEM106B variants may confer risk of FTLD-TDP by increasing TMEM106B expression. TMEM106B variants also contribute to genetic risk for FTLD-TDP in individuals with mutations in GRN. Our data implicate variants in TMEM106B as a strong risk factor for FTLD-TDP, suggesting an underlying pathogenic mechanism.
  •  
14.
  • van der Lee, S. J., et al. (author)
  • A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity
  • 2019
  • In: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 138:2, s. 237-250
  • Journal article (peer-reviewed)abstract
    • The genetic variant rs72824905-G (minor allele) in the PLCG2 gene was previously associated with a reduced Alzheimer's disease risk (AD). The role of PLCG2 in immune system signaling suggests it may also protect against other neurodegenerative diseases and possibly associates with longevity. We studied the effect of the rs72824905-G on seven neurodegenerative diseases and longevity, using 53,627 patients, 3,516 long-lived individuals and 149,290 study-matched controls. We replicated the association of rs72824905-G with reduced AD risk and we found an association with reduced risk of dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD). We did not find evidence for an effect on Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) risks, despite adequate sample sizes. Conversely, the rs72824905-G allele was associated with increased likelihood of longevity. By-proxy analyses in the UK Biobank supported the associations with both dementia and longevity. Concluding, rs72824905-G has a protective effect against multiple neurodegenerative diseases indicating shared aspects of disease etiology. Our findings merit studying the PLC gamma 2 pathway as drug-target.
  •  
15.
  • Bos, I., et al. (author)
  • Cerebrospinal fluid biomarkers of neurodegeneration, synaptic integrity, and astroglial activation across the clinical Alzheimer's disease spectrum
  • 2019
  • In: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 15:5, s. 644-654
  • Journal article (peer-reviewed)abstract
    • Introduction: We investigated relations between amyloid-beta (A beta) status, apolipoprotein E (APOE) e4, and cognition, with cerebrospinal fluid markers of neurogranin (Ng), neurofilament light (NFL), YKL-40, and total tau (T-tau). Methods: We included 770 individuals with normal cognition, mild cognitive impairment, and Alzheimer's disease (AD)-type dementia from the EMIF-AD Multimodal Biomarker Discovery study. We tested the association of Ng, NFL, YKL-40, and T-tau with A beta status (Ab beta- vs. A beta+), clinical diagnosis APOE epsilon 4 carriership, baseline cognition, and change in cognition. Results: Ng and T-tau distinguished between A beta+ from A beta- individuals in each clinical group, whereas NFL and YKL-40 were associated with A beta+ in nondemented individuals only. APOE epsilon 4 carriership did not influence NFL, Ng, and YKL-40 in A beta+ individuals. NFL was the best predictor of cognitive decline in A beta+ individuals across the cognitive spectrum. Discussion: Axonal degeneration, synaptic dysfunction, astroglial activation, and altered tau metabolism are involved already in preclinical AD. NFL may be a useful prognostic marker. (C) 2019 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
  •  
16.
  •  
17.
  • Jansen, Willemijn J, et al. (author)
  • Prevalence Estimates of Amyloid Abnormality Across the Alzheimer Disease Clinical Spectrum.
  • 2022
  • In: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 79:3, s. 228-243
  • Journal article (peer-reviewed)abstract
    • One characteristic histopathological event in Alzheimer disease (AD) is cerebral amyloid aggregation, which can be detected by biomarkers in cerebrospinal fluid (CSF) and on positron emission tomography (PET) scans. Prevalence estimates of amyloid pathology are important for health care planning and clinical trial design.To estimate the prevalence of amyloid abnormality in persons with normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia and to examine the potential implications of cutoff methods, biomarker modality (CSF or PET), age, sex, APOE genotype, educational level, geographical region, and dementia severity for these estimates.This cross-sectional, individual-participant pooled study included participants from 85 Amyloid Biomarker Study cohorts. Data collection was performed from January 1, 2013, to December 31, 2020. Participants had normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia. Normal cognition and subjective cognitive decline were defined by normal scores on cognitive tests, with the presence of cognitive complaints defining subjective cognitive decline. Mild cognitive impairment and clinical AD dementia were diagnosed according to published criteria.Alzheimer disease biomarkers detected on PET or in CSF.Amyloid measurements were dichotomized as normal or abnormal using cohort-provided cutoffs for CSF or PET or by visual reading for PET. Adjusted data-driven cutoffs for abnormal amyloid were calculated using gaussian mixture modeling. Prevalence of amyloid abnormality was estimated according to age, sex, cognitive status, biomarker modality, APOE carrier status, educational level, geographical location, and dementia severity using generalized estimating equations.Among the 19097 participants (mean [SD] age, 69.1 [9.8] years; 10148 women [53.1%]) included, 10139 (53.1%) underwent an amyloid PET scan and 8958 (46.9%) had an amyloid CSF measurement. Using cohort-provided cutoffs, amyloid abnormality prevalences were similar to 2015 estimates for individuals without dementia and were similar across PET- and CSF-based estimates (24%; 95% CI, 21%-28%) in participants with normal cognition, 27% (95% CI, 21%-33%) in participants with subjective cognitive decline, and 51% (95% CI, 46%-56%) in participants with mild cognitive impairment, whereas for clinical AD dementia the estimates were higher for PET than CSF (87% vs 79%; mean difference, 8%; 95% CI, 0%-16%; P=.04). Gaussian mixture modeling-based cutoffs for amyloid measures on PET scans were similar to cohort-provided cutoffs and were not adjusted. Adjusted CSF cutoffs resulted in a 10% higher amyloid abnormality prevalence than PET-based estimates in persons with normal cognition (mean difference, 9%; 95% CI, 3%-15%; P=.004), subjective cognitive decline (9%; 95% CI, 3%-15%; P=.005), and mild cognitive impairment (10%; 95% CI, 3%-17%; P=.004), whereas the estimates were comparable in persons with clinical AD dementia (mean difference, 4%; 95% CI, -2% to 9%; P=.18).This study found that CSF-based estimates using adjusted data-driven cutoffs were up to 10% higher than PET-based estimates in people without dementia, whereas the results were similar among people with dementia. This finding suggests that preclinical and prodromal AD may be more prevalent than previously estimated, which has important implications for clinical trial recruitment strategies and health care planning policies.
