SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Langguth Peter) "

Sökning: WFRF:(Langguth Peter)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Sara B. E., 1987- (författare)
  • Novel and refined small-scale approaches to determine the intrinsic dissolution rate of drugs
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Many drugs are administered as crystalline particles compressed into tablets and taken orally. When the tablet reaches the gastrointestinal tract, it disintegrates and the drug particles dissolve in the gastrointestinal fluid. The dissolved molecules are absorbed across the intestinal membranes into the bloodstream to reach their target sites. Only dissolved molecules can be absorbed, and if a drug has low solubility and/or dissolution rate in gastrointestinal fluid, the drug absorption might be insufficient. Hence, knowing the solubility and dissolution behaviour of a potential drug candidate is necessary early in the drug development process. The aim of this thesis was to evaluate and refine different approaches for measuring and determining dissolution rate, as well as to develop novel in vitro small-scale dissolution methods. First, interlaboratory variability in determination of intrinsic dissolution rate (IDR) and apparent solubility (Sapp) was investigated using a miniaturized dissolution instrument. To minimize the interlaboratory variability, standardized protocols for both the experimental design and the data analyses were required, and a flow chart for performing standardized powder and disc IDR measurements was established. Next, as an alternative to the powder and disc methods, carefully dispersed suspensions were used to determine the IDR, and rapid and more controlled IDR measurements were obtained using suspensions with dispersed primary particles. From the suspension measurements, an IDR/Sapp ratio of the compounds were determined. This ratio can potentially be used to identify whether a compound is likely to show dissolution rate-limited absorption and hence is sensitive to particle size reduction. The final experiments used a single particle dissolution approach to determine the IDR at four different fluid velocities. Computational fluid dynamics (CFD) simulations were used to theoretically investigate the flow conditions and dissolution rates. Single particle dissolution measurements under well-defined conditions gave high-quality dissolution data. An IDR was determined within 5-60 minutes using particles with initial diameters of 37.5-104.6 μm. The single particle dissolution experiments were used to determine the thickness of the effective hydrodynamic boundary layer (heff). The heff values were also assessed by CFD simulations, and a good concordance between experimental and simulated heff values was obtained. The approaches presented in this thesis can be used to derive qualified knowledge about the dissolution properties of drugs with several potential applications in drug development, such as profiling of solid drugs, informed formulation decisions, assisting the modelling of drug dissolution and providing improved understanding of the in vivo-dissolution behaviour
  •  
2.
  • Augustijns, Patrick, et al. (författare)
  • Unraveling the behavior of oral drug products inside the human gastrointestinal tract using the aspiration technique : History, methodology and applications
  • 2020
  • Ingår i: European Journal of Pharmaceutical Sciences. - : ELSEVIER. - 0928-0987 .- 1879-0720. ; 155
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluid sampling from the gastrointestinal (GI) tract has been applied as a valuable tool to gain more insight into the fluids present in the human GI tract and to explore the dynamic interplay of drug release, dissolution, precipitation and absorption after drug product administration to healthy subjects. In the last twenty years, collaborative initiatives have led to a plethora of clinical aspiration studies that aimed to unravel the luminal drug behavior of an orally administered drug product. The obtained drug concentration-time profiles from different segments in the GI tract were a valuable source of information to optimize and/or validate predictive in vitro and in silico tools, frequently applied in the non-clinical stage of drug product development. Sampling techniques are presently not only being considered as a stand-alone technique but are also used in combination with other in vivo techniques (e.g., gastric motility recording, magnetic resonance imaging (MRI)). By doing so, various physiological variables can be mapped simultaneously and evaluated for their impact on luminal drug and formulation behavior. This comprehensive review aims to describe the history, challenges and opportunities of the aspiration technique with a specific focus on how this technique can unravel the luminal behavior of drug products inside the human GI tract by providing a summary of studies performed over the last 20 years. A section `Best practices' on how to perform the studies and how to treat the aspirated samples is described. In the conclusion, we focus on future perspectives concerning this technique.
  •  
3.
