SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lau Joey 1979 ) "

Search: WFRF:(Lau Joey 1979 )

  • Result 1-28 of 28
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Boersma, Greta J., et al. (author)
  • Altered Glucose Uptake in Muscle, Visceral Adipose Tissue, and Brain Predict Whole-Body Insulin Resistance and may Contribute to the Development of Type 2 Diabetes: A Combined PET/MR Study
  • 2018
  • In: Hormone and Metabolic Research. - : Georg Thieme Verlag KG. - 0018-5043 .- 1439-4286. ; 50:8
  • Journal article (peer-reviewed)abstract
    • We assessed glucose uptake in different tissues in type 2 diabetes (T2D), prediabetes, and control subjects to elucidate its impact in the development of whole-body insulin resistance and T2D. Thirteen T2D, 12 prediabetes, and 10 control subjects, matched for age and BMI, underwent OGTT and abdominal subcutaneous adipose tissue (SAT) biopsies. Integrated whole-body 18F-FDG PET and MRI were performed during a hyperinsulinemic euglycemic clamp to asses glucose uptake rate (MRglu) in several tissues. MRglu in skeletal muscle, SAT, visceral adipose tissue (VAT), and liver was significantly reduced in T2D subjects and correlated positively with M-values (r = 0.884, r = 0.574, r = 0.707 and r = 0.403, respectively). Brain MRglu was significantly higher in T2D and prediabetes subjects and had a significant inverse correlation with M-values (r = -0.616). Myocardial MRglu did not differ between groups and did not correlate with the M-values. A multivariate model including skeletal muscle, brain and VAT MRglu best predicted the M-values (adjusted r2 = 0.85). In addition, SAT MRglu correlated with SAT glucose uptake ex vivo (r = 0.491). In different stages of the development of T2D, glucose uptake during hyperinsulinemia is elevated in the brain in parallel with an impairment in peripheral organs. Impaired glucose uptake in skeletal muscle and VAT together with elevated glucose uptake in brain were independently associated with whole-body insulin resistance, and these tissue-specific alterations may contribute to T2D development.
  •  
2.
  •  
3.
  •  
4.
  • Monazzam, Azita, et al. (author)
  • Increased Expression of GLP-1R in Proliferating Islets of Men1 Mice is Detectable by [Ga-68]Ga-DO3A-VS-Cys(40)- Exendin-4/PET
  • 2018
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Journal article (peer-reviewed)abstract
    • Multiple endocrine neoplasia type 1 (MEN1) is an endocrine tumor syndrome caused by heterozygous mutations in the MEN1 tumor suppressor gene. The MEN1 pancreas of the adolescent gene carrier frequently contain diffusely spread pre-neoplasias and microadenomas, progressing to macroscopic and potentially malignant pancreatic neuroendocrine tumors (P-NET), which represents the major death cause in MEN1. The unveiling of the molecular mechanism of P-NET which is not currently understood fully to allow the optimization of diagnostics and treatment. Glucagon-like peptide 1 (GLP-1) pathway is essential in islet regeneration, i.e. inhibition of β-cell apoptosis and enhancement of β-cell proliferation, yet involvement of GLP-1 in MEN1 related P-NET has not yet been demonstrated. The objective of this work was to investigate if normal sized islets of Men1 heterozygous mice have increased Glucagon-like peptide-1 receptor (GLP-1R) expression compared to wild type islets, and if this increase is detectable in vivo with positron emission tomography (PET) using [68Ga]Ga-DO3A-VS-Cys40-Exendin-4 (68Ga-Exendin-4). 68Ga-Exendin-4 showed potential for early lesion detection in MEN1 pancreas due to increased GLP1R expression.
  •  
5.
  • Andersson, Arne, 1943-, et al. (author)
  • Scholarly publishing threatened?
  • 2016
  • In: Upsala Journal of Medical Sciences. - : Uppsala Medical Society. - 0300-9734 .- 2000-1967. ; 121:4, s. 205-206
  • Journal article (other academic/artistic)
  •  
6.
  • Aresh, Bejan, 1984-, et al. (author)
  • Spinal Cord Interneurons Expressing the Gastrin-Releasing Peptide Receptor Convey Itch Through VGLUT2-Mediated Signaling
  • 2017
  • In: Pain. - : Ovid Technologies (Wolters Kluwer Health). - 0304-3959 .- 1872-6623. ; 158:5, s. 945-961
  • Journal article (peer-reviewed)abstract
    • Itch is a sensation that promotes the desire to scratch, which can be evoked by mechanical and chemical stimuli. In the spinal cord, neurons expressing the gastrin-releasing peptide receptor (GRPR) have been identified as specific mediators of itch. However, our understanding of the GRPR population in the spinal cord, and thus how these neurons exercise their functions, is limited. For this purpose, we constructed a Cre line designed to target the GRPR population of neurons (Grpr-Cre). Our analysis revealed that Grpr-Cre cells in the spinal cord are predominantly excitatory interneurons that are found in the dorsal lamina, especially in laminae II-IV. Application of the specific agonist gastrin-releasing peptide induced spike responses in 43.3% of the patched Grpr-Cre neurons, where the majority of the cells displayed a tonic firing property. Additionally, our analysis showed that the Grpr-Cre population expresses Vglut2 mRNA, and mice ablated of Vglut2 in Grpr-Cre cells (Vglut2-lox; Grpr-Cre mice) displayed less spontaneous itch and attenuated responses to both histaminergic and nonhistaminergic agents. We could also show that application of the itch-inducing peptide, natriuretic polypeptide B, induces calcium influx in a subpopulation of Grpr-Cre neurons. To summarize, our data indicate that the Grpr-Cre spinal cord neural population is composed of interneurons that use VGLUT2-mediated signaling for transmitting chemical and spontaneous itch stimuli to the next, currently unknown, neurons in the labeled line of itch.
