SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Maity J. P.) "

Search: WFRF:(Maity J. P.)

  • Result 1-17 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aad, G, et al. (author)
  • 2015
  • swepub:Mat__t
  •  
2.
  • Schael, S, et al. (author)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • In: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Research review (peer-reviewed)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
3.
  • Tabiri, S, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
4.
  • Bravo, L, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
5.
  • Khatri, C, et al. (author)
  • Outcomes after perioperative SARS-CoV-2 infection in patients with proximal femoral fractures: an international cohort study
  • 2021
  • In: BMJ open. - : BMJ. - 2044-6055. ; 11:11, s. e050830-
  • Journal article (peer-reviewed)abstract
    • Studies have demonstrated high rates of mortality in people with proximal femoral fracture and SARS-CoV-2, but there is limited published data on the factors that influence mortality for clinicians to make informed treatment decisions. This study aims to report the 30-day mortality associated with perioperative infection of patients undergoing surgery for proximal femoral fractures and to examine the factors that influence mortality in a multivariate analysis.SettingProspective, international, multicentre, observational cohort study.ParticipantsPatients undergoing any operation for a proximal femoral fracture from 1 February to 30 April 2020 and with perioperative SARS-CoV-2 infection (either 7 days prior or 30-day postoperative).Primary outcome30-day mortality. Multivariate modelling was performed to identify factors associated with 30-day mortality.ResultsThis study reports included 1063 patients from 174 hospitals in 19 countries. Overall 30-day mortality was 29.4% (313/1063). In an adjusted model, 30-day mortality was associated with male gender (OR 2.29, 95% CI 1.68 to 3.13, p<0.001), age >80 years (OR 1.60, 95% CI 1.1 to 2.31, p=0.013), preoperative diagnosis of dementia (OR 1.57, 95% CI 1.15 to 2.16, p=0.005), kidney disease (OR 1.73, 95% CI 1.18 to 2.55, p=0.005) and congestive heart failure (OR 1.62, 95% CI 1.06 to 2.48, p=0.025). Mortality at 30 days was lower in patients with a preoperative diagnosis of SARS-CoV-2 (OR 0.6, 95% CI 0.6 (0.42 to 0.85), p=0.004). There was no difference in mortality in patients with an increase to delay in surgery (p=0.220) or type of anaesthetic given (p=0.787).ConclusionsPatients undergoing surgery for a proximal femoral fracture with a perioperative infection of SARS-CoV-2 have a high rate of mortality. This study would support the need for providing these patients with individualised medical and anaesthetic care, including medical optimisation before theatre. Careful preoperative counselling is needed for those with a proximal femoral fracture and SARS-CoV-2, especially those in the highest risk groups.Trial registration numberNCT04323644
  •  
6.
  • Abazov, V. M., et al. (author)
  • The upgraded DO detector
  • 2006
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 565:2, s. 463-537
  • Journal article (peer-reviewed)abstract
    • The DO experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid -argon calorimeters and central muon detector, remaining from Run 1, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to DO.
  •  
7.
  • 2019
  • Journal article (peer-reviewed)
  •  
8.
  • Bundschuh, Jochen, et al. (author)
  • Naturally occurring arsenic in terrestrial geothermal systems of western Anatolia, Turkey : Potential role in contamination of freshwater resources
  • 2013
  • In: Journal of Hazardous Materials. - : Elsevier BV. - 0304-3894 .- 1873-3336. ; 262, s. 951-959
  • Journal article (peer-reviewed)abstract
    • Arsenic (As) contamination in terrestrial geothermal systems has been identified in many countries worldwide. Concentrations higher than 0.01mg/L are detrimental to human health. We examined potential consequences for As contamination of freshwater resources based on hydrogeochemical investigations of geothermal waters in deep wells and hot springs collected from western Anatolia, Turkey. We analyzed samples for major ions and trace element concentrations. Temperature of geothermal waters in deep wells showed extreme ranges (40 and 230°C), while, temperature of hot spring fluids was up to 90°C. The Piper plot illustrated two dominant water types: Na-HCO3 - type for geothermal waters in deep wells and Ca-HCO3 - type for hot spring fluids. Arsenic concentration ranged from 0.03 to 1.5mg/L. Dominance of reduced As species, i.e., As(III), was observed in our samples. The Eh value ranged between -250 and 119mV, which suggests diverse geochemical conditions. Some of the measured trace elements were found above the World Health Organization guidelines and Turkish national safe drinking water limits. The variation in pH (range: 6.4-9.3) and As in geothermal waters suggest mixing with groundwater. Mixing of geothermal waters is primarily responsible for contamination of freshwater resources and making them unsuitable for drinking or irrigation.
