SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Liu Xiaoqing) "

Search: WFRF:(Liu Xiaoqing)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Cheng, Q., et al. (author)
  • Unveiling anneal hardening in dilute Al-doped AlxCoCrFeMnNi (x=0, 0.1) high-entropy alloys
  • 2021
  • In: Journal of Materials Science & Technology. - : Elsevier BV. - 1005-0302. ; 91, s. 270-277
  • Journal article (peer-reviewed)abstract
    • Anneal hardening has been one of the approaches to improve mechanical properties of solid solution alloys with the face-centered cubic (FCC) structure, whereby a considerable strengthening can be attained by annealing of cold-worked alloys below the recrystallization temperature (T-rx). Microscopically, this hardening effect has been ascribed to several mechanisms, i.e. solute segregation to defects (dislocation and stacking fault) and short-range chemical ordering, etc. However, none of these mechanisms can well explain the anneal hardening recently observed in phase-pure and coarse-grained FCC-structured high-entropy alloys (HEAs). Here we report the observations, using high-resolution electron channeling contrast imaging and transmission electron microscopy, of profuse and stable dislocation substructures in a cold-rolled CoCrFeMnNi HEA subject to an annealing below T-rx. The dislocation substructures are observed to be thermally stable up to T-rx, which could arise from the chemical complexity of the high-entropy system where certain elemental diffusion retardation occurs. The microstructure feature is markedly different from that of conventional dilute solid solution alloys, in which dislocation substructures gradually vanish by recovery during annealing, leading to a strength drop. Furthermore, dilute addition of 2 at.% Al leads to a reduction in both microhardness and yield strength of the cold-rolled and subsequently annealed (<= 500 degrees C) HEA. This Al induced softening effect, could be associated with the anisotropic formation of dislocation substructure, resulting from enhanced dislocation planar slip due to glide plane softening effect. These findings suggest that the strength of HEAs can be tailored through the anneal hardening effect from dislocation substructure strengthening.
  •  
2.
  • Ding, Sunjia, et al. (author)
  • Boosting enzymatic degradation of cellulose using a fungal expansin : Structural insight into the pretreatment mechanism
  • 2022
  • In: Bioresource Technology. - : Elsevier. - 0960-8524 .- 1873-2976. ; 358
  • Journal article (peer-reviewed)abstract
    • The recalcitrance of cellulosic biomass greatly hinders its enzymatic degradation. Expansins induce cell wall loosening and promote efficient cellulose utilization; however, the molecular mechanism underlying their action is not well understood. In this study, TlEXLX1, a fungal expansin from Talaromyces leycettanus JCM12802, was characterized in terms of phylogeny, synergy, structure, and mechanism of action. TlEXLX1 displayed varying degrees of synergism with commercial cellulase in the pretreatment of corn straw and filter paper. TlEXLX1 binds to cellulose via domain 2, mediated by CH–π interactions with residues Tyr291, Trp292, and Tyr327. Residues Asp237, Glu238, and Asp248 in domain 1 form hydrogen bonds with glucose units and break the inherent hydrogen bonding within the cellulose matrix. This study identified the expansin amino acid residues crucial for cellulose binding, and elucidated the structure and function of expansins in cell wall networks; this has potential applications in biomass utilization.
  •  
3.
  • Garcia-Closas, Montserrat, et al. (author)
  • Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics
  • 2008
  • In: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 4:4, s. e1000054-
  • Journal article (peer-reviewed)abstract
    • A three-stage genome-wide association study recently identified single nucleotide polymorphisms (SNPs) in five loci (fibroblast growth receptor 2 (FGFR2), trinucleotide repeat containing 9 (TNRC9), mitogen-activated protein kinase 3 K1 (MAP3K1), 8q24, and lymphocyte-specific protein 1 (LSP1)) associated with breast cancer risk. We investigated whether the associations between these SNPs and breast cancer risk varied by clinically important tumor characteristics in up to 23,039 invasive breast cancer cases and 26,273 controls from 20 studies. We also evaluated their influence on overall survival in 13,527 cases from 13 studies. All participants were of European or Asian origin. rs2981582 in FGFR2 was more strongly related to ER-positive (per-allele OR (95%CI) = 1.31 (1.27-1.36)) than ER-negative (1.08 (1.03-1.14)) disease (P for heterogeneity = 10(-13)). This SNP was also more strongly related to PR-positive, low grade and node positive tumors (P = 10(-5), 10(-8), 0.013, respectively). The association for rs13281615 in 8q24 was stronger for ER-positive, PR-positive, and low grade tumors (P = 0.001, 0.011 and 10(-4), respectively). The differences in the associations between SNPs in FGFR2 and 8q24 and risk by ER and grade remained significant after permutation adjustment for multiple comparisons and after adjustment for other tumor characteristics. Three SNPs (rs2981582, rs3803662, and rs889312) showed weak but significant associations with ER-negative disease, the strongest association being for rs3803662 in TNRC9 (1.14 (1.09-1.21)). rs13281615 in 8q24 was associated with an improvement in survival after diagnosis (per-allele HR = 0.90 (0.83-0.97). The association was attenuated and non-significant after adjusting for known prognostic factors. Our findings show that common genetic variants influence the pathological subtype of breast cancer and provide further support for the hypothesis that ER-positive and ER-negative disease are biologically distinct. Understanding the etiologic heterogeneity of breast cancer may ultimately result in improvements in prevention, early detection, and treatment.