  •  
7.
  • Balboa, Diego, et al. (author)
  • Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells.
  • 2022
  • In: Nature Biotechnology. - : Springer Nature. - 1087-0156 .- 1546-1696. ; 40:7, s. 1042-1055
  • Journal article (peer-reviewed)abstract
    • Transplantation of pancreatic islet cells derived from human pluripotent stem cells is a promising treatment for diabetes. Despite progress in the generation of stem-cell-derived islets (SC-islets), no detailed characterization of their functional properties has been conducted. Here, we generated functionally mature SC-islets using an optimized protocol and benchmarked them comprehensively against primary adult islets. Biphasic glucose-stimulated insulin secretion developed during in vitro maturation, associated with cytoarchitectural reorganization and the increasing presence of alpha cells. Electrophysiology, signaling and exocytosis of SC-islets were similar to those of adult islets. Glucose-responsive insulin secretion was achieved despite differences in glycolytic and mitochondrial glucose metabolism. Single-cell transcriptomics of SC-islets in vitro and throughout 6 months of engraftment in mice revealed a continuous maturation trajectory culminating in a transcriptional landscape closely resembling that of primary islets. Our thorough evaluation of SC-islet maturation highlights their advanced degree of functionality and supports their use in further efforts to understand and combat diabetes.
  •  
8.
  • Brboric, Anja, et al. (author)
  • Characterization of neural crest-derived stem cells isolated from human bone marrow for improvement of transplanted islet function.
  • 2019
  • In: Upsala Journal of Medical Sciences. - : Uppsala Medical Society. - 0300-9734 .- 2000-1967. ; 124:4, s. 228-237
  • Journal article (peer-reviewed)abstract
    • Background: Murine boundary cap-derived neural crest stem cells (NCSCs) are capable of enhancing islet function by stimulating beta cell proliferation as well as increasing the neural and vascular density in the islets both in vitro and in vivo. This study aimed to isolate NCSC-like cells from human bone marrow.Methods: CD271 magnetic cell separation and culture techniques were used to purify a NCSC-enriched population of human bone marrow. Analyses of the CD271+ and CD271- fractions in terms of protein expression were performed, and the capacity of the CD271+ bone marrow cells to form 3-dimensional spheres when grown under non-adherent conditions was also investigated. Moreover, the NCSC characteristics of the CD271+ cells were evaluated by their ability to migrate toward human islets as well as human islet-like cell clusters (ICC) derived from pluripotent stem cells.Results: The CD271+ bone marrow population fulfilled the criterion of being multipotent stem cells, having the potential to differentiate into glial cells, neurons as well as myofibroblasts in vitro. They had the capacity to form 3-dimensional spheres as well as an ability to migrate toward human islets, further supporting their NCSC identity. Additionally, we demonstrated similar migration features toward stem cell-derived ICC.Conclusion: The results support the NCSC identity of the CD271-enriched human bone marrow population. It remains to investigate whether the human bone marrow-derived NCSCs have the ability to improve transplantation efficacy of not only human islets but stem cell-derived ICC as well.
  •  
9.
  •  
10.
  • Cheung, Pierre, et al. (author)
  • Preclinical evaluation of Affibody molecule for PET imaging of human pancreatic islets derived from stem cells
  • 2023
  • In: EJNMMI Research. - : Springer Nature. - 2191-219X. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Background: Beta-cell replacement methods such as transplantation of isolated donor islets have been proposed as a curative treatment of type 1 diabetes, but widespread application is challenging due to shortages of donor tissue and the need for continuous immunosuppressive treatments. Stem-cell-derived islets have been suggested as an alternative source of beta cells, but face transplantation protocols optimization difficulties, mainly due to a lack of available methods and markers to directly monitor grafts survival, as well as their localization and function. Molecular imaging techniques and particularly positron emission tomography has been suggested as a tool for monitoring the fate of islets after clinical transplantation. The integral membrane protein DGCR2 has been demonstrated to be a potential pancreatic islet biomarker, with specific expression on insulin-positive human embryonic stem-cell-derived pancreatic progenitor cells. The candidate Affibody molecule ZDGCR2:AM106 was radiolabeled with fluorine-18 using a novel click chemistry-based approach. The resulting positron emission tomography tracer [18F]ZDGCR2:AM106 was evaluated for binding to recombinant human DGCR2 and cryosections of stem-cell-derived islets, as well as in vivo using an immune-deficient mouse model transplanted with stem-cell-derived islets. Biodistribution of the [18F]ZDGCR2:AM106 was also assessed in healthy rats and pigs. Results: [18F]ZDGCR2:AM106 was successfully synthesized with high radiochemical purity and yield via a pretargeting approach. [18F]ZDGCR2:AM106 retained binding to recombinant human DCGR2 as well as to cryosectioned stem-cell-derived islets, but in vivo binding to native pancreatic tissue in both rat and pig was low. However, in vivo uptake of [18F]ZDGCR2:AM106 in stem-cell-derived islets transplanted in the immunodeficient mice was observed, albeit only within the early imaging frames after injection of the radiotracer. Conclusion: Targeting of DGCR2 is a promising approach for in vivo detection of stem-cell-derived islets grafts by molecular imaging. The synthesis of [18F]ZDGCR2:AM106 was successfully performed via a pretargeting method to label a site-specific covalently bonded fluorine-18 to the Affibody molecule. However, the rapid washout of [18F]ZDGCR2:AM106 from the stem-cell-derived islets graft indicates that dissociation kinetics can be improved. Further studies using alternative binders of similar classes with improved binding potential are warranted.