  •  
18.
  •  
19.
  • ten Kate, M., et al. (author)
  • MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study
  • 2018
  • In: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 10
  • Journal article (peer-reviewed)abstract
    • Background: With the shift of research focus towards the pre-dementia stage of Alzheimer's disease (AD), there is an urgent need for reliable, non-invasive biomarkers to predict amyloid pathology. The aim of this study was to assess whether easily obtainable measures from structural MRI, combined with demographic data, cognitive data and apolipoprotein E (APOE) epsilon 4 genotype, can be used to predict amyloid pathology using machine-learning classification. Methods: We examined 810 subjects with structural MRI data and amyloid markers from the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery study, including subjects with normal cognition (CN, n = 337, age 66.5 +/- 72, 50% female, 27% amyloid positive), mild cognitive impairment (MCI, n = 375, age 69. 1 +/- 7.5, 53% female, 63% amyloid positive) and AD dementia (n = 98, age 67.0 +/- 7.7, 48% female, 97% amyloid positive). Structural MRI scans were visually assessed and Freesurfer was used to obtain subcortical volumes, cortical thickness and surface area measures. We first assessed univariate associations between MRI measures and amyloid pathology using mixed models. Next, we developed and tested an automated classifier using demographic, cognitive, MRI and APOE epsilon 4 information to predict amyloid pathology. A support vector machine (SVM) with nested 10-fold cross-validation was applied to identify a set of markers best discriminating between amyloid positive and amyloid negative subjects. Results: In univariate associations, amyloid pathology was associated with lower subcortical volumes and thinner cortex in AD-signature regions in CN and MCI. The multi-variable SVM classifier provided an area under the curve (AUC) of 0.81 +/- O. 07 in MCI and an AUC of 0.74 +/- 0.08 in CN. In CN, selected features for the classifier included APOE epsilon 4, age, memory scores and several MRI measures such as hippocampus, amygdala and accumbens volumes and cortical thickness in temporal and parahippocampal regions. In MCI, the classifier including demographic and APOE epsilon 4 information did not improve after additionally adding imaging measures. Conclusions: Amyloid pathology is associated with changes in structural MRI measures in CN and MCI. An automated classifier based on clinical, imaging and APOE epsilon 4 data can identify the presence of amyloid pathology with a moderate level of accuracy. These results could be used in clinical trials to pre-screen subjects for anti-amyloid therapies.
  •  
20.
  •  
21.
  • Bos, I., et al. (author)
  • The EMIF-AD Multimodal Biomarker Discovery study: design, methods and cohort characteristics
  • 2018
  • In: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 10
  • Journal article (peer-reviewed)abstract
    • Background: There is an urgent need for novel, noninvasive biomarkers to diagnose Alzheimer's disease (AD) in the predementia stages and to predict the rate of decline. Therefore, we set up the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study. In this report we describe the design of the study, the methods used and the characteristics of the participants. Methods: Participants were selected from existing prospective multicenter and single-center European studies. Inclusion criteria were having normal cognition (NC) or a diagnosis of mild cognitive impairment (MCI) or AD-type dementia at baseline, age above 50 years, known amyloid-beta (A beta) status, availability of cognitive test results and at least two of the following materials: plasma, DNA, magnetic resonance imaging (MRI) or cerebrospinal fluid (CSF). Targeted and untargeted metabolomic and proteomic analyses were performed in plasma, and targeted and untargeted proteomics were performed in CSF. Genome-wide SNP genotyping, next-generation sequencing and methylation profiling were conducted in DNA. Visual rating and volumetric measures were assessed on MRI. Baseline characteristics were analyzed using ANOVA or chi-square, rate of decline analyzed by linear mixed modeling. Results: We included 1221 individuals (NC n = 492, MCI n = 527, AD-type dementia n = 202) with a mean age of 67.9 (SD 8.3) years. The percentage A beta+ was 26% in the NC, 58% in the MCI, and 87% in the AD-type dementia groups. Plasma samples were available for 1189 (97%) subjects, DNA samples for 929 (76%) subjects, MRI scans for 862 (71%) subjects and CSF samples for 767 (63%) subjects. For 759 (62%) individuals, clinical follow-up data were available. In each diagnostic group, the APOE e4 allele was more frequent amongst A beta+ individuals (p < 0.001). Only in MCI was there a difference in baseline Mini Mental State Examination (MMSE) score between the A groups (p< 0.001). A beta+ had a faster rate of decline on the MMSE during follow-up in the NC (p < 0.001) and MCI (p < 0.001) groups. Conclusions: The characteristics of this large cohort of elderly subjects at various cognitive stages confirm the central roles of A beta and APOE epsilon 4 in AD pathogenesis. The results of the multimodal analyses will provide new insights into underlying mechanisms and facilitate the discovery of new diagnostic and prognostic AD biomarkers. All researchers can apply for access to the EMIF-AD MBD data by submitting a research proposal via the EMIF-AD Catalog.
  •  
22.
