SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Li Quanjun) "

Search: WFRF:(Li Quanjun)

  • Result 1-17 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Liu, Dedi, et al. (author)
  • In situ Raman and photoluminescence study on pressure-induced phase transition in C60 nanotubes
  • 2012
  • In: Journal of Raman Spectroscopy. - : Wiley. - 0377-0486 .- 1097-4555. ; 43:6, s. 737-740
  • Journal article (peer-reviewed)abstract
    • Single crystalline C60 nanotubes having face-centered-cubic structure with diameters in the nanometer range were synthesized by a solution method. In situ Raman and photoluminescence spectroscopy under high pressure were employed to study the structural stabilities and transitions of the pristine C60 nanotubes. A phase transition, probably because of the orientational ordering of C60 molecules, from face-centered-cubic structure to simple cubic structure occurred at the pressure between 1.46 and 2.26 GPa. At above 20.41 GPa, the Raman spectrum became very diffuse and lost its fine structure in all wavenumber regions, and only two broad and asymmetry peaks initially centered at 1469 and 1570cm-1 were observed, indicating an occurrence of amorphization. This amorphous phase remained to be reversible until 31.1 GPa, and it became irreversible to the ambient pressure after the pressure cycle of 34.3 GPa was applied.
  •  
2.
  • Liu, Dedi, et al. (author)
  • Synthesis and solid-state studies of self-assembled C60 microtubes
  • 2011
  • In: Diamond and Related Materials, vol. 20 issue 2. - : Elsevier BV. ; , s. 178-182
  • Conference paper (peer-reviewed)abstract
    • C60 microtubes were fabricated by a modified solution evaporation method, evaporating a solution of C60 in toluene in an atmosphere of m-xylene at room temperature. The C60 microtubes have outer diameters ranging from 2 to 8 μm. IR spectra, TG analysis and X-ray diffraction showed a solvated structure for the as-grown C60 microtubes. Through a gentle heat-treatment in vacuum, pure C60 microtubes with single crystalline fcc structure were obtained after the elimination of solvents. It is suggested that the C60 microtubes form through self-assembly from several individual C60 nanorods.
  •  
3.
  • Cheng, Benyuan, et al. (author)
  • Pressure-induced metallization and amorphization in VO2(A) nanorods
  • 2016
  • In: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 93:18
  • Journal article (peer-reviewed)abstract
    • A metallic state enabled by the metal-insulator transition (MIT) in single crystal VO2(A) nanorods is demonstrated, which provides important physical foundation in experimental understanding of MIT in VO2. The observed tetragonal metallic state at ∼28 GPa should be interpreted as a distinct metastable state, while increasing pressure to ∼32 GPa, it transforms into a metallic amorphous state completely. The metallization is due to V 3d orbital electrons delocalization, and the amorphization is attributed to the unique variation of V-O-V bond angle. A metallic amorphous VO2 state is found under pressure, which is beneficial to explore the phase diagram of VO2. Furthermore, this work proves the occurrence of both the metallization and amorphization in octahedrally coordinated materials.
  •  
4.
  • Cui, Jinxing, et al. (author)
  • Structural Deformation of Sm@C88under High Pressure
  • 2015
  • In: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 5
  • Journal article (peer-reviewed)abstract
    • We have studied the structural transformation of Sm@C88 under pressure up to 18 GPa by infraredspectroscopy combined with theoretical simulations. The infrared-active vibrational modes of Sm@C88 at ambient conditions have been assigned for the first time. Pressure-induced blue and red shiftsof the corresponding vibrational modes indicate an anisotropic deformation of the carbon cage uponcompression. We propose that the carbon cage changes from ellipsoidal to approximately sphericalaround 7 GPa. A smaller deformation of the carbon bonds in the area close to the Sm atom in thecage suggests that the trapped Sm atom plays a role in minimizing the compression of the adjacentbonds. Pressure induced a significant reduction of the band gap of the crystal. The HOMO-LUMOgap of the Sm@C88 molecule decreases remarkably at 7 GPa as the carbon cage is deformed. Also,compression enhances intermolecular interactions and causes a widening of the energy bands. Botheffects decrease the band gap of the sample. The carbon cage deforms significantly above 7 GPa,from spherical to a peanut-like shape and collapses at 18 GPa.