  •  
4.
  • Huang, He, et al. (author)
  • Critical stress for twinning nucleation in CrCoNi-based medium and high entropy alloys
  • 2018
  • In: Acta Materialia. - : PERGAMON-ELSEVIER SCIENCE LTD. - 1359-6454 .- 1873-2453. ; 149, s. 388-396
  • Journal article (peer-reviewed)abstract
    • The CrCoNi-based medium and high entropy alloys (MHEAs) have drawn much attention due to their exceptional mechanical properties at cryogenic temperatures. The twinning critical resolved shear stress (CRSS) is a fundamental parameter for evaluating the strength-ductility properties of MHEAs. Here we construct and apply an extended twinning nucleation Peierls-Nabarro (P-N) model to predict the twinning CRSSes of face-centered cubic (FCC) CrCoNi-based MHEAs. The order of the twinning CRSSes of the selected alloys is CrCoNi > CrCoNiMn > CrCoNiFe > CrCoNiFeMn and the values are 291, 277, 274 and 236 MPa, respectively. These theoretical predictions agree very well with the experimental twinning CRSSes of CrCoNi and CrCoNiFeMn accounting for 260 +/- 30 and 235 +/- 10 MPa, respectively and are perfectly consistent with the strength-ductility properties including yield stress, ultimate tensile stress and uniform elongation for fracture of the FCC CrCoNi-based MHEAs obtained at cryogenic temperatures. The present method offers a first-principle quantum-mechanical tool for optimizing and designing new MHEAs with exceptional mechanical properties.
  •  
5.
  • Jiang, Xiangang, et al. (author)
  • Internal erosion of debris-flow deposits triggered by seepage
  • 2023
  • In: Engineering Geology. - : Elsevier BV. - 0013-7952 .- 1872-6917. ; 314, s. 107015-
  • Journal article (peer-reviewed)abstract
    • Debris flows can be triggered by runoffs at considerably steep natural channels and streams. Specifically, runoffgenerated debris-flow deposits are loose mixtures, comprising coarse and fine particles. Owing to seeping water, these fine particles are eroded and transported through the skeleton formed by the coarse particles. Such erosion can modify the porosity of deposits and influence their mechanical characteristics, which can be non-negligible for geotechnical and geological engineering. In this study, seven groups of seepage tests on gravel-sand-clay mixtures with different coarse particle content proportions (48%, 52%, 60%, 70%, 80%, 90%, and 100%) were conducted to investigate the erosion characteristics of debris-flow deposits triggered by seepage flows. In particular, concentrated leak erosion, internal instability erosion, and piping were noted in the soil with a coarse particle content of 48%-80%. Further, when the coarse particle content exceeds 80%, the soil does not disintegrate. A model coupling seepage and internal erosion was also developed to characterise internal erosion. For this model, mass conservation equations were reformulated for different types of internal erosion, based on the assumptions for the pore channel erosion of suspended materials and general erosion. Moreover, an equation based on the internal erosion rate, considering the pore size distribution and hydraulic gradient, was firstly introduced for concentrated leak and internal instability erosion. This equation could efficiently evaluate the mass of particles eroded from the soil. Lastly, the model was calibrated based on experimental data; the corresponding results are discussed herein.
  •  
6.