  • Neumann, A., et al. (author)
  • Rare variants in IFFO1, DTNB, NLRC3 and SLC22A10 associate with Alzheimer's disease CSF profile of neuronal injury and inflammation
  • 2022
  • In: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 27, s. 1990-1999
  • Journal article (peer-reviewed)abstract
    • Alzheimer's disease (AD) biomarkers represent several neurodegenerative processes, such as synaptic dysfunction, neuronal inflammation and injury, as well as amyloid pathology. We performed an exome-wide rare variant analysis of six AD biomarkers (beta-amyloid, total/phosphorylated tau, NfL, YKL-40, and Neurogranin) to discover genes associated with these markers. Genetic and biomarker information was available for 480 participants from two studies: EMIF-AD and ADNI. We applied a principal component (PC) analysis to derive biomarkers combinations, which represent statistically independent biological processes. We then tested whether rare variants in 9576 protein-coding genes associate with these PCs using a Meta-SKAT test. We also tested whether the PCs are intermediary to gene effects on AD symptoms with a SMUT test. One PC loaded on NfL and YKL-40, indicators of neuronal injury and inflammation. Four genes were associated with this PC: IFFO1, DTNB, NLRC3, and SLC22A10. Mediation tests suggest, that these genes also affect dementia symptoms via inflammation/injury. We also observed an association between a PC loading on Neurogranin, a marker for synaptic functioning, with GABBR2 and CASZ1, but no mediation effects. The results suggest that rare variants in IFFO1, DTNB, NLRC3, and SLC22A10 heighten susceptibility to neuronal injury and inflammation, potentially by altering cytoskeleton structure and immune activity disinhibition, resulting in an elevated dementia risk. GABBR2 and CASZ1 were associated with synaptic functioning, but mediation analyses suggest that the effect of these two genes on synaptic functioning is not consequential for AD development.
  •  
23.
  •  
24.
  • Shi, L., et al. (author)
  • Multiomics profiling of human plasma and cerebrospinal fluid reveals ATN-derived networks and highlights causal links in Alzheimer's disease
  • 2023
  • In: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:8, s. 3359-3364
  • Journal article (peer-reviewed)abstract
    • IntroductionThis study employed an integrative system and causal inference approach to explore molecular signatures in blood and CSF, the amyloid/tau/neurodegeneration [AT(N)] framework, mild cognitive impairment (MCI) conversion to Alzheimer's disease (AD), and genetic risk for AD. MethodsUsing the European Medical Information Framework (EMIF)-AD cohort, we measured 696 proteins in cerebrospinal fluid (n = 371), 4001 proteins in plasma (n = 972), 611 metabolites in plasma (n = 696), and genotyped whole-blood (7,778,465 autosomal single nucleotide epolymorphisms, n = 936). We investigated associations: molecular modules to AT(N), module hubs with AD Polygenic Risk scores and APOE4 genotypes, molecular hubs to MCI conversion and probed for causality with AD using Mendelian randomization (MR). ResultsAT(N) framework associated with protein and lipid hubs. In plasma, Proprotein Convertase Subtilisin/Kexin Type 7 showed evidence for causal associations with AD. AD was causally associated with Reticulocalbin 2 and sphingomyelins, an association driven by the APOE isoform. DiscussionThis study reveals multi-omics networks associated with AT(N) and causal AD molecular candidates.
  •  
25.
  • Shi, Liu, et al. (author)
  • Replication study of plasma proteins relating to Alzheimer's pathology.
  • 2021
  • In: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279 .- 1552-5260. ; 17:9, s. 1452-1464
  • Journal article (peer-reviewed)abstract
    • This study sought to discover and replicate plasma proteomic biomarkers relating to Alzheimer's disease (AD) including both the "ATN" (amyloid/tau/neurodegeneration) diagnostic framework and clinical diagnosis.Plasma proteins from 972 subjects (372 controls, 409 mild cognitive impairment [MCI], and 191 AD) were measured using both SOMAscan and targeted assays, including 4001 and 25 proteins, respectively.Protein co-expression network analysis of SOMAscan data revealed the relation between proteins and "N" varied across different neurodegeneration markers, indicating that the ATN variants are not interchangeable. Using hub proteins, age, and apolipoprotein E ε4 genotype discriminated AD from controls with an area under the curve (AUC) of 0.81 and MCI convertors from non-convertors with an AUC of 0.74. Targeted assays replicated the relation of four proteins with the ATN framework and clinical diagnosis.Our study suggests that blood proteins can predict the presence of AD pathology as measured in the ATN framework as well as clinical diagnosis.
  •  
26.
  • Vermunt, L., et al. (author)
  • Duration of preclinical, prodromal, and dementia stages of Alzheimer's disease in relation to age, sex, and APOE genotype
  • 2019
  • In: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 15:7, s. 888-898
  • Journal article (peer-reviewed)abstract
    • Introduction: We estimated the age-specific duration of the preclinical, prodromal, and dementia stages of Alzheimer's disease (AD) and the influence of sex, setting, apolipoprotein E (APOE) genotype, and cerebrospinal fluid tau on disease duration. Methods: We performed multistate modeling in a combined sample of 6 cohorts (n = 3268) with death as the end stage and estimated the preclinical, prodromal, and dementia stage duration. Results: The overall AD duration varied between 24 years (age 60) and 15 years (age 80). For individuals presenting with preclinical AD, age 70, the estimated preclinical AD duration was 10 years, prodromal AD 4 years, and dementia 6 years. Male sex, clinical setting, APOE epsilon 4 allele carriership, and abnormal cerebrospinal fluid tau were associated with a shorter duration, and these effects depended on disease stage. Discussion: Estimates of AD disease duration become more accurate if age, sex, setting, APOE, and cerebrospinal fluid tau are taken into account. This will be relevant for clinical practice and trial design. (C) 2019 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
  •  
27.
  •  
28.
  • Bishop, Kevin, et al. (author)
  • The Effects of Forestry on Hg Bioaccumulation in Nemoral/Boreal Waters and Recommendations for Good Silvicultural Practice
  • 2009
  • In: Ambio. - : Royal Swedish Academy of Sciences. - 0044-7447 .- 1654-7209. ; 38:7, s. 373-380
  • Journal article (peer-reviewed)abstract
    • Mercury (Hg) levels are alarmingly high in fish from lakes across Fennoscandia and northern North America. The few published studies on the ways in which silviculture practices influence this problem indicate that forest operations increase Hg in downstream aquatic ecosystems. From these studies, we estimate that between one-tenth and one-quarter of the Hg in the fish of high-latitude, managed forest landscapes can be attributed to harvesting. Forestry, however, did not create the elevated Hg levels in the soils, and waterborne Hg/MeHg concentrations downstream from harvested areas are similar to those from wetlands. Given the current understanding of the way in which silviculture impacts Hg cycling, most of the recommendations for good forest practice in Sweden appear to be appropriate for high-latitude regions, e.g., leaving riparian buffer zones, as well as reducing disturbance at stream crossings and in moist areas. The recommendation to restore wetlands and reduce drainage, however, will likely increase Hg/MeHg loadings to aquatic ecosystems
  •  
29.