  • Cristofoletti, Rodrigo, et al. (författare)
  • Biowaiver monographs for immediate release solid oral dosage forms : efavirenz
  • 2013
  • Ingår i: Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0022-3549 .- 1520-6017. ; 102:2, s. 318-329
  • Tidskriftsartikel (refereegranskat)abstract
    • Literature data pertaining to the decision to allow a waiver of in vivo bioequivalence testing for the approval of immediate-release (IR) solid oral dosage forms containing efavirenz as the only active pharmaceutical ingredient (API) are reviewed. Because of lack of conclusive data about efavirenz's permeability and its failure to comply with the "high solubility" criteria according to the Biopharmaceutics Classification System (BCS), the API can be classified as BCS Class II/IV. In line with the solubility characteristics, the innovator product does not meet the dissolution criteria for a "rapidly dissolving product." Furthermore, product variations containing commonly used excipients or in the manufacturing process have been reported to impact the rate and extent of efavirenz absorption. Despite its wide therapeutic index, subtherapeutic levels of efavirenz can lead to treatment failure and also facilitate the emergence of efavirenz-resistant mutants. For all these reasons, a biowaiver for IR solid oral dosage forms containing efavirenz as the sole API is not scientifically justified for reformulated or multisource drug products.
  •  
4.
  • Dahlgren, David, et al. (författare)
  • Preclinical Effect of Absorption Modifying Excipients on Rat Intestinal Transport of Model Compounds and the Mucosal Barrier Marker 51Cr-EDTA
  • 2017
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 14:12, s. 4243-4251
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a renewed interest from the pharmaceutical field to develop oral formulations of compounds, such as peptides, oligonucleotides, and polar drugs. However, these often suffer from insufficient absorption across the intestinal mucosal barrier. One approach to circumvent this problem is the use of absorption modifying excipient(s) (AME). This study determined the absorption enhancing effect of four AMEs (sodium dodecyl sulfate, caprate, chitosan, N-acetylcysteine) on five model compounds in a rat jejunal perfusion model. The aim was to correlate the model compound absorption to the blood-to-lumen clearance of the mucosal marker for barrier integrity, 51Cr-EDTA. Sodium dodecyl sulfate and chitosan increased the absorption of the low permeation compounds but had no effect on the high permeation compound, ketoprofen. Caprate and N-acetylcysteine did not affect the absorption of any of the model compounds. The increase in absorption of the model compounds was highly correlated to an increased blood-to-lumen clearance of 51Cr-EDTA, independent of the AME. Thus, 51Cr-EDTA could be used as a general, sensitive, and validated marker molecule for absorption enhancement when developing novel formulations.
  •  
5.
  • Darwich, Adam S., et al. (författare)
  • IMI - Oral biopharmaceutics tools project - Evaluation of bottom-up PBPK prediction success part 3 : Identifying gaps in system parameters by analysing In Silico performance across different compound classes
  • 2017
  • Ingår i: European Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0928-0987 .- 1879-0720. ; 96, s. 626-642
  • Tidskriftsartikel (refereegranskat)abstract
    • Three Physiologically Based Pharmacokinetic software packages (GI-Sim, Simcyp (R) Simulator, and GastroPlus (TM)) were evaluated as part of the Innovative Medicine Initiative Oral Biopharmaceutics Tools project (OrBiTo) during a blinded "bottom-up" anticipation of human pharmacokinetics. After data analysis of the predicted vs. measured pharmacokinetics parameters, it was found that oral bioavailability (F-oral) was underpredicted for compounds with low permeability, suggesting improper estimates of intestinal surface area, colonic absorption and/or lack of intestinal transporter information. Foralwas also underpredicted for acidic compounds, suggesting overestimation of impact of ionisation on permeation, lack of information on intestinal transporters, or underestimation of solubilisation of weak acids due to less than optimal intestinal model pH settings or underestimation of bile micelle contribution. F-oral was overpredicted for weak bases, suggesting inadequate models for precipitation or lack of in vitro precipitation information to build informed models. Relative bioavailability was underpredicted for both high logP compounds as well as poorly water-soluble compounds, suggesting inadequate models for solubility/dissolution, underperforming bile enhancement models and/or lack of biorelevant solubility measurements. These results indicate areas for improvement in model software, modelling approaches, and generation of applicable input data. However, caution is required when interpreting the impact of drug-specific properties in this exercise, as the availability of input parameters was heterogeneous and highly variable, and the modellers generally used the data "as is" in this blinded bottom-up prediction approach.