  • Jiang, Xiaoqing, et al. (author)
  • Molecular Engineering of Copper Phthalocyanines : A Strategy in Developing Dopant-Free Hole-Transporting Materials for Efficient and Ambient-Stable Perovskite Solar Cells
  • 2019
  • In: Advanced Energy Materials. - : WILEY-V C H VERLAG GMBH. - 1614-6832 .- 1614-6840. ; 9:4
  • Journal article (peer-reviewed)abstract
    • Copper (II) phthalocyanines (CuPcs) have attracted growing interest as promising hole-transporting materials (HTMs) in perovskite solar cells (PSCs) due to their low-cost and excellent stability. However, the most efficient PSCs using CuPc-based HTMs reported thus far still rely on hygroscopic p-type dopants, which notoriously deteriorate device stability. Herein, two new CuPc derivatives are designed, namely CuPc-Bu and CuPc-OBu, by molecular engineering of the non-peripheral substituents of the Pc rings, and applied as dopant-free HTMs in PSCs. Remarkably, a small structural change from butyl groups to butoxy groups in the substituents of the Pc rings significantly influences the molecular ordering and effectively improves the hole mobility and solar cell performance. As a consequence, PSCs based on dopant-free CuPc-OBu as HTMs deliver an impressive power conversion efficiency (PCE) of up to 17.6% under one sun illumination, which is considerably higher than that of devices with CuPc-Bu (14.3%). Moreover, PSCs containing dopant-free CuPc-OBu HTMs show a markedly improved ambient stability when stored without encapsulation under ambient conditions with a relative humidity of 85% compared to devices containing doped Spiro-OMeTAD. This work thus provides a fundamental strategy for the future design of cost-effective and stable HTMs for PSCs and other optoelectronic devices.
  •  
7.
  • Kang, Peiyuan, et al. (author)
  • Transient Photoinactivation of Cell Membrane Protein Activity without Genetic Modification by Molecular Hyperthermia
  • 2019
  • In: ACS Nano. - : AMER CHEMICAL SOC. - 1936-0851 .- 1936-086X. ; 13:11, s. 12487-12499
  • Journal article (peer-reviewed)abstract
    • Precise manipulation of protein activity in living systems has broad applications in biomedical sciences. However, it is challenging to use light to manipulate protein activity in living systems without genetic modification. Here, we report a technique to optically switch off protein activity in living cells with high spatiotemporal resolution, referred to as molecular hyperthermia (MH). MH is based on the nanoscale-confined heating of plasmonic gold nanoparticles by short laser pulses to unfold and photoinactivate targeted proteins of interest. First, we show that protease-activated receptor 2 (PAR2), a G-protein-coupled receptor and an important pathway that leads to pain sensitization, can be photoinactivated in situ by MH without compromising cell proliferation. PAR2 activity can be switched off in laser-targeted cells without affecting surrounding cells. Furthermore, we demonstrate the molecular specificity of MH by inactivating PAR2 while leaving other receptors intact. Second, we demonstrate that the photoinactivation of a tight junction protein in brain endothelial monolayers leads to a reversible blood-brain barrier opening in vitro. Lastly, the protein inactivation by MH is below the nanobubble generation threshold and thus is predominantly due to the nanoscale heating. MH is distinct from traditional hyperthermia (that induces global tissue heating) in both its time and length scales: nanoseconds versus seconds, nanometers versus millimeters. Our results demonstrate that MH enables selective and remote manipulation of protein activity and cellular behavior without genetic modification.
  •  
8.
  • Liu, Xiaoqing, et al. (author)
  • Exploring the cellulolytic and hemicellulolytic activities of manganese peroxidase for lignocellulose deconstruction
  • 2023
  • In: Biotechnology for Biofuels and Bioproducts. - 2731-3654. ; 16
  • Journal article (peer-reviewed)abstract
    • BackgroundA cost-effective pretreatment and saccharification process is a necessary prerequisite for utilizing lignocellulosic biomass (LCB) in biofuel and biomaterials production. Utilizing a multifunctional enzyme with both pretreatment and saccharification functions in a single step for simultaneous biological pretreatment and saccharification process (SPS) will be a green method of low cost and high efficiency. Manganese peroxidase (MnP, EC 1.11.1.13), a well-known lignin-degrading peroxidase, is generally preferred for the biological pretreatment of biomass. However, exploring the role and performance of MnP in LCB conversion will promote the application of MnP for lignocellulose-based biorefineries.ResultsIn this study, we explored the ability of an MnP from Moniliophthora roreri, MrMnP, in LCB degradation. With Mn2+ and H2O2, MrMnP decomposed 5.0 g/L carboxymethyl cellulose to 0.14 mM of reducing sugar with a conversion yield of 5.0 mg/g, including 40 μM cellobiose, 70 μM cellotriose, 20 μM cellotetraose, and 10 μM cellohexaose, and degraded 1.0 g/L mannohexaose to 0.33 μM mannose, 4.08 μM mannotriose, and 4.35 μM mannopentaose. Meanwhile, MrMnP decomposed 5.0 g/L lichenan to 0.85 mM of reducing sugar with a conversion yield of 30.6 mg/g, including 10 μM cellotriose, 20 μM cellotetraose, and 80 μM cellohexose independently of Mn2+ and H2O2. Moreover, the versatility of MrMnP in LCB deconstruction was further verified by decomposing locust bean gum and wheat bran into reducing sugars with a conversion yield of 54.4 mg/g and 29.5 mg/g, respectively, including oligosaccharides such as di- and tri-saccharides. The catalytic mechanism underlying MrMnP degraded lignocellulose was proposed as that with H2O2, MrMnP oxidizes Mn2+ to Mn3+. Subsequently, it forms a complex with malonate, facilitating the degradation of CMC and mannohexaose into reducing sugars. Without H2O2, MrMnP directly oxidizes malonate to hydroperoxyl acetic acid radical to form compound I, which then attacks the glucosidic bond of lichenan.ConclusionThis study identified a new function of MrMnP in the hydrolysis of cellulose and hemicellulose, suggesting that MrMnP exhibits its versatility in the pretreatment and saccharification of LCB. The results will lead to an in-depth understanding of biocatalytic saccharification and contribute to forming new enzymatic systems for using lignocellulose resources to produce sustainable and economically viable products and the long-term development of biorefinery, thereby increasing the productivity of LCB as a green resource.