  • Braga, Ana C., et al. (author)
  • Native (Ruditapes decussatus) and non-indigenous (R. philippinarum) shellfish species living in sympatry : Comparison of regulated and non-regulated biotoxins accumulation
  • 2017
  • In: Marine Environmental Research. - : Elsevier BV. - 0141-1136 .- 1879-0291. ; 129, s. 147-155
  • Journal article (peer-reviewed)abstract
    • The native Ruditapes decussatus and the non-indigenous Ruditapes philippinarum are an important target of shellfish industries. The aim of this study was to compare an invader with a native species living in sympatry in the view of marine biotoxins accumulation. Samples were analysed for regulated and non regulated biotoxins. The consistently occurrence of okadaic acid-group toxins and BMAA, may cause human health problems and economical losses. A strong positive relationship was observed between species, with significantly higher DSP toxicity in R. decussatus. Similar toxin profiles dominated by DTX3 in both species suggests similar metabolic pathways. Lower DSP toxicity in R. philippinarum may favour their cultivation, but a tendency for higher levels of the non-regulated BMAA was observed, indicating risks for consumers that are not monitored. This study highlights the need to better understand the physiological responses and adaptations allowing similar species exposed to the same conditions to present different toxicity levels.
  •  
30.
  • Brorsson, C., et al. (author)
  • Identification of T1D susceptibility genes within the MHC region by combining protein interaction networks and SNP genotyping data
  • 2009
  • In: Diabetes, Obesity and Metabolism. - : Wiley. - 1462-8902 .- 1463-1326. ; 11:S1, s. 60-66
  • Journal article (peer-reviewed)abstract
    • To develop novel methods for identifying new genes that contribute to the risk of developing type 1 diabetes within the Major Histocompatibility Complex (MHC) region on chromosome 6, independently of the known linkage disequilibrium (LD) between human leucocyte antigen (HLA)-DRB1, -DQA1, -DQB1 genes. We have developed a novel method that combines single nucleotide polymorphism (SNP) genotyping data with protein-protein interaction (ppi) networks to identify disease-associated network modules enriched for proteins encoded from the MHC region. Approximately 2500 SNPs located in the 4 Mb MHC region were analysed in 1000 affected offspring trios generated by the Type 1 Diabetes Genetics Consortium (T1DGC). The most associated SNP in each gene was chosen and genes were mapped to ppi networks for identification of interaction partners. The association testing and resulting interacting protein modules were statistically evaluated using permutation. A total of 151 genes could be mapped to nodes within the protein interaction network and their interaction partners were identified. Five protein interaction modules reached statistical significance using this approach. The identified proteins are well known in the pathogenesis of T1D, but the modules also contain additional candidates that have been implicated in beta-cell development and diabetic complications. The extensive LD within the MHC region makes it important to develop new methods for analysing genotyping data for identification of additional risk genes for T1D. Combining genetic data with knowledge about functional pathways provides new insight into mechanisms underlying T1D.
  •  
31.
  •  
32.
  • Cook, Michael J., et al. (author)
  • Frailty and bone health in European men
  • 2017
  • In: Age and Ageing. - : Oxford University Press (OUP). - 0002-0729 .- 1468-2834. ; 46:4, s. 635-641
  • Journal article (peer-reviewed)abstract
    • Background: frailty is associated with an increased risk of fragility fractures. Less is known, however, about the association between frailty and bone health.Methods: men aged 40-79 years were recruited from population registers in eight European centres for participation in the European Male Aging Study. Subjects completed a comprehensive assessment which included quantitative ultrasound (QUS) scan of the heel (Hologic-SAHARA) and in two centres, dual-energy bone densitometry (dual-energy x-ray absorptiometry, DXA). Frailty was defined based on an adaptation of Fried's phenotype criteria and a frailty index (FI) was constructed. The association between frailty and the QUS and DXA parameters was determined using linear regression, with adjustments for age, body mass index and centre.Results: in total, 3,231 subjects contributed data to the analysis. Using the Fried categorisation of frailty, pre-frail and frail men had significantly lower speed of sound (SOS), broadband ultrasound attenuation (BUA) and quantitative ultrasound index (QUI) compared to robust men (P< 0.05). Similar results were seen using the FI after categorisation into 'high', 'medium' and 'low' levels of frailty. Using the Fried categorisation, frail men had lower femoral neck bone mineral density (BMD) compared to robust men (P < 0.05), but not lower lumbar spine BMD. Using the FI categorisation, a 'high' level of frailty (FI > 0.35) was associated with lower lumbar spine BMD (P < 0.05) when compared to those with low (FI < 0.2), but not lower femoral neck BMD. When analysed as a continuous variable, higher FI was linked with lower SOS, BUA and QUI (P < 0.05).Conclusions: optimisation of bone health as well as prevention of falls should be considered as strategies to reduce fractures in frail older people.
  •  
33.