  •  
11.
  • Elksnis, Andris, et al. (author)
  • The selective NOX4 inhibitor GLX7013159 decreases blood glucose concentrations and human beta-cell apoptotic rates in diabetic NMRI nu/nu mice transplanted with human islets
  • 2023
  • In: Free radical research. - : Taylor & Francis. - 1071-5762 .- 1029-2470. ; 57:6-12, s. 460-469
  • Journal article (peer-reviewed)abstract
    • NADPH oxidase 4 (NOX4) inhibition has been reported to mitigate diabetes-induced beta-cell dysfunction and improve survival in vitro, as well as counteract high-fat diet-induced glucose intolerance in mice. We investigated the antidiabetic effects of the selective NOX4 inhibitor GLX7013159 in vivo in athymic diabetic mice transplanted with human islets over a period of 4 weeks. The GLX7013159-treated mice achieved lower blood glucose and water consumption throughout the treatment period. Furthermore, GLX7013159 treatment resulted in improved insulin and c-peptide levels, better insulin secretion capacity, as well as in greatly reduced apoptotic rates of the insulin-positive human cells, measured as colocalization of insulin and cleaved caspase-3. We conclude that the antidiabetic effects of NOX4 inhibition by GLX7013159 are observed also during a prolonged study period in vivo and are likely to be due to an improved survival and function of the human beta-cells.
  •  
12.
  • Espes, Daniel, 1985-, et al. (author)
  • Function and Gene Expression of Islets Experimentally Transplanted to Muscle and Omentum
  • 2020
  • In: Cell Transplantation. - THOUSAND OAKS, CA USA : SAGE Publications. - 0963-6897 .- 1555-3892. ; 29, s. 1-10
  • Journal article (peer-reviewed)abstract
    • Islet transplantation to the liver is a potential curative treatment for patients with type 1 diabetes. Muscle and the greater omentum are two alternative implantation sites, which can provide excellent engraftment and hold potential as future sites for stem-cell-derived beta-cell replacement. We evaluated the functional outcome after islet transplantation to muscle and omentum and found that alloxan-diabetic animals were cured with a low number of islets (200) at both sites. The cured animals had a normal area under the curve blood glucose response to intravenous glucose, albeit animals with intramuscular islet grafts had increased 120-min blood glucose levels. They also demonstrated an exaggerated counter regulatory response to hypoglycemia. The expression of genes important for beta-cell function was, at both implantation sites, comparable to that in native pancreatic islets. The gene expression of insulin (INS1 and INS2) and glucose transporter-2 was even increased, and the expression of lactate dehydrogenase decreased, at both sites when compared to native islets. We conclude that muscle and omentum provide excellent conditions for engraftment of transplanted islets. When compared to control, 200 islets implanted to the omentum displayed a restored glucose tolerance, whereas animals with intramuscular islet grafts of similar size displayed mild glucose intolerance.
  •  
13.
  • Espes, Daniel, 1985-, et al. (author)
  • Towards the clinical translation of stem cell therapy for type 1 diabetes
  • 2017
  • In: European Journal of Endocrinology. - 0804-4643 .- 1479-683X. ; 177:4, s. R159-R168
  • Research review (peer-reviewed)abstract
    • Insulin-producing cells derived from human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) have for long been a promising, but elusive treatment far from clinical translation into type 1 diabetes therapy. However, the field is now on the verge of moving such insulin-producing cells into clinical trials. Although stem cell therapies provide great opportunities, there are also potential risks such as teratoma formation associated with the treatment. Many considerations are needed on how to proceed with clinical translation, including whether to use hESCs or iPSCs, and whether encapsulation of tissue will be needed. This review aims to give an overview of the current knowledge of stem cell therapy outcomes in animal models of type 1 diabetes and a proposed road map towards the clinical setting with special focus on the potential risks and hurdles which needs to be considered. From a clinical point of view, transplantation of insulin-producing cells derived from stem cells must be performed without immune suppression in order to be an attractive treatment option. Although costly and highly labour intensive, patient-derived iPSCs would be the only solution, if not clinically successful encapsulation or tolerance induction protocols are introduced.