  •  
9.
  • Qu, Muchao, et al. (author)
  • Mechanical and electrical properties of carbon nanotube/epoxy/glass-fiber composites intended for nondestructive testing
  • 2023
  • In: Polymers for Advanced Technologies. - : Wiley. - 1042-7147 .- 1099-1581. ; 34:8, s. 2554-2563
  • Journal article (peer-reviewed)abstract
    • In this study, ternary polymer composites sheets comprising glass fiber (GF) reinforced epoxy with various fractions of carbon nanotubes (CNT) were manufactured using hot-pressing technology. A multiscale morphology analysis was presented using scanning electron microscopy. The thermal behavior of the glass fiber reinforced polymer (GFRP) was investigated using thermogravimetric analysis, DSC, and DMA, which indicated an application temperature up to 71°C for the composites. Mechanical uniaxial stretching and three-points bending tests showed that the addition of 0.1–0.2 wt% CNT decreased the dissipated energy of the specimen by 50% and increased the Young's modulus by more than 100%. During all stretching and bending measurements, the relative change in electrical resistance (RCR) was recorded as function of strain, revealing a relationship between the electrical signal and the applied deformation of the GFRP. Finally, the standard equation for fitting RCR versus strain was optimized, reducing the number of fitting parameters from five to three. The electrical and mechanical properties of the CNT/GF/epoxy composites show that they are suitable sensoring materials for wind-turbine blades and other glass-fiber reinforced epoxy constructions, especially for nondestructive testing.
  •  
10.
  • Xu, W. W., et al. (author)
  • Atomic origins of the plastic deformation micro-mechanisms of ?/?? : FeCoNiAlTi high-entropy alloys
  • 2022
  • In: International journal of plasticity. - : Elsevier BV. - 0749-6419 .- 1879-2154. ; 158, s. 103439-
  • Journal article (peer-reviewed)abstract
    • The gamma/gamma' FeCoNiAlTi high-entropy alloys (HEAs) break the strength-ductility trade-off and possess an excellent combination of strength and ductility. However, lack of atomic-level understanding of plastic deformation behaviors restricts the exploration of full capacities of the FeCoNiAlTi HEAs. By computing the generalized stacking fault energies (GSFEs) of the gamma and gamma' phases, the relationships between planar stacking faults and work-hardening capacities, and the effect of chemical concentration and grain orientation on the deformation mechanisms were explored in depth for the FeCoNiAlTi HEAs. Our results demonstrate that the multicomponent nature lowers the GSFEs of the matrix but enhances those of the precipitate to achieve the strength-ductility balance of the HEA. An active factor (epsilon) defined as gamma isf/gamma apb (gamma isf: intrinsic stacking fault energy, gamma apb: anti-phase boundary energy) was introduced to bridge activation of microbands (MBs) and planar stacking faults in the gamma/gamma' alloys. Tuning a suitable low epsilon around 0.2 is an efficient strategy for acquiring the extended MBs-induced plasticity. Analyzing the individual/synergetic contribution of the principal elements to the GSFEs-related properties, we find that increasing the amount of Co and Ti promotes the strength-ductility balance and facilitates the MB activation by altering the GSFEs of both gamma and gamma'. Based on our comprehensive analysis, it is concluded that raising the Co/Fe ratio or lowing the Al/Ti ratio benefits the achievement of the desired mechanical properties of the FeCoNiAlTi HEA.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view