  • Delvenne, A., et al. (author)
  • Cerebrospinal fluid proteomic profiling of individuals with mild cognitive impairment and suspected non-Alzheimer's disease pathophysiology
  • 2023
  • In: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:3, s. 807-820
  • Journal article (peer-reviewed)abstract
    • Background Suspected non-Alzheimer's disease pathophysiology (SNAP) is a biomarker concept that encompasses individuals with neuronal injury but without amyloidosis. We aim to investigate the pathophysiology of SNAP, defined as abnormal tau without amyloidosis, in individuals with mild cognitive impairment (MCI) by cerebrospinal fluid (CSF) proteomics. Methods Individuals were classified based on CSF amyloid beta (A beta)1-42 (A) and phosphorylated tau (T), as cognitively normal A-T- (CN), MCI A-T+ (MCI-SNAP), and MCI A+T+ (MCI-AD). Proteomics analyses, Gene Ontology (GO), brain cell expression, and gene expression analyses in brain regions of interest were performed. Results A total of 96 proteins were decreased in MCI-SNAP compared to CN and MCI-AD. These proteins were enriched for extracellular matrix (ECM), hemostasis, immune system, protein processing/degradation, lipids, and synapse. Fifty-one percent were enriched for expression in the choroid plexus. Conclusion The pathophysiology of MCI-SNAP (A-T+) is distinct from that of MCI-AD. Our findings highlight the need for a different treatment in MCI-SNAP compared to MCI-AD.
  •  
34.
  •  
35.
  • Eland, J. H. D., et al. (author)
  • Spectra of the triply charged ion CS[sub 2][sup 3+] and selectivity in molecular Auger effects
  • 2010
  • In: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 132:10, s. 104311-
  • Journal article (peer-reviewed)abstract
    • Spectra of triply charged carbon disulphide have been obtained by measuring, in coincidence, all three electrons ejected in its formation by photoionization. Measurements of the CS23+ ion in coincidence with the three electrons identify the energy range where stable trications are formed. A sharp peak in this energy range is identified as the 2Π ground state at 53.1±0.1 eV, which is the lowest electronic state according to ab initio molecular orbital calculations. Triple ionization by the double Auger effect is provisionally divided, on the basis of the pattern of energy sharing between the two Auger electrons into contributions from direct and cascade Auger processes. The spectra from the direct double Auger effect via S 2p, S 2s, and C 1s hole states contain several resolved features and show selectivity based on the initial charge localization and on the identity of the initial state. Triple ionization spectra from single Auger decay of S 2p -based core-valence states CS22+ show retention of the valence holes in this Auger process. Related ion-electron coincidence measurements give the triple ionization yields and the breakdown patterns in triple photoionization at selected photon energies from 90 eV to above the inner shell edges.
  •  
36.
  • Gorzsás, András, 1975- (author)
  • Vanadate and Peroxovanadate Complexes of Biomedical Relevance : A speciation approach with focus on diabetes
  • 2005
  • Doctoral thesis (other academic/artistic)abstract
    • Diabetes mellitus is one of the most threatening epidemics of modern times with rapidly increasing incidence. Vanadium and peroxovanadium compounds have been shown to exert insulin–like actions and, in contrast to insulin, are orally applicable. However, problems with side–effects and toxicity remain. The exact mechanism(s) by which these compounds act are not yet fully known. Thus, a better understanding of the aqueous chemistry of vanadates and peroxovanadates in the presence of various (bio)ligands is needed. The present thesis summarises six papers dealing mainly with aqueous speciation in different vanadate – and peroxovanadate – ligand systems of biological and medical relevance. Altogether, five ligands have been studied, including important blood constituents (lactate, citrate and phosphate), a potential drug candidate (picolinic acid), and a dipeptide (alanyl serine) to model the interaction of (peroxo)vanadate in the active site of enzymes. Since all five ligands have been studied both with vanadates and peroxovanadates, the number of systems described in the present work is eleven, including the vanadate – citrate – lactate mixed ligand system. The pH–independent formation constants have been determined for 33 ternary vanadate – ligand, 41 quaternary peroxovanadate – ligand and two vanadate – mixed ligand species in addition to the pKa values of all five ligands. These constants have been used to model physiological conditions, and the biomedical relevance of the different species is discussed. The studies have been performed at 25 ºC in the physiological medium of 0.150 M Na(Cl), i.e. the ionic strength of human blood. No buffers have been used, and wide pH–ranges have usually been covered. The applied experimental techniques comprise mostly 51V NMR and potentiometry, but 31P, 13C, 1H and 14N NMR as well as EPR and ESI–MS have also been used to gain additional information. Multimethod data have been treated by the least–squares program LAKE and modelling has been carried out by the software package WinSGW. Whenever possible, solution structures of the species have been proposed. In addition, simple biological tests have been carried out to determine the stability of the formed peroxovanadate complexes in the presence of human catalase. A brief comparison is given of the different vanadate – ligand and peroxovanadate – ligand systems with emphasis on observed trends and general features.
  •  
37.
  •  
38.
  • Homann, Jan, et al. (author)
  • Genome-Wide Association Study of Alzheimer's Disease Brain Imaging Biomarkers and Neuropsychological Phenotypes in the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery Dataset.
  • 2022
  • In: Frontiers in aging neuroscience. - : Frontiers Media SA. - 1663-4365. ; 14
  • Journal article (peer-reviewed)abstract
    • Alzheimer's disease (AD) is the most frequent neurodegenerative disease with an increasing prevalence in industrialized, aging populations. AD susceptibility has an established genetic basis which has been the focus of a large number of genome-wide association studies (GWAS) published over the last decade. Most of these GWAS used dichotomized clinical diagnostic status, i.e., case vs. control classification, as outcome phenotypes, without the use of biomarkers. An alternative and potentially more powerful study design is afforded by using quantitative AD-related phenotypes as GWAS outcome traits, an analysis paradigm that we followed in this work. Specifically, we utilized genotype and phenotype data from n = 931 individuals collected under the auspices of the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study to perform a total of 19 separate GWAS analyses. As outcomes we used five magnetic resonance imaging (MRI) traits and seven cognitive performance traits. For the latter, longitudinal data from at least two timepoints were available in addition to cross-sectional assessments at baseline. Our GWAS analyses revealed several genome-wide significant associations for the neuropsychological performance measures, in particular those assayed longitudinally. Among the most noteworthy signals were associations in or near EHBP1 (EH domain binding protein 1; on chromosome 2p15) and CEP112 (centrosomal protein 112; 17q24.1) with delayed recall as well as SMOC2 (SPARC related modular calcium binding 2; 6p27) with immediate recall in a memory performance test. On the X chromosome, which is often excluded in other GWAS, we identified a genome-wide significant signal near IL1RAPL1 (interleukin 1 receptor accessory protein like 1; Xp21.3). While polygenic score (PGS) analyses showed the expected strong associations with SNPs highlighted in relevant previous GWAS on hippocampal volume and cognitive function, they did not show noteworthy associations with recent AD risk GWAS findings. In summary, our study highlights the power of using quantitative endophenotypes as outcome traits in AD-related GWAS analyses and nominates several new loci not previously implicated in cognitive decline.
  •  
39.
  • Hong, Shengjun, et al. (author)
  • Genome-wide association study of Alzheimer's disease CSF biomarkers in the EMIF-AD Multimodal Biomarker Discovery dataset.
  • 2020
  • In: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and the most common form of dementia in the elderly. Susceptibility to AD is considerably determined by genetic factors which hitherto were primarily identified using case-control designs. Elucidating the genetic architecture of additional AD-related phenotypic traits, ideally those linked to the underlying disease process, holds great promise in gaining deeper insights into the genetic basis of AD and in developing better clinical prediction models. To this end, we generated genome-wide single-nucleotide polymorphism (SNP) genotyping data in 931 participants of the European Medical Information Framework Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) sample to search for novel genetic determinants of AD biomarker variability. Specifically, we performed genome-wide association study (GWAS) analyses on 16 traits, including 14 measures derived from quantifications of five separate amyloid-beta (Aβ) and tau-protein species in the cerebrospinal fluid (CSF). In addition to confirming the well-established effects of apolipoprotein E (APOE) on diagnostic outcome and phenotypes related to Aβ42, we detected novel potential signals in the zinc finger homeobox 3 (ZFHX3) for CSF-Aβ38 and CSF-Aβ40 levels, and confirmed the previously described sex-specific association between SNPs in geminin coiled-coil domain containing (GMNC) and CSF-tau. Utilizing the results from independent case-control AD GWAS to construct polygenic risk scores (PRS) revealed that AD risk variants only explain a small fraction of CSF biomarker variability. In conclusion, our study represents a detailed first account of GWAS analyses on CSF-Aβ and -tau-related traits in the EMIF-AD MBD dataset. In subsequent work, we will utilize the genomics data generated here in GWAS of other AD-relevant clinical outcomes ascertained in this unique dataset.
  •  
40.
  • Jansen, Iris E, et al. (author)
  • Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers.
  • 2022
  • In: Acta neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 144:5, s. 821-842
  • Journal article (peer-reviewed)abstract
    • Amyloid-beta 42 (Aβ42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n=8074; replication n=5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aβ42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aβ42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume.
  •  
41.
  •  
42.
  • Johansson, Karin C, et al. (author)
  • Diptericin expression in bacteria infected Drosophila mbn-2 cells - effect of infection dose and phagocytosis.
  • 2006
  • In: Insect molecular biology (Print). - : Wiley. - 0962-1075 .- 1365-2583. ; 15:1, s. 57-62
  • Journal article (peer-reviewed)abstract
    • Drosophila haemocytes play a key role in defence against microbial aggression. Their capacity to sense and dispose of bacteria and also to signal to other immune tissues is probably vital to overcome an infection. In this work we used the haemocyte-like mbn-2 cell line to investigate how expression of the antimicrobial peptide diptericin is affected after a high dose bacterial challenge with diaminopimelic acid (DAP)-peptidoglycan Gram-positive and Gram-negative bacteria. We report that diptericin expression is negatively affected by high infection dose and rapid bacterial growth regardless of the type of infection and bacterial virulence and occurs in the absence of mbn-2 cell death. Furthermore we show that the mbn-2 cell population is heterogeneous, containing both phagocytic and nonphagocytic cells and that contact with large numbers of bacteria decreases diptericin expression in the phagocytic cell population.
  •  
43.
  •  
44.
  • Kivipelto, Miia, et al. (author)
  • World-Wide FINGERS Network : A global approach to risk reduction and prevention of dementia
  • 2020
  • In: Alzheimer's & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 16:7, s. 1078-1094
  • Journal article (peer-reviewed)abstract
    • Reducing the risk of dementia can halt the worldwide increase of affected people. The multifactorial and heterogeneous nature of late-onset dementia, including Alzheimer's disease (AD), indicates a potential impact of multidomain lifestyle interventions on risk reduction. The positive results of the landmark multidomain Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) support such an approach. The World-Wide FINGERS (WW-FINGERS), launched in 2017 and including over 25 countries, is the first global network of multidomain lifestyle intervention trials for dementia risk reduction and prevention. WW-FINGERS aims to adapt, test, and optimize the FINGER model to reduce risk across the spectrum of cognitive decline-from at-risk asymptomatic states to early symptomatic stages-in different geographical, cultural, and economic settings. WW-FINGERS aims to harmonize and adapt multidomain interventions across various countries and settings, to facilitate data sharing and analysis across studies, and to promote international joint initiatives to identify globally implementable and effective preventive strategies.
  •  
45.
  • Konijnenberg, E., et al. (author)
  • APOE ϵ4 genotype-dependent cerebrospinal fluid proteomic signatures in Alzheimer's disease
  • 2020
  • In: Alzheimer's Research and Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Background: Aggregation of amyloid β into plaques in the brain is one of the earliest pathological events in Alzheimer's disease (AD). The exact pathophysiology leading to dementia is still uncertain, but the apolipoprotein E (APOE) ϵ4 genotype plays a major role. We aimed to identify the molecular pathways associated with amyloid β aggregation using cerebrospinal fluid (CSF) proteomics and to study the potential modifying effects of APOE ϵ4 genotype. Methods: We tested 243 proteins and protein fragments in CSF comparing 193 subjects with AD across the cognitive spectrum (65% APOE ϵ4 carriers, average age 75 ± 7 years) against 60 controls with normal CSF amyloid β, normal cognition, and no APOE ϵ4 allele (average age 75 ± 6 years). Results: One hundred twenty-nine proteins (53%) were associated with aggregated amyloid β. APOE ϵ4 carriers with AD showed altered concentrations of proteins involved in the complement pathway and glycolysis when cognition was normal and lower concentrations of proteins involved in synapse structure and function when cognitive impairment was moderately severe. APOE ϵ4 non-carriers with AD showed lower expression of proteins involved in synapse structure and function when cognition was normal and lower concentrations of proteins that were associated with complement and other inflammatory processes when cognitive impairment was mild. Repeating analyses for 114 proteins that were available in an independent EMIF-AD MBD dataset (n = 275) showed that 80% of the proteins showed group differences in a similar direction, but overall, 28% effects reached statistical significance (ranging between 6 and 87% depending on the disease stage and genotype), suggesting variable reproducibility. Conclusions: These results imply that AD pathophysiology depends on APOE genotype and that treatment for AD may need to be tailored according to APOE genotype and severity of the cognitive impairment. © 2020 The Author(s).
  •  
46.
  • Küçükali, Fahri, et al. (author)
  • Whole-exome rare-variant analysis of Alzheimer's disease and related biomarker traits
  • 2023
  • In: Alzheimer's & Dementia. - : John Wiley & Sons. - 1552-5260 .- 1552-5279. ; 19:6, s. 2317-2331
  • Journal article (peer-reviewed)abstract
    • INTRODUCTION: Despite increasing evidence of a role of rare genetic variation in the risk of Alzheimer's disease (AD), limited attention has been paid to its contribution to AD-related biomarker traits indicative of AD-relevant pathophysiological processes.METHODS: We performed whole-exome gene-based rare-variant association studies (RVASs) of 17 AD-related traits on whole-exome sequencing (WES) data generated in the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study (n = 450) and whole-genome sequencing (WGS) data from ADNI (n = 808).RESULTS: Mutation screening revealed a novel probably pathogenic mutation (PSEN1 p.Leu232Phe). Gene-based RVAS revealed the exome-wide significant contribution of rare coding variation in RBKS and OR7A10 to cognitive performance and protection against left hippocampal atrophy, respectively.DISCUSSION: The identification of these novel gene-trait associations offers new perspectives into the role of rare coding variation in the distinct pathophysiological processes culminating in AD, which may lead to identification of novel therapeutic and diagnostic targets.
  •  
47.
  • Lorenzini, L., et al. (author)
  • Eigenvector centrality dynamics are related to Alzheimer's disease pathological changes in non-demented individuals
  • 2023
  • In: Brain Communications. - : Oxford University Press (OUP). - 2632-1297. ; 5:3
  • Journal article (peer-reviewed)abstract
    • Amyloid-beta accumulation starts in highly connected brain regions and is associated with functional connectivity alterations in the early stages of Alzheimer's disease. This regional vulnerability is related to the high neuronal activity and strong fluctuations typical of these regions. Recently, dynamic functional connectivity was introduced to investigate changes in functional network organization over time. High dynamic functional connectivity variations indicate increased regional flexibility to participate in multiple subnetworks, promoting functional integration. Currently, only a limited number of studies have explored the temporal dynamics of functional connectivity in the pre-dementia stages of Alzheimer's disease. We study the associations between abnormal cerebrospinal fluid amyloid and both static and dynamic properties of functional hubs, using eigenvector centrality, and their relationship with cognitive performance, in 701 non-demented participants from the European Prevention of Alzheimer's Dementia cohort. Voxel-wise eigenvector centrality was computed for the whole functional magnetic resonance imaging time series (static), and within a sliding window (dynamic). Differences in static eigenvector centrality between amyloid positive (A+) and negative (A-) participants and amyloid-tau groups were found in a general linear model. Dynamic eigenvector centrality standard deviation and range were compared between groups within clusters of significant static eigenvector centrality differences, and within 10 canonical resting-state networks. The effect of the interaction between amyloid status and cognitive performance on dynamic eigenvector centrality variability was also evaluated with linear models. Models were corrected for age, sex, and education level. Lower static centrality was found in A+ participants in posterior brain areas including a parietal and an occipital cluster; higher static centrality was found in a medio-frontal cluster. Lower eigenvector centrality variability (standard deviation) occurred in A+ participants in the frontal cluster. The default mode network and the dorsal visual networks of A+ participants had lower dynamic eigenvector centrality variability. Centrality variability in the default mode network and dorsal visual networks were associated with cognitive performance in the A- and A+ groups, with lower variability being observed in A+ participants with good cognitive scores. Our results support the role and timing of eigenvector centrality alterations in very early stages of Alzheimer's disease and show that centrality variability over time adds relevant information on the dynamic patterns that cause static eigenvector centrality alterations. We propose that dynamic eigenvector centrality is an early biomarker of the interplay between early Alzheimer's disease pathology and cognitive decline. Lorenzini et al. demonstrate widespread dynamic functional connectivity impairments in relationship with Alzheimer's disease pathological changes in non-demented individuals. This work suggests that initial amyloid deposition affects eigenvector centrality temporal patterns by reducing the involvement of functional hubs in different network dynamics, therefore reducing functional integration, and promoting cognitive deterioration.
  •  
48.
  • Neumann, Alexander, et al. (author)
  • Multivariate GWAS of Alzheimer's disease CSF biomarker profiles implies GRIN2D in synaptic functioning.
