SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lassnig Roman) "

Search: WFRF:(Lassnig Roman)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andersson Ersman, Peter, et al. (author)
  • All-printed large-scale integrated circuits based on organic electrochemical transistors
  • 2019
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 10:1
  • Journal article (peer-reviewed)abstract
    • The communication outposts of the emerging Internet of Things are embodied by ordinary items, which desirably include all-printed flexible sensors, actuators, displays and akin organic electronic interface devices in combination with silicon-based digital signal processing and communication technologies. However, hybrid integration of smart electronic labels is partly hampered due to a lack of technology that (de)multiplex signals between silicon chips and printed electronic devices. Here, we report all-printed 4-to-7 decoders and seven-bit shift registers, including over 100 organic electrochemical transistors each, thus minimizing the number of terminals required to drive monolithically integrated all-printed electrochromic displays. These relatively advanced circuits are enabled by a reduction of the transistor footprint, an effort which includes several further developments of materials and screen printing processes. Our findings demonstrate that digital circuits based on organic electrochemical transistors (OECTs) provide a unique bridge between all-printed organic electronics (OEs) and low-cost silicon chip technology for Internet of Things applications. © 2019, The Author(s).
  •  
2.
  • Andersson Ersman, Peter, et al. (author)
  • Flexible Active Matrix Addressed Displays Manufactured by Screen Printing
  • 2020
  • In: Advanced Engineering Materials. - : Wiley-VCH Verlag. - 1438-1656 .- 1527-2648. ; 23
  • Journal article (peer-reviewed)abstract
    • A flexible, electrochromic, active matrix addressed display (AMAD) is demonstrated. The monolithically integrated AMAD, which contains a 3 × 3 array of organic electrochromic smart pixels (OESPs), is manufactured on a plastic substrate solely using screen printing. Each OESP is based on the combination of one organic electrochromic display (OECD) and one organic electrochemical transistor (OECT), where both devices are screen printed into multilayered vertical architectures. The conduction state of the OECT enables control of the color state of its corresponding OECD, thereby circumventing cross-talk effects in the resulting AMAD device. The manufacturing approach also involves electrical wires, which connect each OECD with its corresponding OECT and also serve as the addressing lines of the resulting AMAD device, that are formed by screen printing of an ink based on either silver or nanocopper.
  •  
3.
  • Andersson Ersman, Peter, et al. (author)
  • Monolithic integration of display driver circuits and displays manufactured by screen printing
  • 2020
  • In: Flexible and Printed Electronics. - : Institute of Physics Publishing. - 2058-8585. ; 5:2
  • Journal article (peer-reviewed)abstract
    • Here, we report all-screen printed display driver circuits, based on organic electrochemical transistors (OECTs), and their monolithic integration with organic electrochromic displays (OECDs). Both OECTs and OECDs operate at low voltages and have similar device architectures, and, notably, they rely on the very same electroactive material as well as on the same electrochemical switching mechanism. This then allows us to manufacture OECT-OECD circuits in a concurrent manufacturing process entirely based on screen printing methods. By taking advantage of the high current throughput capability of OECTs, we further demonstrate their ability to control the light emission in traditional light-emitting diodes (LEDs), where the actual LED addressing is achieved by an OECT-based decoder circuit. The possibility to monolithically integrate all-screen printed OECTs and OECDs on flexible plastic foils paves the way for distributed smart sensor labels and similar Internet of Things applications.
  •  
4.
  • Armgarth, Astrid, et al. (author)
  • A digital nervous system aiming toward personalized IoT healthcare
  • 2021
  • In: Scientific Reports. - : NATURE RESEARCH. - 2045-2322. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Body area networks (BANs), cloud computing, and machine learning are platforms that can potentially enable advanced healthcare outside the hospital. By applying distributed sensors and drug delivery devices on/in our body and connecting to such communication and decision-making technology, a system for remote diagnostics and therapy is achieved with additional autoregulation capabilities. Challenges with such autarchic on-body healthcare schemes relate to integrity and safety, and interfacing and transduction of electronic signals into biochemical signals, and vice versa. Here, we report a BAN, comprising flexible on-body organic bioelectronic sensors and actuators utilizing two parallel pathways for communication and decision-making. Data, recorded from strain sensors detecting body motion, are both securely transferred to the cloud for machine learning and improved decision-making, and sent through the body using a secure body-coupled communication protocol to auto-actuate delivery of neurotransmitters, all within seconds. We conclude that both highly stable and accurate sensing-from multiple sensors-are needed to enable robust decision making and limit the frequency of retraining. The holistic platform resembles the self-regulatory properties of the nervous system, i.e., the ability to sense, communicate, decide, and react accordingly, thus operating as a digital nervous system.
  •  
5.
  • Wang, Xin, et al. (author)
  • Upscalable ultra thick rayon carbon felt based hybrid organic-inorganic electrodes for high energy density supercapacitors
  • 2022
  • In: Energy Storage. - : John Wiley and Sons Inc. - 2578-4862. ; 4:5
  • Journal article (peer-reviewed)abstract
    • Low weight, small footprint, and high performances are essential requisites for the implementation of energy storage devices within consumer electronics. One way to achieve these goals is to increase the thickness of the active material layer. In this work, carbonized and graphitized rayon felt, a cellulose-derived material, is used as a three-dimensional current collector scaffold to enable the incorporation of large amount of active energy storage materials and ionic liquid-based gel electrolyte in the supercapacitor devices. PEDOT:PSS, alone or in combination with active carbon, has been used as the active material. Three-dimensional supercapacitors with high per unit area capacitance (more than 1.1 F/cm2) have been achieved owing to the loading of large amount of active material in the felt matrix. Areal energy density of more than 101 μWh/cm2 and areal power density of more than 5.9 mW/cm2 have been achieved for 0.8 V operating voltage at a current density of 1 mA/cm2. A nanographite material was found to be beneficial in reducing the internal serial resistance of the supercapacitor to lower than 1.7 Ω. Furthermore, it was shown that even after 2000 times cycling test, the devices could still retain its performance with at least 88% coulombic efficiency for all the devices. All the materials are readily available commercially, environmentally sustainable and the process can potentially be upscaled with industrial process. © 2022 The Authors.
  •  
6.
  • Zabihipour, Marzieh, et al. (author)
  • High yield manufacturing of fully screen-printed organic electrochemical transistors
  • 2020
  • In: npj Flexible Electronics. - : Nature Research. - 2397-4621. ; 4:1
  • Journal article (peer-reviewed)abstract
    • The potential of the screen printing method for large-scale production of organic electrochemical transistors (OECTs), combining high production yield with low cost, is here demonstrated. Fully screen-printed OECTs of 1 mm2 area, based on poly(3,4-ethylenedioxythiophene) doped with poly(styrensulfonate) (PEDOT:PSS), have been manufactured on flexible polyethylene terephthalate (PET) substrates. The goal of this project effort has been to explore and develop the printing processing to enable high yield and stable transistor parameters, targeting miniaturized digital OECT circuits for large-scale integration (LSI). Of the 760 OECTs manufactured in one batch on a PET sheet, only two devices were found malfunctioning, thus achieving an overall manufacturing yield of 99.7%. A drain current ON/OFF ratio at least equal to 400 was applied as the strict exclusion principle for the yield, motivated by proper operation in LSI circuits. This consistent performance of low-footprint OECTs allows for the integration of PEDOT:PSS-based OECTs into complex logic circuits operating at high stability and accuracy. © 2020, The Author(s).
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view