  •  
5.
  • Cui, Wen, et al. (author)
  • Reversible pressure-induced polymerization of Fe(C5H5)(2) doped C-70
  • 2013
  • In: Carbon. - : Pergamon-Elsevier Science. - 0008-6223 .- 1873-3891. ; 62, s. 447-454
  • Journal article (peer-reviewed)abstract
    • High pressure Raman, IR and X-ray diffraction (XRD) studies have been carried out on C-70(Fe(C5H5)(2))(2) (hereafter, "C-70(Fc)(2)") sheets. Theoretical calculation is further used to analyze the Electron Localization Function (ELF) and charge transfer in the crystal and thus to understand the transformation of C-70(Fc)(2) under pressure. Our results show that even at room temperature dimeric phase and one dimensional (1D) polymer phase of C-70 molecules can be formed at about 3 and 8 GPa, respectively. The polymerization is found to be reversible Upon decompression and the reversibility is related to the pressure-tuned charge transfer, as well as the overridden steric repulsion of counter ions. According to the layered structure of the intercalated ferrocene molecules formed in the crystal, we suggest that ferrocene acts as not only a spacer to restrict the polymerization of C-70 molecules within a layer, but also as charge reservoir to tune the polymerization process. This supplies a possible way for us to design the polymerization of fullerenes at suitable conditions.
  •  
6.
  • Cui, Wen, et al. (author)
  • Synthesis of alkali-metal-doped C60 nanotubes
  • 2011
  • In: Diamond and Related Materials. - : Elsevier BV. ; , s. 93-96
  • Conference paper (peer-reviewed)abstract
    • C60 nanotubes have been synthesized by a solution–solution method. After degassing in a dynamic vacuum, the C60 nanotubes were doped with alkali metals by means of vapor evaporation method. Different temperatures have been studied to evaporate the alkali metals for the doping experiments. Raman spectrum was further employed to analyze the doping concentration of the obtained samples. It was found that all three alkali metals (Li, Na and K) used can be efficiently doped into the C60 nanotubes, forming AxC60 nanotubes. The doping concentration of Li, Na changed from low to high level, depending on the experiment temperatures, while K doping always gave saturated doping. The melt points, the ionic sizes and vapor pressures of alkali metals were thought to affect the final doping results.
  •  
7.
  • Jiang, Linhai, et al. (author)
  • Controlled Synthesis of CeO2/Graphene Nanocomposites with Highly Enhanced Optical and Catalytic Properties
  • 2012
  • In: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 116:21, s. 11741-11745
  • Journal article (peer-reviewed)abstract
    • In this paper, CeO2 nanocubes with the (200)-terminated surface/graphene sheet composites have been prepared successfully by a simple hydrothermal method. It is found that the CeO2 nanocubes with high crystallinity and specific exposed surface are well dispersed on well-exfoliated graphene surface. The (200)-terminated surface/graphene sheet composites modified electrode showed much higher sensitivity and excellent selectivity in its catalytic performance compared to a CeO2 nanoparticle-modified electrode. The photoluminescence intensity of the CeO2 anchored on graphene is about 30 times higher than that of pristine CeO2 crystals in air. The higher oxygen vacancy concentration in CeO2 is supposed to be an important cause for the higher photoluminescence and better electrochemical catalytic performance observed in the (200)-terminated surface/graphene sheet composites. Such ingenious design of supported well-dispersed catalysts in nanostructured ceria catalysts, synthesized in one step with an exposed high-activity surface, is important for technical applications and theoretical investigations.
  •  
8.
  • Liu, Dedi, et al. (author)
  • Effects of alcohols on shape-tuning and luminescence-enhancing of C70 nanocrystals
  • 2013
  • In: Optical materials (Amsterdam). - : Elsevier. - 0925-3467 .- 1873-1252. ; 36:2, s. 449-454
  • Journal article (peer-reviewed)abstract
    • C70 nanotubes, nanorods and nanoparticles were produced by introducing a series of alcohols as precipitant into a C70/m-xylene solution. The effects of alcohols with different carbon chain lengths on the shape control of C70 nanocrystals were investigated. Alcohols with more than two carbon atoms in the longest chain linked to the hydroxyl groups induced the formation of C70 nanotube/rods. In contrast, alcohols containing two or fewer carbon atoms resulted in C70 nanoparticles. Structural analysis indicated that alcohol molecules exist in the C70 nanocrystals, forming solvated structures. The freshly formed C70 nanotubes and nanoparticles have orthorhombic and hexagonal solvated structures, respectively. Room temperature photoluminescence was further carried out on the solvated C70 nanocrystals to investigate their optical properties. We found that the luminescence intensities of C70 nanocrystals were significantly enhanced by the introduction of alcohols.
  •  
9.
  • Liu, Dedi, et al. (author)
  • High pressure and high temperature induced polymerization of C60 nanotubes
  • 2011
  • In: CrystEngComm. - : Royal Society of Chemistry. - 1466-8033. ; 13:10, s. 3600-3605
  • Journal article (peer-reviewed)abstract
    • C60 nanotubes with outer diameters ranging from 400–800 nm were polymerized at 1.5 GPa, 573 K and 2.0 GPa, 700 K, respectively. Raman and photoluminescence spectroscopy were employed to characterize the polymeric phases of the treated samples. Both Raman and photoluminescence spectra showed that the C60 nanotubes transformed into the dimer and orthorhombic phases under the two different conditions, respectively. The photoluminescence peaks were tuned from visible to near infrared range. Comparative studies indicated that C60 nanotubes were more difficult to polymerize than bulk C60 material under the same conditions due to the nanoscale size effect in the C60 nanotubes.
  •  
10.
  • Liu, Dedi, et al. (author)
  • Pressure-induced phase transitions of C70 nanotubes
  • 2011
  • In: The Journal of Physical Chemistry C. - : American Chemical Society. - 1932-7447 .- 1932-7455. ; 115:18, s. 8918-8922
  • Journal article (peer-reviewed)abstract
    • Single crystalline C70 nanotubes having a face-centered-cubic (fcc) structure with diameters on a nanometer scale were synthesized by a facile solution method. In situ high pressure Raman spectroscopy and X-ray diffraction have been employed to study the structural stability and phase transitions of the pristine sample. We show that the molecular orientation-related phase transition from the fcc structure to a rhombohedral structure occurs at about 1.5 GPa, which is 1 GPa higher than in bulk C70. Also, the C70 molecules themselves are more stable in the nanotubes than in bulk crystals, manifested by a partial amorphization at 20 GPa. The crystal structure of C70 nanotubes could partially return to the initial structure after a pressure cycle above 30.8 GPa, and the C70 molecules were intact up to 43 GPa. The bulk modulus of C70 nanotubes is measured to be 50 GPa, which is twice larger than that of bulk C70.
  •  
11.
  • Ma, Honglei, et al. (author)
  • Synchrotron X-ray diffraction and infrared spectroscopy studies of C60H18 under high pressure
  • 2010
  • In: The Journal of Physical Chemistry Letters. - : American Chemical Society. - 1948-7185. ; 1:4, s. 714-719
  • Journal article (peer-reviewed)abstract
    • In situ high-pressure angle-dispersive synchrotron X-ray diffraction and high-pressure mid-infrared (IR) spectrum measurements of C60H18 were carried out up to 32 and 10.2 GPa, respectively. Our diffraction data indicated that the fcc structure of C60H18 was stable up to 32 GPa. The bulk modulus B0 was determined to be 21 ± 1.16 GPa, about 40% higher than that of C60. The C−H vibrations still existed up to 10.2 GPa, and the vibrational frequencies decreased with increasing pressure. IR-active vibrational frequencies and their corresponding eigenvectors of C60H18 were simulated by DMOL3. The effects of the hydrogen atoms attached to the fullerene molecular cage on the stability of the structure under high pressure are discussed.
