SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Luo Xiyu) "

Search: WFRF:(Luo Xiyu)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Karlsson, Max, et al. (author)
  • Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes
  • 2021
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Bright and efficient blue emission is key to further development of metal halide perovskite light-emitting diodes. Although modifying bromide/chloride composition is straightforward to achieve blue emission, practical implementation of this strategy has been challenging due to poor colour stability and severe photoluminescence quenching. Both detrimental effects become increasingly prominent in perovskites with the high chloride content needed to produce blue emission. Here, we solve these critical challenges in mixed halide perovskites and demonstrate spectrally stable blue perovskite light-emitting diodes over a wide range of emission wavelengths from 490 to 451 nanometres. The emission colour is directly tuned by modifying the halide composition. Particularly, our blue and deep-blue light-emitting diodes based on three-dimensional perovskites show high EQE values of 11.0% and 5.5% with emission peaks at 477 and 467 nm, respectively. These achievements are enabled by a vapour-assisted crystallization technique, which largely mitigates local compositional heterogeneity and ion migration.
  •  
2.
  • Karlsson, Max, et al. (author)
  • Role of chloride on the instability of blue emitting mixed-halide perovskites
  • 2023
  • In: FRONTIERS OF OPTOELECTRONICS. - : HIGHER EDUCATION PRESS. - 2095-2759. ; 16:1
  • Journal article (peer-reviewed)abstract
    • Although perovskite light-emitting diodes (PeLEDs) have seen unprecedented development in device efficiency over the past decade, they suffer significantly from poor operational stability. This is especially true for blue PeLEDs, whose operational lifetime remains orders of magnitude behind their green and red counterparts. Here, we systematically investigate this efficiency-stability discrepancy in a series of green- to blue-emitting PeLEDs based on mixed Br/Cl-perovskites. We find that chloride incorporation, while having only a limited impact on efficiency, detrimentally affects device stability even in small amounts. Device lifetime drops exponentially with increasing Cl-content, accompanied by an increased rate of change in electrical properties during operation. We ascribe this phenomenon to an increased mobility of halogen ions in the mixed-halide lattice due to an increased chemically and structurally disordered landscape with reduced migration barriers. Our results indicate that the stability enhancement for PeLEDs might require different strategies from those used for improving efficiency.
  •  
3.
  • Li, Daobin, et al. (author)
  • Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution
  • 2019
  • In: Nature Energy. - : Nature Publishing Group. - 2058-7546. ; 4:6, s. 512-518
  • Journal article (peer-reviewed)abstract
    • Dispersing catalytically active metals as single atoms on supports represents the ultimate in metal utilization efficiency and is increasingly being used as a strategy to design hydrogen evolution reaction (HER) electrocatalysts. Although platinum (Pt) is highly active for HER, given its high cost it is desirable to find ways to improve performance further while minimizing the Pt loading. Here, we use onion-like nanospheres of carbon (OLC) to anchor stable atomically dispersed Pt to act as a catalyst (Pt-1/OLC) for the HER. In acidic media, the performance of the Pt-1/OLC catalyst (0.27 wt% Pt) in terms of a low overpotential (38 mV at 10 mA cm(-2)) and high turnover frequencies (40.78 H-2 s(-1) at 100 mV) is better than that of a graphene-supported single-atom catalyst with a similar Pt loading, and comparable to a commercial Pt/C catalyst with 20 wt% Pt. First-principle calculations suggest that a tip-enhanced local electric field at the Pt site on the curved support promotes the reaction kinetics for hydrogen evolution.
  •  
4.
  • Li, Xiyu, et al. (author)
  • On the Mechanism for the Extremely Efficient Sensitization of Yb3+ Luminescence in CsPbCl3 Nanocrystals
  • 2019
  • In: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 10:3, s. 487-492
  • Journal article (peer-reviewed)abstract
    • Rare earth ion (RE3+)-doped inorganic CsPbX3 (X = Cl or Cl/Br) nanocrystals have been presented as promising materials for applications in solar-energy conversion technology. An extremely efficient sensitization of Yb3+ luminescence in CsPbCl3 nanoparticles (NCs) was very recently demonstrated where quantum cutting is responsible for the performance of photoluminescence quantum yields over 100% (T. J. Milstein, et al. Nano Letters 2018, 18, 3792). In the present work, based on the cubic phase of inorganic perovskite, we seek to obtain atom-level insight into the basic mechanisms behind these observations in order to boost the further development of RE3+-doped CsPbX3 NCs for optoelectronics. In our calculations of cubic crystal structure, we do not find any energy level formed in the middle of the band gap, which disfavors a mechanism of stepwise energy transfer from the perovskite host to two Yb3+ ions. Our work indicates that the configuration with "right-angle" Yb3+-V-Pb-Yb3+ couple is most likely to form in Yb3+-doped CsPbCl3. Associated with this "right-angle" couple, the "right-angle" Pb atom with trapped excited states would localize the photogenerated electrons and act as the energy donor in a quantum cutting process, which achieves simultaneous sensitization of two neighboring Yb3+ ions.
  •  
5.
  • Luo, Xiyu, et al. (author)
  • Effects of local compositional heterogeneity in mixed halide perovskites on blue electroluminescence
  • 2024
  • In: Matter. - 2590-2393. ; 7:3, s. 1054-1070
  • Journal article (peer-reviewed)abstract
    • Compositional heterogeneity is commonly observed in mixed bromide/iodide perovskite photoabsorbers, typically with minimal effects on charge carrier recombination and photovoltaic performance. Consistently, it has so far received very limited attention in bromide/chloride-mixed perovskites, which hold particular significance for blue light-emitting diodes. Here, we uncover that even a minor degree of localized halide heterogeneity leads to severe non-radiative losses in mixed bromide/chloride blue perovskite emitters, presenting a stark contrast to general observations in photovoltaics. We not only provide a visualization of the heterogeneity landscape spanning from micro-to sub-microscale but also identify that this issue mainly arises from the initially formed chloride-rich clusters during perovskite nucleation. Our work sheds light on a long-term neglected factor impeding the advancement of blue light-emitting diodes using mixed halide perovskites and provides a practical strategy to mitigate this issue.
  •  
6.
  • Zhao, Haifeng, et al. (author)
  • High-Brightness Perovskite Light-Emitting Diodes Based on FAPbBr(3) Nanocrystals with Rationally Designed Aromatic Ligands
  • 2021
  • In: ACS Energy Letters. - : AMER CHEMICAL SOC. - 2380-8195. ; 6:7, s. 2395-2403
  • Journal article (peer-reviewed)abstract
    • Despite rapid developments of light-emitting diodes (LEDs) based on emerging perovskite nanocrystals (PeNCs), it remains challenging to achieve devices with integrated high efficiencies and high brightness because of the insulating long-chain ligands used for the PeNCs. Herein, we develop highly luminescent and stable formamidinium lead bromide PeNCs capped with rationally designed short aromatic ligands of 2-naphthalenesulfonic acid (NSA) for LEDs. Compared with commonly used oleic acid ligands, the NSA molecules not only preserve the surface properties of the PeNCs during the purification but also notably improve the electrical properties of the assembled emissive layers, ensuring efficient charge injection/transport in the devices. The resulting champion LED with electroluminescence approaching the Rec. 2020 green primary color demonstrates a high brightness of 67 115 cd cm(-2) and a peak external quantum efficiency of 19.2%. More impressively, the device shows negligibly decreased efficiency at an elevated brightness of 20 000 cd cm(-2) and a well-retained efficiency of over 10% at around 65 000 cd cm(-2), presenting a breakthrough in LEDs based on PeNCs.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view