SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lorenzetti D.) "

Search: WFRF:(Lorenzetti D.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Cirasuolo, M., et al. (author)
  • MOONS: the Multi-Object Optical and Near-infrared Spectrograph for the VLT
  • 2014
  • In: Ground-based and Airborne Instrumentation for Astronomy V. - : SPIE. - 1996-756X .- 0277-786X. ; 9147, s. 91470-91470
  • Conference paper (peer-reviewed)abstract
    • MOONS (the Multi-Object Optical and Near-infrared Spectrograph) has been selected by ESO as a third-generation instrument for the Very Large Telescope (VLT). The light grasp of the large collecting area offered by the VLT (8.2m diameter), combined with the large multiplex and wavelength coverage (optical to near-IR: 0.8 -1.8 mu m) of MOONS will provide the European astronomical community with a powerful, unique instrument able to pioneer a wide range of Galactic, extragalactic and cosmological studies, and it will provide crucial follow-up for major facilities such as Gaia, VISTA, Euclid and LSST. MOONS has the observational power needed to unveil galaxy formation and evolution over the entire history of the Universe, from stars in our Milky Way, through the redshift desert, and up to the epoch of very first galaxies and reionization of the Universe at redshifts of z > 8-9, just a few million years after the Big Bang. From five years of observations MOONS will provide high-quality spectra for > 3M stars in our Galaxy and the Local Group, and for 1-2M galaxies at z > 1 (for an SDSS-like survey), promising to revolutionize our understanding of the Universe. The baseline design consists of similar to 1000 fibres, deployable over a field-of-view of similar to 500 arcmin(2), the largest patrol field offered by the Nasmyth focus at the VLT. The total wavelength coverage is 0.8 -1.8 mu m with two spectral resolving powers: in the medium-resolution mode (R similar to 4,000-6,000) the entire wavelength range is observed simultaneously, while the high-resolution mode will cover three selected sub-regions simultaneously: one region with R similar to 8,000 near the Ca II triplet to measure stellar radial velocities, and two regions at R similar to 20,000 (one in each of the J- and H-bands), for precision measurements of chemical abundances.
  •  
2.
  • Chye, Yann, et al. (author)
  • Subcortical surface morphometry in substance dependence : An ENIGMA addiction working group study
  • 2020
  • In: Addiction Biology. - : WILEY. - 1355-6215 .- 1369-1600. ; 25:6
  • Journal article (peer-reviewed)abstract
    • While imaging studies have demonstrated volumetric differences in subcortical structures associated with dependence on various abused substances, findings to date have not been wholly consistent. Moreover, most studies have not compared brain morphology across those dependent on different substances of abuse to identify substance-specific and substance-general dependence effects. By pooling large multinational datasets from 33 imaging sites, this study examined subcortical surface morphology in 1628 nondependent controls and 2277 individuals with dependence on alcohol, nicotine, cocaine, methamphetamine, and/or cannabis. Subcortical structures were defined by FreeSurfer segmentation and converted to a mesh surface to extract two vertex-level metrics-the radial distance (RD) of the structure surface from a medial curve and the log of the Jacobian determinant (JD)-that, respectively, describe local thickness and surface area dilation/contraction. Mega-analyses were performed on measures of RD and JD to test for the main effect of substance dependence, controlling for age, sex, intracranial volume, and imaging site. Widespread differences between dependent users and nondependent controls were found across subcortical structures, driven primarily by users dependent on alcohol. Alcohol dependence was associated with localized lower RD and JD across most structures, with the strongest effects in the hippocampus, thalamus, putamen, and amygdala. Meanwhile, nicotine use was associated with greater RD and JD relative to nonsmokers in multiple regions, with the strongest effects in the bilateral hippocampus and right nucleus accumbens. By demonstrating subcortical morphological differences unique to alcohol and nicotine use, rather than dependence across all substances, results suggest substance-specific relationships with subcortical brain structures.
  •  
3.
  • Larsson, B., et al. (author)
  • The ISO-LWS map of the Serpens cloud core. I. The SEDs of the IR/SMM sources
  • 2000
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 363, s. 253-268
  • Journal article (peer-reviewed)abstract
    • Iso-Lws mapping observations of the Serpens molecular cloud core are presented. The spectral range is 50 - 200 μ m and the map size is 8',x 8'. These observations suffer from severe source confusion at Fir wavelengths and we employ a Maximum Likelihood Method for the spectro-spatial deconvolution. The strong and fairly isolated source SMM 1/FIRS 1 presented a test case, whose modelled spectral energy distribution (SED), within observational errors, is identical to the observed one. The model results for the other infrared and submillimetre sources are therefore likely to represent their correct SEDs. Simulations demonstrating the reliability and potential of the developed method support this view. It is found that some sources do not exhibit significant Fir emission and others are most likely not pointlike at long wavelengths. In contrast, the SEDs of a number of SMMs are well fit by modified single-temperature blackbodies over the entire accessible spectral range. For the majority of sources the peak of the SEDs is found within the spectral range of the Lws and derived temperatures are generally higher (>= 30 K) than have been found by earlier deconvolution attempts using Iras data. SMM sizes are found to be only a few arcsec in diameter. In addition, the SMMs are generally optically thick even at Lws wavelengths, i.e. estimated lambda (TAu=1) are in the range 160-270 μ m. The Rayleigh-Jeans tails are less steep than expected for optically thin dust emission. This indicates that the SMMs are optically thick out to longer wavelengths than previously assumed, an assertion confirmed by self-consistent radiative transfer calculations. Models were calculated for five sources, for which sufficient data were available, viz. SMM 1, 2, 3, 4 and 9. These models are optically thick out to millimetre wavelengths (wavelength of unit optical depth 900 to 1 400 μ m). Envelope masses for these SMMs are in the range 2-6 Msun, which is of course considerably more massive than estimates based on the optically thin assumption. The luminosities are in the range 10-70 Lsun, suggesting the formation of low-mass to intermediate mass stars, so that the existence of such massive envelopes argues for extreme youth of the SMMs in the Serpens cloud core. Finally, we present, for the first time, the full infrared SEDs for the outburst source DEOS, both at high and low intensity states. Based on observations with Iso, an Esa project with instruments funded by Esa Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of Isas and Nasa.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view