  •  
6.
  • Forner, Kristin, et al. (författare)
  • Optimization of the Ussing chamber setup with excised rat intestinal segments for dissolution/permeation experiments of poorly soluble drugs
  • 2017
  • Ingår i: Drug Development and Industrial Pharmacy. - : TAYLOR & FRANCIS LTD. - 0363-9045 .- 1520-5762. ; 43:2, s. 338-346
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Prediction of the in vivo absorption of poorly soluble drugs may require simultaneous dissolution/permeation experiments. In vivo predictive media have been modified for permeation experiments with Caco-2 cells, but not for excised rat intestinal segments. Objective: The present study aimed at improving the setup of dissolution/permeation experiments with excised rat intestinal segments by assessing suitable donor and receiver media. Methods: The regional compatibility of rat intestine in Ussing chambers with modified Fasted and Fed State Simulated Intestinal Fluids (Fa/FeSSIFmod) as donor media was evaluated via several parameters that reflect the viability of the excised intestinal segments. Receiver media that establish sink conditions were investigated for their foaming potential and toxicity. Dissolution/permeation experiments with the optimized conditions were then tested for two particle sizes of the BCS class II drug aprepitant. Results: Fa/FeSSIFmod were toxic for excised rat ileal sheets but not duodenal sheets, the compatibility with jejunal segments depended on the bile salt concentration. A non-foaming receiver medium containing bovine serum albumin (BSA) and Antifoam B was nontoxic. With these conditions, the permeation of nanosized aprepitant was higher than of the unmilled drug formulations. Discussion: The compatibility of Fa/FeSSIFmod depends on the excised intestinal region. The chosen conditions enable dissolution/permeation experiments with excised rat duodenal segments. The experiments correctly predicted the superior permeation of nanosized over unmilled aprepitant that is observed in vivo. Conclusion: The optimized setup uses FaSSIF(mod) as donor medium, excised rat duodenal sheets as permeation membrane and a receiver medium containing BSA and Antifoam B.
  •  
7.
  • Garcia, Mauricio A., et al. (författare)
  • Novel food drug interaction mechanism involving acyclovir, chitosan and endogenous mucus
  • 2023
  • Ingår i: Drug Metabolism and Pharmacokinetics. - : Elsevier. - 1347-4367 .- 1880-0920. ; 49
  • Tidskriftsartikel (refereegranskat)abstract
    • Drug absorption from drug products may be affected by pharmaceutical excipients and/or food additives through different mechanisms. Chitosan is a recognized nutraceutical, with potential as an excipient due to its permeability enhancer properties. While chitosan properties have been evaluated in in vitro and pre-clinical models, studies in humans are scarce. Unexpectedly, a controlled clinical trial showed chi-tosan actually reduced acyclovir bioavailability. The effect seems to be related to an interaction with gastrointestinal mucus that prevents further absorption, although more in depth research is needed to unravel the mechanism. In this paper, we propose a mechanism underlying this excipient effect. The mucus -chitosan interaction was characterized and its effect on acyclovir diffusion, permeation and bioaccessibility was investigated. Further, pharmacokinetic modeling was used to assess the clinical relevance of our findings. Results suggest that in situ coacervation between endogenous mucus and chitosan rapidly entrap 20-30% of acyclovir dissolved dose in the intestinal lumen. This local reduction of acyclovir concentration together with its short absorption window in the small intestine would explain the reduction in acyclovir Cmax and AUC. This study highlights the importance of considering mucus in any biorelevant absorption model attempting to anticipate the effect of chitosan on drug absorption.(c) 2023 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
  •  
8.