  •  
14.
  • Hjelmqvist, Daisy, et al. (author)
  • Improving Pancreatic Islet Engraftment after Islet Transplantation through Administration of Gamma-Secretase Inhibitor DAPT
  • 2014
  • In: Journal of endocrinology and diabetes mellitus. - : Synergy Publishers. - 2310-9971. ; 2, s. 65-69
  • Journal article (peer-reviewed)abstract
    • Abstract: Rapid and effective revascularization of transplanted pancreatic islets is vital for the survival and function of the islet graft. Insufficient vascularization after islet transplantation may be one causative factor to the failure of islet grafts in clinical transplantation. The aim of this study was to investigate if N-{N-[2-(3,5-Difluorophenyl)acetyl]-(S)-alanyl}- (S)-phenylglycine- tert-butyl ester (DAPT) administration can improve engraftment of transplanted islets. DAPT is a dipeptidic gamma-secretase inhibitor which inhibits Notch signaling. Notch signaling is involved in angiogenesis and inhibition may result in excessive formation of new blood vessels. Excessive vasculature may be beneficial in the immediate posttransplantation period since the transplanted islets are dependent on diffusion of oxygen and nutrients before revascularization. Islets isolated from C57BL/6 mice were transplanted beneath the renal capsule of C57BL/6 mice. After islet transplantation DAPT or vehicle was administered subcutaneously for three days. Mice treated with DAPT had an increased vascular density when compared to control mice two days and one month posttransplantation. Moreover, mice treated with DAPT showed 54±8.2 % functional blood vessels compared to 40±6.7 % in control mice two days posttransplantation. After one month, the fraction of functional blood vessels increased to 86±2.8 % in DAPT treated mice compared to 61±9.4 % in control mice. Our findings demonstrated that administration of DAPT may be a feasible strategy to improve engraftment of transplanted islets.
  •  
15.
  • Lau, Joey, 1979- (author)
  • Implantation-Site Dependent Differences in Engraftment and Function of Transplanted Pancreatic Islets
  • 2008
  • Doctoral thesis (other academic/artistic)abstract
    • Transplanting pancreatic islets into the liver through the portal vein is currently the most common procedure in clinical islet transplantations for treating patients with brittle type 1 diabetes. However, most islet grafts fail within a 5-year period necessitating retransplantation. The vascular connections are disrupted at islet isolation and implanted islets depend on diffusion of oxygen and nutrients in the immediate posttransplantation period. Rapid and efficient revascularization is of utmost importance for the survival and long-term function of transplanted islets. In this thesis, the influence of the implantation microenvironment for islet engraftment and function was studied. Islets were transplanted into the liver, the renal subcapsular site or the pancreas. Islets implanted into the liver contained fewer glucagon-positive cells than islets implanted to the kidney and endogenous islets. Intraportally transplanted islets responded with insulin and glucagon release to secretagogues, but only when stimulated through the hepatic artery. Thus, the intrahepatic grafts were selectively revascularized from the hepatic artery. The vascular density in human islets transplanted into the liver of athymic mice was markedly lower when compared to human islets grafted to the kidney. Islets implanted into their physiological environment, the pancreas, were markedly better revascularized. Insulin content, glucose-stimulated insulin release, (pro)insulin biosynthesis and glucose oxidation rate were markedly decreased in transplanted islets retrieved from the liver, both when compared to endogenous and transplanted islets retrieved from the pancreas. Only minor changes in metabolic functions were observed in islets implanted into the pancreas when compared to endogenous islets. The present findings demonstrate that the microenvironment has a major impact on the engraftment of transplanted islets. Elucidating the beneficial factors that promote engraftment would improve the survival and long-term function of transplanted islets. Ultimately, islet transplantation may be provided to an increased number of patients with type 1 diabetes.
  •  
16.
  • Liljebäck, Hanna, et al. (author)
  • Fewer Islets Survive from a First Transplant than a Second Transplant : Evaluation of Repeated Intraportal Islet Transplantation in Mice
  • 2019
  • In: Cell Transplantation. - : SAGE Publications. - 0963-6897 .- 1555-3892. ; 28:11, s. 1455-1460
  • Journal article (peer-reviewed)abstract
    • Beta cell replacement is an exciting field where new beta cell sources and alternative sites are widely explored. The liver has been the implantation site of choice in the clinic since the advent of islet transplantation. However, in most cases, repeated islet transplantation is needed to achieve normoglycemia in diabetic recipients. This study aimed to investigate whether there are differences in islet survival and engraftment between a first and a second transplantation, performed 1 week apart, to the liver. C57BL/6 mice were accordingly transplanted twice with an initial infusion of syngeneic islets expressing green fluorescent protein (GFP). The second islet transplant was performed 1 week later and consisted of islets isolated from non-GFP C57BL/6-mice. Animals were sacrificed either 1 day or 1 month after the second transplantation. A control group received a saline infusion instead of GFP-expressing islets, 1 week later obtained a standard non-GFP islet transplant, and was subsequently sacrificed 1 month later. Islet engraftment in the liver was assessed by immunohistochemistry and serum was analyzed for angiogenic factors induced by the first islet transplantation. Almost 70% of islets found in the liver following repeated islet transplantation originated from the second transplantation. The vascular density in the transplanted non-GFP-expressing islets did not differ depending on whether their transplantation was preceded by a primary islet transplantation or saline administration only nor did angiogenic factors in serum prior to the transplantation of non-GFP islets differ between animals that had received a previous islet transplantation or a saline infusion. We conclude that first islet transplantation creates, by unknown mechanisms, favorable conditions for the survival of a second transplant to the liver.
