SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lendl Monika) "

Search: WFRF:(Lendl Monika)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Delrez, Laetitia, et al. (author)
  • Transit detection of the long-period volatile-rich super-Earth nu(2) Lupi d with CHEOPS
  • 2021
  • In: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; :5, s. 775-787
  • Journal article (peer-reviewed)abstract
    • Exoplanets transiting bright nearby stars are key objects for advancing our knowledge of planetary formation and evolution. The wealth of photons from the host star gives detailed access to the atmospheric, interior and orbital properties of the planetary companions. nu(2) Lupi (HD 136352) is a naked-eye (V = 5.78) Sun-like star that was discovered to host three low-mass planets with orbital periods of 11.6, 27.6 and 107.6 d via radial-velocity monitoring(1). The two inner planets (b and c) were recently found to transit(2), prompting a photometric follow-up by the brand new Characterising Exoplanets Satellite (CHEOPS). Here, we report that the outer planet d is also transiting, and measure its radius and mass to be 2.56 +/- 0.09 R-circle plus and 8.82 +/- 0.94 M-circle plus, respectively. With its bright Sun-like star, long period and mild irradiation (similar to 5.7 times the irradiation of Earth), nu(2) Lupi d unlocks a completely new region in the parameter space of exoplanets amenable to detailed characterization. We refine the properties of all three planets: planet b probably has a rocky mostly dry composition, while planets c and d seem to have retained small hydrogen-helium envelopes and a possibly large water fraction. This diversity of planetary compositions makes the nu(2) Lupi system an excellent laboratory for testing formation and evolution models of low-mass planets.
  •  
2.
  • Hobson, Melissa J., et al. (author)
  • TOI-199 b : A Well-characterized 100 day Transiting Warm Giant Planet with TTVs Seen from Antarctica
  • 2023
  • In: Astronomical Journal. - 0004-6256. ; 166:5
  • Journal article (peer-reviewed)abstract
    • We present the spectroscopic confirmation and precise mass measurement of the warm giant planet TOI-199 b. This planet was first identified in TESS photometry and confirmed using ground-based photometry from ASTEP in Antarctica including a full 6.5 hr long transit, PEST, Hazelwood, and LCO; space photometry from NEOSSat; and radial velocities (RVs) from FEROS, HARPS, CORALIE, and CHIRON. Orbiting a late G-type star, TOI-199 b has a 104.854 − 0.002 + 0.001 day period, a mass of 0.17 ± 0.02 M J, and a radius of 0.810 ± 0.005 R J. It is the first warm exo-Saturn with a precisely determined mass and radius. The TESS and ASTEP transits show strong transit timing variations (TTVs), pointing to the existence of a second planet in the system. The joint analysis of the RVs and TTVs provides a unique solution for the nontransiting companion TOI-199 c, which has a period of 273.69 − 0.22 + 0.26 days and an estimated mass of 0.28 − 0.01 + 0.02 M J . This period places it within the conservative habitable zone.
  •  
3.
  • Morris, Brett M., et al. (author)
  • A CHEOPS white dwarf transit search
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 651
  • Journal article (peer-reviewed)abstract
    • White dwarf spectroscopy shows that nearly half of white dwarf atmospheres contain metals that must have been accreted from planetary material that survived the red giant phases of stellar evolution. We can use metal pollution in white dwarf atmospheres as flags, signalling recent accretion, in order to prioritize an efficient sample of white dwarfs to search for transiting material. We present a search for planetesimals orbiting six nearby white dwarfs with the CHaracterising ExOPlanet Satellite (CHEOPS). The targets are relatively faint for CHEOPS, 11 mag1000 km.
  •  
4.
  • Prinoth, Bibiana, et al. (author)
  • Titanium oxide and chemical inhomogeneity in the atmosphere of the exoplanet WASP-189 b
  • 2022
  • In: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 6:4, s. 449-457
  • Journal article (peer-reviewed)abstract
    • The temperature of an atmosphere decreases with increasing altitude, unless a shortwave absorber that causes a temperature inversion exists. Ozone plays this role in the Earth’s atmosphere. In the atmospheres of highly irradiated exoplanets, the shortwave absorbers are predicted to be titanium oxide (TiO) and vanadium oxide (VO). Detections of TiO and VO have been claimed using both low-, and high- spectral-resolution observations, but subsequent observations have failed to confirm these claims or overturned them. Here we report the unambiguous detection of TiO in the ultra-hot Jupiter WASP-189 b using high-resolution transmission spectroscopy. This detection is based on applying the cross-correlation technique to many spectral lines of TiO from 460 to 690 nm. Moreover, we report detections of metals, including neutral and singly ionized iron and titanium, as well as chromium, magnesium, vanadium and manganese (Fe, Fe+, Ti, Ti+, Cr, Mg, V, Mn). The line positions of the detected species differ, which we interpret as a consequence of spatial gradients in their chemical abundances, such that they exist in different regions or dynamical regimes. This is direct observational evidence for the three-dimensional thermochemical stratification of an exoplanet atmosphere derived from high-resolution ground-based spectroscopy.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view