  • Hens, Bart, et al. (författare)
  • Formulation predictive dissolution (fPD) testing to advance oral drug product development : An introduction to the US FDA funded '21st Century BA/BE' project
  • 2018
  • Ingår i: International Journal of Pharmaceutics. - : Elsevier. - 0378-5173 .- 1873-3476. ; 548:1, s. 120-127
  • Forskningsöversikt (refereegranskat)abstract
    • Over the past decade, formulation predictive dissolution (fPD) testing has gained increasing attention. Another mindset is pushed forward where scientists in our field are more confident to explore the in vivo behavior of an oral drug product by performing predictive in vitro dissolution studies. Similarly, there is an increasing interest in the application of modern computational fluid dynamics (CFD) frameworks and high-performance computing platforms to study the local processes underlying absorption within the gastrointestinal (GI) tract. In that way, CFD and computing platforms both can inform future PBPK-based in silico frameworks and determine the GI-motility-driven hydrodynamic impacts that should be incorporated into in vitro dissolution methods for in vivo relevance. Current compendial dissolution methods are not always reliable to predict the in vivo behavior, especially not for biopharmaceutics classification system (BCS) class 2/4 compounds suffering from a low aqueous solubility. Developing a predictive dissolution test will be more reliable, cost-effective and less time-consuming as long as the predictive power of the test is sufficiently strong. There is a need to develop a biorelevant, predictive dissolution method that can be applied by pharmaceutical drug companies to facilitate marketing access for generic and novel drug products. In 2014, Prof. Gordon L. Amidon and his team initiated a far-ranging research program designed to integrate (1) in vivo studies in humans in order to further improve the understanding of the intraluminal processing of oral dosage forms and dissolved drug along the gastrointestinal (GI) tract, (2) advancement of in vitro methodologies that incorporates higher levels of in vivo relevance and (3) computational experiments to study the local processes underlying dissolution, transport and absorption within the intestines performed with a new unique CFD based framework. Of particular importance is revealing the physiological variables determining the variability in in vivo dissolution and GI absorption from person to person in order to address (potential) in vivo BE failures. This paper provides an introduction to this multidisciplinary project, informs the reader about current achievements and outlines future directions.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  • Margolskee, Alison, et al. (författare)
  • IMI - Oral biopharmaceutics tools project - Evaluation of bottom-up PBPK prediction success part 2 : An introduction to the simulation exercise and overview of results
  • 2017
  • Ingår i: European Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0928-0987 .- 1879-0720. ; 96, s. 610-625
  • Tidskriftsartikel (refereegranskat)abstract
    • Orally administered drugs are subject to a number of barriers impacting bioavailability (F-oral), causing challenges during drug and formulation development. Physiologically-based pharmacokinetic (PBPK) modelling can help during drug and formulation development by providing quantitative predictions through a systems approach. The performance of three available PBPK software packages (GI-Sim, Simcyp (R), and GastroPlus (TM)) were evaluated by comparing simulated and observed pharmacokinetic (PK) parameters. Since the availability of input parameters was heterogeneous and highly variable, caution is required when interpreting the results of this exercise. Additionally, this prospective simulation exercise may not be representative of prospective modelling in industry, as API information was limited to sparse details. 43 active pharmaceutical ingredients (APIs) from the OrBiTo database were selected for the exercise. Over 4000 simulation output files were generated, representing over 2550 study arm-institution-software combinations and approximately 600 human clinical study arms simulated with overlap. 84% of the simulated study arms represented administration of immediate release formulations, 11% prolonged or delayed release, and 5% intravenous (i.v.). Higher percentages of i.v. predicted area under the curve (AUC) were within two-fold of observed (52.9%) compared to per oral (p.o.) (37.2%), however, F-oral and relative AUC (F-rel) between p.o. formulations and solutions were generally well predicted (64.7% and 75.0%). Predictive performance declined progressing from i.v. to solution and immediate release tablet, indicating the compounding error with each layer of complexity. Overall performance was comparable to previous large-scale evaluations. A general overprediction of AUC was observed with average fold error (AFE) of 1.56 over all simulations. AFE ranged from 0.0361 to 64.0 across the 43 APIs, with 25 showing overpredictions. Discrepancies between software packages were observed for a few APIs, the largest being 606, 171, and 81.7-fold differences in AFE between SimCYP and GI-Sim, however average performance was relatively consistent across the three software platforms.
  •  
13.
