SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Los Johannes W. N.) "

Search: WFRF:(Los Johannes W. N.)

  • Result 1-11 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Zadeh, Iman Esmaeil, et al. (author)
  • Efficient Single-Photon Detection with 7.7 ps Time Resolution for Photon-Correlation Measurements
  • 2020
  • In: ACS Photonics. - : AMER CHEMICAL SOC. - 2330-4022. ; 7:7, s. 1780-1787
  • Journal article (peer-reviewed)abstract
    • A broad range of scientific and industrial disciplines require precise optical measurements at very low light levels. Single-photon detectors combining high efficiency and high time resolution are pivotal in such experiments. By using relatively thick films of NbTiN (8-11 nm) and improving the pattern fidelity of the nanostructure of the superconducting nanowire single-photon detectors (SNSPD), we fabricated devices demonstrating superior performance over all previously reported detectors in the combination of efficiency and time resolution. Our findings prove that small variations in the nanowire width, in the order of a few nanometers, can lead to a significant penalty on their temporal response. Addressing these issues, we consistently achieved high time resolution (best device 7.7 ps, other devices similar to 10-16 ps) simultaneously with high system detection efficiencies (80-90%) in the wavelength range of 780-1000 nm, as well as in the telecom bands (1310-1550 nm). The use of thicker films allowed us to fabricate large-area multipixel devices with homogeneous pixel performance. We first fabricated and characterized a 100 x 100 mu m(2) 16-pixel detector and showed there was little variation among individual pixels. Additionally, to showcase the power of our platform, we fabricated and characterized 4-pixel multimode fiber-coupled detectors and carried out photon-correlation experiments on a nanowire quantum dot resulting in g(2) (0) values lower than 0.04. The multipixel detectors alleviate the need for beamsplitters and can be used for higher order correlations with promising prospects not only in the field of quantum optics, but also in bioimaging applications, such as fluorescence microscopy and positron emission tomography.
  •  
2.
  • Esmaeil Zadeh, Iman, et al. (author)
  • Superconducting nanowire single-photon detectors : A perspective on evolution, state-of-the-art, future developments, and applications
  • 2021
  • In: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 118:19
  • Journal article (peer-reviewed)abstract
    • Two decades after their demonstration, superconducting nanowire single-photon detectors (SNSPDs) have become indispensable tools for quantum photonics as well as for many other photon-starved applications. This invention has not only led to a burgeoning academic field with a wide range of applications but also triggered industrial efforts. Current state-of-the-art SNSPDs combine near-unity detection efficiency over a wide spectral range, low dark counts, short dead times, and picosecond time resolution. The present perspective discusses important milestones and progress of SNSPDs research, emerging applications, and future challenges and gives an outlook on technological developments required to bring SNSPDs to the next level: a photon-counting, fast time-tagging imaging, and multi-pixel technology that is also compatible with quantum photonic integrated circuits.
  •  
3.
  • Gourgues, Ronan, et al. (author)
  • Controlled integration of selected detectors and emitters in photonic integrated circuits
  • 2019
  • In: Optics Express. - : OPTICAL SOC AMER. - 1094-4087. ; 27:3, s. 3710-3716
  • Journal article (peer-reviewed)abstract
    • Integration of superconducting nanowire single-photon detectors and quantum sources with photonic waveguides is crucial for realizing advanced quantum integrated circuits. However, scalability is hindered by stringent requirements on high-performance detectors. Here we overcome the yield limitation by controlled coupling of photonic channels to pre-selected detectors based on measuring critical current, timing resolution, and detection efficiency. As a proof of concept of our approach, we demonstrate a hybrid on-chip full-transceiver consisting of a deterministically integrated detector coupled to a selected nanowire quantum dot through a filtering circuit made of a silicon nitride waveguide and a ring resonator filter, delivering 100 dB suppression of the excitation laser. In addition, we perform extensive testing of the detectors before and after integration in the photonic circuit and show that the high performance of the superconducting nanowire detectors, including timing jitter down to 23 +/- 3 ps, is maintained. Our approach is fully compatible with wafer-level automated testing in a cleanroom environment. 
  •  
4.
  • Chang, Jin, et al. (author)
  • Efficient mid-infrared single-photon detection using superconducting NbTiN nanowires with high time resolution in a Gifford-McMahon cryocooler
  • 2022
  • In: Photonics Research. - : Optica Publishing Group. - 2327-9125. ; 10:4, s. 1063-1070
  • Journal article (peer-reviewed)abstract
    • Shortly after their inception, superconducting nanowire single-photon detectors (SNSPDs) became the leading quantum light detection technology. With the capability of detecting single-photons with near-unity efficiency, high time resolution, low dark count rate, and fast recovery time, SNSPDs outperform conventional single-photon detection techniques. However, detecting lower energy single photons (<0.8 eV) with high efficiency and low timing jitter has remained a challenge. To achieve unity internal efficiency at mid-infrared wavelengths, previous works used amorphous superconducting materials with low energy gaps at the expense of reduced time resolution (close to a nanosecond), and by operating them in complex milliKelvin (mK) dilution refrigerators. In this work, we provide an alternative approach with SNSPDs fabricated from 5 to 9.5 nm thick NbTiN superconducting films and devices operated in conventional Gifford-McMahon cryocoolers. By optimizing the superconducting film deposition process, film thickness, and nanowire design, our fiber-coupled devices achieved >70% system detection efficiency (SDE) at 2 mu m and sub-15 ps timing jitter. Furthermore, detectors from the same batch demonstrated unity internal detection efficiency at 3 mu m and 80% internal efficiency at 4 mu m, paving the road for an efficient mid-infrared single-photon detection technology with unparalleled time resolution and without mK cooling requirements. We also systematically studied the dark count rates (DCRs) of our detectors coupled to different types of mid-infrared optical fibers and blackbody radiation filters. This offers insight into the trade-off between bandwidth and DCRs for mid-infrared SNSPDs. To conclude, this paper significantly extends the working wavelength range for SNSPDs made from polycrystalline NbTiN to 1.5-4 mu m, and we expect quantum optics experiments and applications in the mid-infrared range to benefit from this far-reaching technology. Published by Chinese Laser Press under the terms of the Creative Commons Attribution 4.0 License.
  •  
5.
  • Gourgues, Ronan, et al. (author)
  • Superconducting nanowire single photon detectors operating at temperature from 4 to 7 K
  • 2019
  • In: Optics Express. - : OPTICAL SOC AMER. - 1094-4087. ; 27:17, s. 24601-24609
  • Journal article (peer-reviewed)abstract
    • We experimentally investigate the performance of NbTiN superconducting nanowire single photon detectors above the base temperature of a conventional Gifford-McMahon cryocooler (2.5 K). By tailoring design and thickness (8-13 nm) of the detectors, high performance, high operating temperature, single-photon detection from the visible to telecom wavelengths are demonstrated. At 4.3 K, a detection efficiency of 82 % at 785 nm wavelength and a timing jitter of 30 +/- 0.3 ps are achieved. In addition, for 1550 nm and similar operating temperature we measured a detection efficiency as high as 64 %. Finally, we show that at temperatures up to 7 K, unity internal efficiency is maintained for the visible spectrum. Our work is particularly important to allow for the large scale implementation of superconducting single photon detectors in combination with heat sources such as free-space optical windows, cryogenic electronics, microwave sources and active optical components for complex quantum optical experiments and bio-imaging.
  •  
6.
  • Zadeh, Iman Esmaeil, et al. (author)
  • Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution
  • 2017
  • In: APL PHOTONICS. - : AIP Publishing. - 2378-0967. ; 2:11
  • Journal article (peer-reviewed)abstract
    • Single-photon detection with high efficiency, high time resolution, low dark counts, and high photon detection rates is crucial for a wide range of optical measurements. Although efficient detectors have been reported before, combining all performance parameters in a single device remains a challenge. Here, we show a broadband NbTiN superconducting nanowire detector with an efficiency exceeding 92%, over 150 MHz photon detection rate, and a dark count rate below 130 Hz operated in a Gifford-McMahon cryostat. Furthermore, with careful optimization of the detector design and readout electronics, we reach an ultra-low system timing jitter of 14.80 ps (13.95 ps decoupled) while maintaining high detection efficiencies (>75%).
  •  
7.
  • Zichi, Julien, et al. (author)
  • NbxTi1-xN low timing jitter single-photon detectors with unity internal detection efficiency at 1550 nm
  • Other publication (other academic/artistic)abstract
    • The requirements in quantum optics experiments for high single photon detectionefficiency, low timing jitter, low dark count rate and short dead time have been fulfilled withthe development of superconducting nanowire single photon detectors. Although they offer adetection efficiency above 90%, achieving a high time resolution in devices made ofamorphous materials is a challenge, particularly at temperatures above 0.8 K. Devices madefrom niobium nitride and niobium titanium nitride allow to reach the best timing jitter, but inturn have stronger requirements in terms of film quality to achieve a high efficiency. Here wetake advantage of the flexibility of reactive co-sputter deposition to tailor the composition ofNbxTi1-xN superconducting films, and show that a Nb fraction of x = 0.62 allows for thefabrication of detectors from films as thick as 9 nm and covering an active area of 20 μm,with a wide detection saturation plateau at telecom wavelengths and in particular at 1550 nm.This is a signature of an internal detection efficiency saturation, achieved while maintainingthe high time resolution associated with NbTiN and operation at 2.5K. With our optimizedrecipe, we reliably fabricated detectors with high critical current densities reaching asaturation plateau at 1550 nm with 80% system detection efficiency, and with a FWHMtiming jitter as low as 19.47 ps.
  •  
8.
  • Zichi, Julien, et al. (author)
  • Optimizing the stoichiometry of ultrathin NbTiN films for high-performance superconducting nanowire single-photon detectors
  • 2019
  • In: Optics Express. - : OPTICAL SOC AMER. - 1094-4087. ; 27:19, s. 26579-26587
  • Journal article (peer-reviewed)abstract
    • The requirements in quantum optics experiments for high single-photon detection efficiency. low timing jitter, low dark count rate and short dead time have been fulfilled with the development of superconducting nanowire single-photon detectors. Although they offer a detection efficiency above 90%, achieving a high time resolution in devices made of amorphous materials is a challenge, particularly at temperatures above 0.8 K. Devices made from niobium nitride and niobium titanium nitride allow us to reach the best timing jitter but. in turn, have stronger requirements in terms of film quality to achieve a high efficiency. Here we take advantage of the flexibility of reactive co-sputter deposition to tailor the composition of NbxTi1-xN superconducting films and show that a Nb fraction of x = 0.62 allows for the fabrication of detectors from films as thick as 9 nm and covering an active area of 20 mu m. with a wide detection saturation plateau at telecom wavelengths and in particular at 1550 nm. This is a signature of an internal detection efficiency saturation, achieved while maintaining the high time resolution associated with NbTiN and operation at 2.5K. With our optimized recipe, we reliably fabricated detectors with high critical current densities reaching a saturation plateau at 1550 nm with 80% system detection efficiency and with a FWHM timing jitter as low as 19.5 ps. Open Access Publishing Agreement
  •  
9.
  • Chang, Jin, et al. (author)
  • Multimode-fiber-coupled superconducting nanowire single-photon detectors with high detection efficiency and time resolution
  • 2019
  • In: Applied Optics. - : Optical Society of America. - 1559-128X .- 2155-3165. ; 58:36, s. 9803-9807
  • Journal article (peer-reviewed)abstract
    • In the past decade, superconducting nanowire single-photon detectors (SNSPDs) have gradually become an indispensable part of any demanding quantum optics experiment. Until now, most SNSPDs have been coupled to single-mode fibers. SNSPDs coupled to multimode fibers have shown promising efficiencies but have yet to achieve high time resolution. For a number of applications ranging from quantum nano-photonics to bio-optics, high efficiency and high time resolution are desired at the same time. In this paper, we demonstrate the role of polarization on the efficiency of multimode-fiber-coupled detectors and fabricated high-performance 20 mu m, 25 mu m, and 50 mu m diameter detectors targeted for visible, near-infrared, and telecom wavelengths. A custom-built setup was used to simulate realistic experiments with randomized modes in the fiber. We achieved over 80% system efficiency and <20 ps timing jitter for 20 mu m SNSPDs. Also, we realized 70% system efficiency and <20 ps timing jitter for 50 mu m SNSPDs. The high-efficiency multimode-fiber-coupled SNSPDs with unparalleled time resolution will benefit various quantum optics experiments and applications in the future.
  •  
10.
  • Wengerowsky, Soeren, et al. (author)
  • Entanglement distribution over a 96-km-long submarine optical fiber
  • 2019
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 116:14, s. 6684-6688
  • Journal article (peer-reviewed)abstract
    • Quantum entanglement is one of the most extraordinary effects in quantum physics, with many applications in the emerging field of quantum information science. In particular, it provides the foundation for quantum key distribution (QKD), which promises a conceptual leap in information security. Entanglement-based QKD holds great promise for future applications owing to the possibility of device-independent security and the potential of establishing global-scale quantum repeater networks. While other approaches to QKD have already reached the level of maturity required for operation in absence of typical laboratory infrastructure, comparable field demonstrations of entanglement-based QKD have not been performed so far. Here, we report on the successful distribution of polarization-entangled photon pairs between Malta and Sicily over 96 km of submarine optical telecommunications fiber. We observe around 257 photon pairs per second, with a polarization visibility above 90%. Our results show that QKD based on polarization entanglement is now indeed viable in long-distance fiber links. This field demonstration marks the longest-distance distribution of entanglement in a deployed telecommunications network and demonstrates an international submarine quantum communication channel. This opens up myriad possibilities for future experiments and technological applications using existing infrastructure.
  •  
11.
  • Wengerowsky, Soeren, et al. (author)
  • Passively stable distribution of polarisation entanglement over 192 km of deployed optical fibre
  • 2020
  • In: NPJ QUANTUM INFORMATION. - : NATURE PUBLISHING GROUP. - 2056-6387. ; 6:1
  • Journal article (peer-reviewed)abstract
    • Quantum key distribution (QKD) based on entangled photon pairs holds the potential for repeater-based quantum networks connecting clients over long distance. We demonstrate long-distance entanglement distribution by means of polarisation-entangled photon pairs through two successive deployed 96 km-long telecommunications fibres in the same submarine cable. One photon of each pair was detected directly after the source, while the other travelled the fibre cable in both directions for a total distance of 192 km and attenuation of 48 dB. The observed two-photon Bell state exhibited a fidelity 85 +/- 2% and was stable over several hours. We employed neither active stabilisation of the quantum state nor chromatic dispersion compensation for the fibre.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-11 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view