  •  
17.
  •  
18.
  • Luo, Zhengkang, et al. (author)
  • Interleukin-35 Prevents Development of Autoimmune Diabetes Possibly by Maintaining the Phenotype of Regulatory B Cells
  • 2021
  • In: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 22:23
  • Journal article (peer-reviewed)abstract
    • The anti-inflammatory role of regulatory B cells (Breg cells) has been associated with IL-35 based on studies of experimental autoimmune uveitis and encephalitis. The role of Breg cells and IL-35(+) Breg cells for type 1 diabetes (T1D) remains to be investigated. We studied PBMCs from T1D subjects and healthy controls (HC) and found lowered proportions of Breg cells and IL-35(+) Breg cells in T1D. To elucidate the role of Breg cells, the lymphoid organs of two mouse models of T1D were examined. Lower proportions of Breg cells and IL-35(+) Breg cells were found in the animal models of T1D compared with control mice. In addition, the systemic administration of recombinant mouse IL-35 prevented hyperglycemia after multiple low dose streptozotocin (MLDSTZ) injections and increased the proportions of Breg cells and IL-35(+) Breg cells. A higher proportion of IFN-gamma(+) cells among Breg cells were found in the PBMCs of the T1D subjects. In the MLDSTZ mice, IL-35 administration decreased the proportions of IFN-gamma(+) cells among the Breg cells. Our data illustrate that Breg cells may play an important role in the development of T1D and that IL-35 treatment prevents the development of hyperglycemia by maintaining the phenotype of the Breg cells under an experimental T1D condition.
  •  
19.
  • Pereira, Maria J, 1981-, et al. (author)
  • A Randomized Controlled Trial of Dapagliflozin Plus Once-Weekly Exenatide Versus Placebo in Individuals with Obesity and Without Diabetes : Metabolic Effects and Markers Associated with Bodyweight Loss
  • 2018
  • In: Diabetes Therapy. - : Springer Berlin/Heidelberg. - 1869-6953 .- 1869-6961. ; 9:4, s. 1511-1532
  • Journal article (peer-reviewed)abstract
    • The sodium-glucose cotransporter 2 inhibitor dapagliflozin and the glucagon-like peptide-1 (GLP-1) receptor agonist exenatide reduce bodyweight via differing and complementary mechanisms. This post hoc analysis investigated the metabolic effects and baseline associations with bodyweight loss on coadministration of dapagliflozin and exenatide once weekly (QW) among adults with obesity and without diabetes. In the primary trial, adults with obesity and without diabetes [n = 50; 18-70 years; body mass index (BMI) 30-45 kg/m(2)] were randomized to double-blind oral dapagliflozin 10 mg (DAPA) once daily plus subcutaneous long-acting exenatide 2 mg QW (ExQW) or placebo over 24 weeks, followed by an open-label extension from 24-52 weeks during which all participants received active treatment. Primary results have been published previously. This analysis evaluated: (1) the effects of DAPA + ExQW on changes in substrates [free fatty acids (FFAs), glycerol, beta-OH-butyrate, and glucose], hormones (glucagon and insulin), and insulin secretion [insulinogenic index (IGI)] via an oral glucose tolerance test (OGTT) and (2) associations between bodyweight loss and baseline characteristics (e.g., BMI), single-nucleotide polymorphisms (SNPs) associated with the GLP-1 pathway, and markers of glucose regulation. Compared with placebo at 24 weeks, 2-h FFAs post-OGTT increased (mean difference, +20.4 mu mol/l; P < 0.05), and fasting glucose, 2-h glucose post-OGTT, and glucose area under the concentration-time curve (AUC) decreased with DAPA + ExQW [mean differences, -0.68 mmol/l [P < 0.001], -2.20 mmol/l (P < 0.01), and -306 mmol/l min (P < 0.001), respectively]. Glucagon, glycerol, beta-OH-butyrate, and IGI did not differ by treatment group at 24 weeks. Over 52 weeks, DAPA + ExQW decreased fasting insulin, 2-h post-OGTT insulin, and insulin AUC. Among DAPA + ExQW-treated participants, for each copy of the SNP variant rs10010131 A allele (gene WFS1), bodyweight decreased by 2.4 kg (P < 0.05). Lower BMI and a lower IGI were also associated with greater bodyweight loss with DAPA + ExQW. Metabolic effects with DAPA + ExQW included less FFA suppression versus placebo during the OGTT, suggesting compensatory lipid mobilization for energy production when glucose availability was reduced because of glucosuria. The expected increase in glucagon with DAPA did not occur with DAPA + ExQW coadministration. Bodyweight loss with DAPA + ExQW was associated with the SNP variant rs10010131 A allele, lower baseline adiposity (BMI), and lower baseline insulin secretion (IGI). These findings require further validation. AstraZeneca.