  • Persson, Eva, 1977- (författare)
  • Drug Dissolution under Physiologically Relevant Conditions In Vitro and In Vivo
  • 2006
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The general aim of the present project was to increase the understanding of the in vivo dissolution of poorly soluble drugs and thereby improve possibility to predict in vivo solubility from substance properties. Increased understanding of the in vivo limitations of drug solubility could potentially also generate ideas for improved formulation principles for poorly soluble compounds and more relevant in vitro dissolution test methods used in formulation development.The dynamic gastrointestinal secretory and enzymatic responses to a liquid meal were studied in human intestinal fluid (HIF) by in vivo perfusion of a nutritional drink. The main diversity found compared to simulated intestinal fluids was the presence of dietary lipids in fed human intestinal fluid. This difference was showed to be of importance in the solubility of low soluble drugs, since this parameter was underestimated in the simulated fluid. Thus suggesting that simulated intestinal fluids should be prepared with the addition of dietary lipids for better in vitro in vivo predictions. Solubility and dissolution determinations in fasted and fed HIF showed that the solubility was higher in fed state fluid, probably owing to the higher concentration of lipids in this media. The higher solubility was correlated to both the lipophilicity and aqueous solubility of the drug. The dissolution rate also increased, but not to the same extent as the solubility. These findings need to be considered in the design of in vitro models and in the prediction of food effects on oral bioavailability of poorly soluble drugs.In addition, an in vivo porcine perfusion study was performed to investigate importance of different mechanisms in food-drug interactions. The results showed that solubilisation might be a more important factor than P-gp inhibition for food-related effects on the intestinal absorption kinetics of Class II drugs.
  •  
14.
  • Sjögren, Erik, et al. (författare)
  • In vivo methods for drug absorption - Comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects
  • 2014
  • Ingår i: European Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0928-0987 .- 1879-0720. ; 57, s. 99-151
  • Tidskriftsartikel (refereegranskat)abstract
    • This review summarizes the current knowledge on anatomy and physiology of the human gastrointestinal tract in comparison with that of common laboratory animals (dog, pig, rat and mouse) with emphasis on in vivo methods for testing and prediction of oral dosage form performance. A wide range of factors and methods are considered in addition, such as imaging methods, perfusion models, models for predicting segmental/regional absorption, in vitro in vivo correlations as well as models to investigate the effects of excipients and the role of food on drug absorption. One goal of the authors was to clearly identify the gaps in today's knowledge in order to stimulate further work on refining the existing in vivo models and demonstrate their usefulness in drug formulation and product performance testing. (c) 2014 Elsevier B.V. All rights reserved.
  •  
15.
  • Soares, Kelen C C, et al. (författare)
  • Biowaiver monographs for immediate-release solid oral dosage forms : Zidovudine (azidothymidine)
  • 2013
  • Ingår i: Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0022-3549 .- 1520-6017. ; 102:8, s. 2409-2423
  • Tidskriftsartikel (refereegranskat)abstract
    • Literature data on the properties of zidovudine relevant to waiver of in vivo bioequivalence (BE) testing requirements for the approval of immediate-release (IR) solid oral dosage forms containing zidovudine alone or in combination with other active pharmaceutical ingredients (APIs) are reviewed. Solubility, dissolution, and permeability data for zidovudine, along with its dosing schedule, therapeutic index and pharmacokinetic properties, and reports related to BE/bioavailability were all taken into consideration. Data for solubility and permeability suggest that zidovudine belongs to Class I according to the Biopharmaceutics Classification System. Also, zidovudine is not a narrow therapeutic index drug. Although five out of 13 formulations tested in vivo (mostly of unreported composition) failed to show BE, it appears that in vitro studies performed according to biowaiver methods could predict in vivo behavior. Nevertheless, it is highly recommended that if a biowaiver is to be applied, excipient choices be limited to those found in IR drug products approved in International Conference on Harmonisation (ICH) or associated countries in the same dosage form (Table 2 of this monograph), in their usual amounts. These conclusions apply to products containing zidovudine as the only API and also to fixed combination products containing zidovudine with respect to the zidovudine component of the formulation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy