SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lorente Cebrian S) "

Search: WFRF:(Lorente Cebrian S)

  • Result 1-11 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Kulyte, A, et al. (author)
  • Additive effects of microRNAs and transcription factors on CCL2 production in human white adipose tissue
  • 2014
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 63:4, s. 1248-1258
  • Journal article (peer-reviewed)abstract
    • Adipose tissue inflammation is present in insulin-resistant conditions. We recently proposed a network of microRNAs (miRNAs) and transcription factors (TFs) regulating the production of the proinflammatory chemokine (C-C motif) ligand-2 (CCL2) in adipose tissue. We presently extended and further validated this network and investigated if the circuits controlling CCL2 can interact in human adipocytes and macrophages. The updated subnetwork predicted that miR-126/-193b/-92a control CCL2 production by several TFs, including v-ets erythroblastosis virus E26 oncogene homolog 1 (avian) (ETS1), MYC-associated factor X (MAX), and specificity protein 12 (SP1). This was confirmed in human adipocytes by the observation that gene silencing of ETS1, MAX, or SP1 attenuated CCL2 production. Combined gene silencing of ETS1 and MAX resulted in an additive reduction in CCL2 production. Moreover, overexpression of miR-126/-193b/-92a in different pairwise combinations reduced CCL2 secretion more efficiently than either miRNA alone. However, although effects on CCL2 secretion by co-overexpression of miR-92a/-193b and miR-92a/-126 were additive in adipocytes, the combination of miR-126/-193b was primarily additive in macrophages. Signals for miR-92a and -193b converged on the nuclear factor-κB pathway. In conclusion, TF and miRNA-mediated regulation of CCL2 production is additive and partly relayed by cell-specific networks in human adipose tissue that may be important for the development of insulin resistance/type 2 diabetes.
  •  
6.
  • Kulyte, A, et al. (author)
  • MicroRNA profiling links miR-378 to enhanced adipocyte lipolysis in human cancer cachexia
  • 2014
  • In: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; 306:3, s. E267-E274
  • Journal article (peer-reviewed)abstract
    • Cancer cachexia is associated with pronounced adipose tissue loss due to, at least in part, increased fat cell lipolysis. MicroRNAs (miRNAs) have recently been implicated in controlling several aspects of adipocyte function. To gain insight into the possible impact of miRNAs on adipose lipolysis in cancer cachexia, global miRNA expression was explored in abdominal subcutaneous adipose tissue from gastrointestinal cancer patients with ( n = 10) or without ( n = 11) cachexia. Effects of miRNA overexpression or inhibition on lipolysis were determined in human in vitro differentiated adipocytes. Out of 116 miRNAs present in adipose tissue, five displayed distinct cachexia-associated expression according to both microarray and RT-qPCR. Four (miR-483–5p/-23a/-744/-99b) were downregulated, whereas one (miR-378) was significantly upregulated in cachexia. Adipose expression of miR-378 associated strongly and positively with catecholamine-stimulated lipolysis in adipocytes. This correlation is most probably causal because overexpression of miR-378 in human adipocytes increased catecholamine-stimulated lipolysis. In addition, inhibition of miR-378 expression attenuated stimulated lipolysis and reduced the expression of LIPE, PLIN1, and PNPLA2, a set of genes encoding key lipolytic regulators. Taken together, increased miR-378 expression could play an etiological role in cancer cachexia-associated adipose tissue loss via effects on adipocyte lipolysis.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-11 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view