  •  
20.
  • Shi, Ruifeng, et al. (author)
  • CLEC11A improves insulin secretion and promotes cell proliferation in human beta-cells
  • 2023
  • In: Journal of Molecular Endocrinology. - : Bioscientifica. - 0952-5041 .- 1479-6813. ; 71:1
  • Journal article (peer-reviewed)abstract
    • Beta-cell dysfunction is a hallmark of disease progression in patients with diabetes. Research has been focused on maintaining and restoring beta-cell function during diabetes development. The aims of this study were to explore th e expression of C-type lectin domain containing 11A (CLEC11A), a secreted sulphated glycoprotein, in human islets and to evaluate the effects of CLEC11A on beta-cell funct ion and proliferation in vitro. To test these hypotheses, human islets and human EndoC-beta H1 cell line were used in this study. We identified that CLEC11A was expressed in beta-cells and alpha-cells in human islets but not in EndoC-beta H1 cells, whereas the receptor of CLEC11A called integrin subunit alpha 11 was found in both human islets and En doC-beta H1 cells. Long-term treatment with exogenous recombinant human CLEC11A (rhCLEC11A) accentuated glucose-stimulated insulin secretion, insulin content, and proliferation from human islets and EndoC-beta H1 cells, which was partially due to the accentuated expression levels of transcription factors MAFA and PDX1. However, the impaired beta-cell function and reduced mRNA expression of INS and MAFA in EndoC-beta H1 cells that were caused by chronic palmitate exposure could only be partially improved by the introduction of rhCLEC11A. Based on these results, we conclude that rhCLEC11A promotes insulin secretion, insulin content, and proliferation in human beta-cells, which are associated with the accentuated expression levels of transcription factors MAFA and PDX1. CLEC11A, therefore, may provide a novel therapeutic target for maintaining beta-cell function in patients with diabetes.
  •  
21.
  • Shi, Ruifeng, et al. (author)
  • Protective effects of Clec11a in islets against lipotoxicity via modulation of proliferation and lipid metabolism in mice
  • 2019
  • In: Experimental Cell Research. - : ELSEVIER INC. - 0014-4827 .- 1090-2422. ; 384:1
  • Journal article (peer-reviewed)abstract
    • The lipotoxicity is considered as one of the risk for diabetes. Here we report C-type lectin domain family 11, member A (Clec11a) as a new regulator in islet playing a protective role in lipotoxicity induced dysfunction. Islet transcriptome sequencing was performed using the high-fat diet induced obesity (DIO) mice model. We found a significant decrease of Clec11a expression in islets of DIO mice compared to normal control mice, which was further confirmed by real-time PCR. Immunostaining demonstrated the localization of the Clec11a protein in mouse islets. Administration of recombinant human Clec11a (rClec11a) protein promoted the proliferation of islet cells and rescued the inhibition of fatty acid on cell proliferation, which involved the activation of Erk signaling pathway. We also found that the rClec11a altered the expression of genes involved in lipid metabolism.
  •  
22.
  • Sidibeh, Cherno O., et al. (author)
  • Role of cannabinoid receptor 1 in human adipose tissue for lipolysis regulation and insulin resistance
  • 2017
  • In: Endocrine. - : Springer Science and Business Media LLC. - 1355-008X .- 1559-0100. ; 55:3, s. 839-852
  • Journal article (peer-reviewed)abstract
    • We recently showed that the peripheral cannabinoid receptor type 1 (CNR1) gene is upregulated by the synthetic glucocorticoid dexamethasone. CNR1 is highly expressed in the central nervous system and has been a drug target for the treatment of obesity. Here we explore the role of peripheral CNR1 in states of insulin resistance in human adipose tissue. Subcutaneous adipose tissue was obtained from well-controlled type 2 diabetes subjects and controls. Subcutaneous adipose tissue gene expression levels of CNR1 and endocannabinoid synthesizing and degrading enzymes were assessed. Furthermore, paired human subcutaneous adipose tissue and omental adipose tissue from non-diabetic volunteers undergoing kidney donation or bariatric surgery, was incubated with or without dexamethasone. Subcutaneous adipose tissue obtained from volunteers through needle biopsy was incubated with or without dexamethasone and in the presence or absence of the CNR1-specific antagonist AM281. CNR1 gene and protein expression, lipolysis and glucose uptake were evaluated. Subcutaneous adipose tissue CNR1 gene expression levels were 2-fold elevated in type 2 diabetes subjects compared with control subjects. Additionally, gene expression levels of CNR1 and endocannabinoid-regulating enzymes from both groups correlated with markers of insulin resistance. Dexamethasone increased CNR1 expression dose-dependently in subcutaneous adipose tissue and omental adipose tissue by up to 25-fold. Dexamethasone pre-treatment of subcutaneous adipose tissue increased lipolysis rate and reduced glucose uptake. Co-incubation with the CNR1 antagonist AM281 prevented the stimulatory effect on lipolysis, but had no effect on glucose uptake. CNR1 is upregulated in states of type 2 diabetes and insulin resistance. Furthermore, CNR1 is involved in glucocorticoid-regulated lipolysis. Peripheral CNR1 could be an interesting drug target in type 2 diabetes and dyslipidemia.