  • 2023
  • In: Genome medicine. - 1756-994X. ; 15:1
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) of Alzheimer's disease (AD) have identified several risk loci, but many remain unknown. Cerebrospinal fluid (CSF) biomarkers may aid in gene discovery and we previously demonstrated that six CSF biomarkers (β-amyloid, total/phosphorylated tau, NfL, YKL-40, and neurogranin) cluster into five principal components (PC), each representing statistically independent biological processes. Here, we aimed to (1) identify common genetic variants associated with these CSF profiles, (2) assess the role of associated variants in AD pathophysiology, and (3) explore potential sex differences.We performed GWAS for each of the five biomarker PCs in two multi-center studies (EMIF-AD and ADNI). In total, 973 participants (n=205 controls, n=546 mild cognitive impairment, n=222 AD) were analyzed for 7,433,949 common SNPs and 19,511 protein-coding genes. Structural equation models tested whether biomarker PCs mediate genetic risk effects on AD, and stratified and interaction models probed for sex-specific effects.Five loci showed genome-wide significant association with CSF profiles, two were novel (rs145791381 [inflammation] and GRIN2D [synaptic functioning]) and three were previously described (APOE, TMEM106B, and CHI3L1). Follow-up analysesof the two novel signals in independent datasets only supported the GRIN2D locus, which contains several functionally interesting candidate genes. Mediation tests indicated that variants in APOE are associated with AD status via processes related to amyloid and tau pathology, while markers in TMEM106B and CHI3L1 are associated with AD only via neuronal injury/inflammation. Additionally, seven loci showed sex-specific associations with AD biomarkers.These results suggest that pathway and sex-specific analyses can improve our understanding of AD genetics and may contribute to precision medicine.
  •  
49.
  •  
50.
  • Perez-Grijalba, V, et al. (author)
  • Plasma Aβ42/40 ratio alone or combined with FDG-PET can accurately predict amyloid-PET positivity: a cross-sectional analysis from the AB255 Study
  • 2019
  • In: Alzheimer's research & therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 11:1, s. 96-
  • Journal article (peer-reviewed)abstract
    • BackgroundTo facilitate population screening and clinical trials of disease-modifying therapies for Alzheimer’s disease, supportive biomarker information is necessary. This study was aimed to investigate the association of plasma amyloid-beta (Aβ) levels with the presence of pathological accumulation of Aβ in the brain measured by amyloid-PET. Both plasma Aβ42/40 ratio alone or combined with an FDG-PET-based biomarker of neurodegeneration were assessed as potential AD biomarkers.MethodsWe included 39 cognitively normal subjects and 20 patients with mild cognitive impairment from the AB255 Study who had undergone PiB-PET scans. Total Aβ40 and Aβ42 levels in plasma (TP42/40) were quantified using ABtest kits. Subjects were dichotomized as Aβ-PET positive or negative, and the ability of TP42/40 to detect Aβ-PET positivity was assessed by logistic regression and receiver operating characteristic analyses. Combination of plasma Aβ biomarkers and FDG-PET was further assessed as an improvement for brain amyloidosis detection and diagnosis classification.ResultsEighteen (30.5%) subjects were Aβ-PET positive. TP42/40 ratio alone identified Aβ-PET status with an area under the curve (AUC) of 0.881 (95% confidence interval [CI] = 0.779–0.982). Discriminating performance of TP42/40 to detect Aβ-PET-positive subjects yielded sensitivity and specificity values at Youden’s cutoff of 77.8% and 87.5%, respectively, with a positive predictive value of 0.732 and negative predictive value of 0.900. All these parameters improved after adjusting the model for significant covariates. Applying TP42/40 as the first screening tool in a sequential diagnostic work-up would reduce the number of Aβ-PET scans by 64%. Combination of both FDG-PET scores and plasma Aβ biomarkers was found to be the most accurate Aβ-PET predictor, with an AUC of 0.965 (95% CI = 0.913–0.100).ConclusionsPlasma TP42/40 ratio showed a relevant and significant potential as a screening tool to identify brain Aβ positivity in preclinical and prodromal stages of Alzheimer’s disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 66
Type of publication
journal article (64)
other publication (1)
doctoral thesis (1)
Type of content
peer-reviewed (61)
other academic/artistic (3)
pop. science, debate, etc. (2)
Author/Editor
Zetterberg, Henrik, ... (27)
Blennow, Kaj, 1958 (23)
Martinez-Lage, P. (23)
Scheltens, P (22)
Engelborghs, S. (20)
Popp, J (20)
show more...
Tsolaki, M (19)
Lleó, A. (18)
Vandenberghe, R (17)
Visser, P. J. (16)
Lovestone, S (15)
Bertram, L (15)
Scheltens, Philip (13)
Bos, I (13)
Barkhof, F (12)
Freund-Levi, Yvonne, ... (12)
Sleegers, K (12)
Martínez-Lage, Pablo (11)
Engelborghs, Sebasti ... (11)
Boada, M. (10)
Wallin, Anders, 1950 (10)
Vandenberghe, Rik (10)
Teunissen, Charlotte ... (10)
Lleó, Alberto (10)
Visser, Pieter Jelle (10)
Soininen, H (9)
Van Broeckhoven, C (9)
Bertram, Lars (9)
Sleegers, Kristel (9)
Legido-Quigley, C (9)
Ruiz, A. (8)
Barkhof, Frederik (8)
Alcolea, D. (8)
Verhey, F (8)
Lovestone, Simon (8)
Frisoni, G (8)
Pasquier, F (8)
Rodriguez-Rodriguez, ... (8)
Tárraga, L (8)
Tsolaki, Magda (7)
Skoog, Ingmar, 1954 (7)
Mecocci, P (7)
Gobom, Johan (7)
Alcolea, Daniel (7)
Fortea, J. (7)
Rami, Lorena (7)
Frisoni, Giovanni B. (7)
Antúnez, C (7)
Hernández, I (7)
Lage, C (7)
show less...
University
Karolinska Institutet (44)
University of Gothenburg (35)
Örebro University (13)
Uppsala University (11)
Lund University (9)
Stockholm University (6)
show more...
Umeå University (1)
Royal Institute of Technology (1)
Jönköping University (1)
Stockholm School of Economics (1)
Högskolan Dalarna (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (66)
Research subject (UKÄ/SCB)
Medical and Health Sciences (45)
Natural sciences (7)
Agricultural Sciences (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view