  •  
12.
  • Ma, Tao, et al. (author)
  • Genomic insights into salt adaptation in a desert poplar
  • 2013
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 4, s. 2797-
  • Journal article (peer-reviewed)abstract
    • Despite the high economic and ecological importance of forests, our knowledge of the genomic evolution of trees under salt stress remains very limited. Here we report the genome sequence of the desert poplar, Populus euphratica, which exhibits high tolerance to salt stress. Its genome is very similar and collinear to that of the closely related mesophytic congener, P. trichocarpa. However, we find that several gene families likely to be involved in tolerance to salt stress contain significantly more gene copies within the P. euphratica lineage. Furthermore, genes showing evidence of positive selection are significantly enriched in functional categories related to salt stress. Some of these genes, and others within the same categories, are significantly upregulated under salt stress relative to their expression in another salt-sensitive poplar. Our results provide an important background for understanding tree adaptation to salt stress and facilitating the genetic improvement of cultivated poplars for saline soils.
  •  
13.
  • Shang, Yuchen, et al. (author)
  • Ultrahard bulk amorphous carbon from collapsed fullerene
  • 2021
  • In: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 599:7886, s. 599-604
  • Journal article (peer-reviewed)abstract
    • Amorphous materials inherit short- and medium-range order from the corresponding crystal and thus preserve some of its properties while still exhibiting novel properties1,2. Due to its important applications in technology, amorphous carbon with sp2 or mixed sp2–sp3 hybridization has been explored and prepared3,4, but synthesis of bulk amorphous carbon with sp3 concentration close to 100% remains a challenge. Such materials inherit the short-/medium-range order of diamond and should also inherit its superior properties5. Here, we successfully synthesized millimetre-sized samples—with volumes 103–104 times as large as produced in earlier studies—of transparent, nearly pure sp3 amorphous carbon by heating fullerenes at pressures close to the cage collapse boundary. The material synthesized consists of many randomly oriented clusters with diamond-like short-/medium-range order and possesses the highest hardness (101.9 ± 2.3 GPa), elastic modulus (1,182 ± 40 GPa) and thermal conductivity (26.0 ± 1.3 W m−1 K−1) observed in any known amorphous material. It also exhibits optical bandgaps tunable from 1.85 eV to 2.79 eV. These discoveries contribute to our knowledge about advanced amorphous materials and the synthesis of bulk amorphous materials by high-pressure and high-temperature techniques and may enable new applications for amorphous solids.
  •  
14.
  • Yin, Xiu, et al. (author)
  • Doping of charge-transfer molecules in cocrystals for the design of materials with novel piezo-activated luminescence
  • 2023
  • In: Chemical Science. - : Royal Society of Chemistry. - 2041-6520 .- 2041-6539. ; 14:6, s. 1479-1484
  • Journal article (peer-reviewed)abstract
    • A novel piezo-activated luminescent material with wide range modulation of the luminescence wavelength and a giant intensity enhancement upon compression was prepared using a strategy of molecular doping. The doping of THT molecules into TCNB-perylene cocrystals results in the formation of a weak but pressure-enhanced emission center in the material at ambient pressure. Upon compression, the emissive band from the undoped component TCNB-perylene undergoes a normal red shift and emission quenching, while the weak emission center shows an anomalous blue shift from 615 nm to 574 nm and a giant luminescence enhancement up to 16 GPa. Further theoretical calculations show that doping by THT could modify intermolecular interactions, promote molecular deformation, and importantly, inject electrons into the host TCNB-perylene upon compression, which contributes to the novel piezochromic luminescence behavior. Based on this finding, we further propose a universal approach to design and regulate the piezo-activated luminescence of materials by using other similar dopants.