  •  
23.
  •  
24.
  • Thorngren, Julia, et al. (author)
  • Differentiation of human pluripotent stem cells into insulin-producing islet-like clusters using nanofiltered cell culture medium
  • 2024
  • In: Frontiers in Membrane Science and Technology. - : Frontiers Media S.A.. - 2813-1010. ; 3
  • Journal article (peer-reviewed)abstract
    • The challenge of using patient-specific, autologous stem cell therapies in clinical settings is the need for advanced cell processing and expansion technologies. These include decentralized, small-scale manufacturing at the point of care in hospitals. The highest risk for contamination in cell-based therapy products comes from animal- and human-derived components such as serum, blood components, and growth factors. To mitigate the risk of adventitious microorganism contamination, preventive measures like size-exclusion virus removal filtration of cell media components can be employed. This article examines the impact of nanofiltration using nanocellulose-based virus clearance filter paper on the differentiation of human pluripotent stem cells into insulin-producing pancreatic islets (SC-islets). The cells were monitored for biomarkers using flow cytometry and immunohistochemistry along the 7-stage differentiation protocol. The produced SC-islets were evaluated functionally using low and high glucose stimulation under dynamic perifusion conditions. Pluripotent stem cells grown in culture media filtered through 20 nm cut-off nanocellulose filters showed similar expression of desired biomarkers at each stage compared to the control group. At the end of stage 7, SC-islets exhibited a rounded shape and strong expression of insulin, glucagon, and somatostatin in both the control and filtered media groups. The present study demonstrates that SC-islets differentiated with nanofiltered media were functional.
  •  
25.
  • Ullsten, Sara, et al. (author)
  • Decreased beta-Cell Proliferation and Vascular Density in a Subpopulation of Low-Oxygenated Male Rat Islets
  • 2019
  • In: Journal of the Endocrine Society. - : Endocrine Society. - 2472-1972. ; 3:8, s. 1608-1616
  • Journal article (peer-reviewed)abstract
    • Low-oxygenated and dormant islets with a capacity to become activated when neededmay play a crucial role in the complex machinery behind glucose homeostasis. We hypothesized that low-oxygenated islets, when not functionally challenged, do not rapidly cycle between activation and inactivation but are a stable population that remain low-oxygenated. As this was confirmed, we aimed to characterize these islets with regard to cell composition, vascular density, and endocrine cell proliferation. The 2-nitroimidazole low-oxygenation marker pimonidazole was administered as a single or repeated dose to Wistar Furth rats. The stability of oxygen status of islets was evaluated by immunohistochemistry as the number of islets with incorporated pimonidazole adducts after one or repeated pimonidazole injections. Adjacent sections were evaluated for islet cell composition, vascular density, and endocrine cell proliferation. Single and repeated pimonidazole injections over an 8-hour period yielded accumulation of pimonidazole adducts in the same islets. An average of 30% of all islets was in all cases positively stained for pimonidazole adducts. These islets showed a similar endocrine cell composition as other islets but had lower vascular density and beta-cell proliferation. In conclusion, low-oxygenated islets were found to be a stable subpopulation of islets for at least 8 hours. Although they have previously been observed to be less functionally active, their islet cell composition was similar to that of other islets. Consistent with their lower oxygenation, they had fewer blood vessels than other islets. Notably, beta-cell regeneration preferentially occurred in better-oxygenated islets.
  •  
26.
  • van Hooren, Luuk, et al. (author)
  • Agonistic CD40 therapy induces tertiary lymphoid structures but impairs responses to checkpoint blockade in glioma.
  • 2021
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Gliomas are brain tumors characterized by an immunosuppressive microenvironment. Immunostimulatory agonistic CD40 antibodies (αCD40) are in clinical development for solid tumors, but are yet to be evaluated for glioma. Here, we demonstrate that systemic delivery of αCD40 in preclinical glioma models induces the formation of tertiary lymphoid structures (TLS) in proximity of meningeal tissue. In treatment-naïve glioma patients, the presence of TLS correlates with increased T cell infiltration. However, systemic delivery of αCD40 induces hypofunctional T cells and impairs the response to immune checkpoint inhibitors in pre-clinical glioma models. This is associated with a systemic induction of suppressive CD11b+ B cells post-αCD40 treatment, which accumulate in the tumor microenvironment. Our work unveils the pleiotropic effects of αCD40 therapy in glioma and reveals that immunotherapies can modulate TLS formation in the brain, opening up for future opportunities to regulate the immune response.
  •  
27.
  • Vasylovska, Svitlana, et al. (author)
  • Generation of human induced pluripotent stem cell (iPSC) lines (UUMCBi001-A, UUMCBi002-A) from two healthy donors
  • 2021
  • In: Stem Cell Research. - : Elsevier. - 1873-5061 .- 1876-7753. ; 50
  • Journal article (peer-reviewed)abstract
    • Availability of numerous high-quality iPSC lines is needed to overcome donor-associated variability caused by genetic background effects. We generated two human iPSC lines from dermal fibroblasts of two healthy females using Sendai virus reprogramming. Quality assessment of the iPSC lines confirmed the expression of pluripotency markers, trilineage differentiation capacity and absence of exogenous expression of reprogramming factors. Both iPSC lines were genetically stable with a genotype that matched the fibroblast lines of donors. These iPSC lines add to available reference lines as a resource for disease modeling of polygenic and multifactorial diseases, for evaluation of differentiation protocols and toxicology screening.
  •  
28.
  • Öhlund, Malin, et al. (author)
  • Laser Microdissection of Pancreatic Islets Allows for Quantitative Real-Time PCR Detection of Islet-Specific Gene Expression in Healthy and Diabetic Cats
  • 2014
  • In: Journal of Gastroenterology, Pancreatology & Liver Disorders. - : Symbiosis Open Access. - 2374-815X. ; 1:4, s. 1-9
  • Journal article (peer-reviewed)abstract
    • Background: Feline diabetes mellitus shares many similarities with human type 2 diabetes mellitus, including clinical, physiological and pathological features of the disease. The domestic cat spontaneously develops diabetes associated with insulin resistance in their middle age or later, with residual but declining insulin secretion. Humans and cats share largely the same environment and risk factors for diabetes, such as obesity and physical inactivity. Moreover, amyloid formation and loss of beta cells are found in the islets of the diabetic cat, as in humans. Altogether, the diabetic cat is a good model for type 2 diabetes in humans. The aims of the present study were to isolate feline islets using laser microdissection and to develop a quantitative method for detection of mRNA levels in islets of healthy and diabetic cats.Results: By using the laser microdissection technique, we were able to meticulously sample islets from both healthy and diabetic cats. Insulin staining of separate sections showed many beta cells in islets from healthy cats, whereas few insulin positive cells were found in islets from diabetic cats. By quantitative real-time PCR, mRNA levels of the islet-specific genes INS, PDX1, IAPP, CHGA and IA-2could be detected in both healthy and diabetic cats.Conclusions: Laser microdissection allows distinct studies of islets without contamination of acinar cells. Previous attempts in isolating feline islets with different collagenase-based protocols have led to damaged islets or islets coated with exocrine acinar cells, which either way compromise the results obtained from gene expression studies. The use of the laser microdissection technique eliminates these problems as shown in this study. Differences in gene expression between healthy and diabetic cats can reveal underlying mechanisms for beta cell dysfunction and decreased beta cell mass in human type 2 diabetes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-28 of 28
Type of publication
journal article (25)
other publication (1)
doctoral thesis (1)
research review (1)
Type of content
peer-reviewed (24)
other academic/artistic (4)
Author/Editor
Carlsson, Per-Ola (9)
Pereira, Maria J., 1 ... (7)
Eriksson, Jan W. (5)
Vasylovska, Svitlana (5)
Kamble, Prasad G. (4)
Lau Börjesson, Joey, ... (4)
show more...
Ahlström, Håkan, 195 ... (3)
Johansson, Emil (3)
Eriksson, Olof (3)
Kullberg, Joel, 1979 ... (3)
Korsgren, Olle (2)
Skrtic, Stanko, 1970 (2)
Sundbom, Magnus (2)
Zhang, Bo (2)
Otonkoski, Timo (2)
Eriksson, Jan (2)
Persson, Jonas (2)
Lubberink, Mark (2)
Welsh, Nils (2)
Löfblom, John (2)
Panagiotou, G (2)
Rosenström, Ulrika (1)
Andersson, Göran (1)
Essand, Magnus (1)
Svensson, Maria K (1)
Ståhl, Stefan (1)
Johnsson, Eva (1)
Kvist, Jouni (1)
Skogseid, Britt (1)
Lund, Per-Eric (1)
Schuster, Jens, Assi ... (1)
Dahl, Niklas (1)
Jakola, Asgeir Store (1)
Li, Wei (1)
Libard, Sylwia (1)
Barg, Sebastian, 196 ... (1)
Tengholm, Anders, 19 ... (1)
Velikyan, Irina, 196 ... (1)
Johnsson, E (1)
Westermark, Gunilla (1)
Heurling, Kerstin (1)
Kampf, Caroline (1)
Dimberg, Anna (1)
Jansson, Leif (1)
Sandler, Stellan (1)
Carlsson, Carina (1)
Andersson, Arne, 194 ... (1)
Smits, Anja (1)
Wikström, Per (1)
Ramachandran, Mohanr ... (1)
show less...
University
Uppsala University (28)
University of Gothenburg (3)
Karolinska Institutet (2)
Royal Institute of Technology (1)
Swedish University of Agricultural Sciences (1)
Language
English (28)
Research subject (UKÄ/SCB)
Medical and Health Sciences (24)
Natural sciences (1)
Engineering and Technology (1)
Agricultural Sciences (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view