  •  
15.
  • Zhai, Chunguang, et al. (author)
  • Molecular insertion regulates the donor-acceptor interactions in cocrystals for the design of piezochromic luminescent materials
  • 2021
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Developing a universal strategy to design piezochromic luminescent materials with desirable properties remains challenging. Here, we report that insertion of a non-emissive molecule into a donor (perylene) and acceptor (1,2,4,5-tetracyanobezene) binary cocrystal can realize fine manipulation of intermolecular interactions between perylene and 1,2,4,5-tetracyanobezene (TCNB) for desirable piezochromic luminescent properties. A continuous pressure-induced emission enhancement up to 3 GPa and a blue shift from 655 to 619 nm have been observed in perylene-TCNB cocrystals upon THF insertion, in contrast to the red-shifted and quenched emission observed when compressing perylene-TCNB cocrystals and other cocrystals reported earlier. By combining experiment with theory, it is further revealed that the inserted non-emissive THF forms blue-shifting hydrogen bonds with neighboring TCNB molecules and promote a conformation change of perylene molecules upon compression, causing the blue-shifted and enhanced emission. This strategy remains valid when inserting other molecules as non-emissive component into perylene-TCNB cocrystals for abnormal piezochromic luminescent behaviors.
  •  
16.
  • Zhang, Ying, et al. (author)
  • Capture of novel sp3 hybridized Z-BN by compressing boron nitride nanotubes with small diameter
  • 2022
  • In: Diamond and related materials. - : Elsevier. - 0925-9635 .- 1879-0062. ; 130
  • Journal article (peer-reviewed)abstract
    • Experimental synthesis of new sp3 hybridized carbon/boron nitride structures remains challenging despite that numerous sp3 structures have been proposed in theory. Here, we showed that compressed multi-walled boron nitride nanotubes (MWBNNTs) and boron nitride peapods (C60@BNNTs) with small diameters could transform into a new sp3 hybridized boron nitride allotrope (Z-BN). This strategy is considered from the topological transition point of view in boron nitride nanotubes upon compression. Due to the increased curvature in compressed small-diameter MWBNNTs, the uncommon 4- and 8-membered rings in Z-BN could be more favorably formed. And the irreversible tube collapse is proved to be a critical factor for the capture of the formed Z-BN, because of the competition between the resilience of tube before collapse and the stress limitation for the lattice stabilization of Z-BN upon decompression. In this case, Z-BN starts to form above 19.0 GPa, which is fully reversible below 45 GPa and finally becomes quenchable at 93.5 GPa. This collapse-induced capture of the high-pressure phase could also be extended to other tubular materials for quenching novel sp3 structures.
  •  
17.
  • Zou, Yonggang, et al. (author)
  • Rotational dynamics of confined C60 from near-infrared Raman studies under high pressure
  • 2009
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 106:52, s. 22135-22138
  • Journal article (peer-reviewed)abstract
    • Peapods present a model system for studying the properties of dimensionally constrained crystal structures, whose dynamical properties are very important. We have recently studied the rotational dynamics of C60 molecules confined inside single walled carbon nanotube (SWNT) by analyzing the intermediate frequency mode lattice vibrations using near-infrared Raman spectroscopy. The rotation of C60 was tuned to a known state by applying high pressure, at which condition C60 first forms dimers at low pressure and then forms a single-chain, nonrotating, polymer structure at high pressure. In the latter state the molecules form chains with a 2-fold symmetry. We propose that the C60 molecules in SWNT exhibit an unusual type of ratcheted rotation due to the interaction between C60 and SWNT in the “hexagon orientation,” and the characteristic vibrations of ratcheted rotation becomes more obvious with decreasing temperature.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-17 of 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view