  •  
9.
  • Quino Lima, Israel, Doctoral student, 1980-, et al. (author)
  • Hydrogeochemical contrasts in the shallow aquifer systems of the Lower Katari Basin and Southern Poopó Basin, Bolivian Altiplano
  • 2021
  • In: Journal of South American Earth Sciences. - : Elsevier BV. - 0895-9811 .- 1873-0647. ; 105
  • Journal article (peer-reviewed)abstract
    • Drinking water sources in the southeastern part of Lake Titicaca (Lower Katari Basin: LKB) and the southern part of Lake Poopó (Southern Poopó Basin: SPB) have high concentrations of arsenic (As), >10 μg/L compared to the WHO and NB-512 guideline value. These regions belong to the Bolivian Altiplano and are characterized by a semiarid climate, slow hydrological flow, with geological formations of volcanic origin, in addition to brines and other mineral deposits. The present study is focused on comparing the geochemical processes of As in relation to the sources and mobilization in groundwater (GW) in LKB and SPB. Groundwater (GW), surface water (SW) and sediment samples were collected from both basins. The As (LKB: 0.8–288 μg/L and SPB: 2.6–207 μg/L), boron (B) (LKB: 96–2473 μg/L and SPB: 507–4359 μg/L), manganese (Mn) (LKB: 0.6–7259 μg/L) and salinity (LKB: 125–11740 μS/cm) were found to be higher than the WHO guideline values, which is a serious concern about the GW quality for human consumption. The dissolution and exchange of bases are the processes that govern the mineralization of GW. Load of solids and liquids of anthropogenic origin in surface water (LKB) represents an environmental problem for communities on river banks. The spatial distribution of As was attributed to the geology of both the basins and the heterogeneously distributed evaporites in the sediments. The highest As concentrations are found in alluvial sediments of the northern region of LKB and “PACK belt” (an approximately 25 km long belt stretching along the southern shores of the Lake Poopó, between the villages of Pampa Aullagas and Condo K) in SPB. Sequential extraction of sediment and mineral saturation indices indicate that iron (Fe) and aluminum (Al) oxides as well as hydroxides are the most predominant mineral phases as potential sorbents of As.
  •  
10.
  •  
11.
  • Maity, J. P., et al. (author)
  • Advanced application of nano-technological and biological processes as well as mitigation options for arsenic removal
  • 2021
  • In: Journal of Hazardous Materials. - : Elsevier BV. - 0304-3894 .- 1873-3336. ; 405
  • Journal article (peer-reviewed)abstract
    • Arsenic (As) removal is a huge challenge, since several million people are potentially exposed (>10 μg/L World Health Organization guideline limit) through As contaminated drinking water worldwide. Review attempts to address the present situation of As removal, considering key topics on nano-technological and biological process and current progress and future perspectives of possible mitigation options have been evaluated. Different physical, chemical and biological methods are available to remove As from contaminated water/soil/wastes, where removal efficiency mainly depends on absorbent type, initial adsorbate concentration, speciation and interfering species. Oxidation is an important pretreatment step in As removal, which is generally achieved by several media such as O2/O3, HClO, KMnO4 and H2O2. The Fe-based-nanomaterials (α/β/γ-FeOOH, Fe2O3/Fe3O4–γ-Fe2O3), Fe-based-composite-compounds, activated-Al2O3, HFO, Fe-Al2O3, Fe2O3-impregnated-graphene-aerogel, iron-doped-TiO2, aerogel-based- CeTiO2, and iron-oxide-coated-manganese are effective to remove As from contaminated water. Biological processes (phytoremediation/microbiological) are effective and ecofriendly for As removal from water and/or soil environment. Microorganisms remove As from water, sediments and soil by metabolism, detoxification, oxidation-reduction, bio-adsorption, bio-precipitation, and volatilization processes. Ecofriendly As mitigation options can be achieved by utilizing an alternative As-safe-aquifer, surface-water or rainwater-harvesting. Application of hybrid (biological with chemical and physical process) and Best-Available-Technologies (BAT) can be the most effective As removal strategy to remediate As contaminated environments.
  •  
12.
  • Maity, J. P., et al. (author)
  • Hydrogeochemical reconnaissance of arsenic cycling and possible environmental risk in hydrothermal systems of Taiwan
  • 2017
  • In: Groundwater for Sustainable Development. - : Elsevier. - 2352-801X. ; 5, s. 1-13
  • Journal article (peer-reviewed)abstract
    • Hydrothermal activity creates geo-hydro-chemical interactions between hot water/fluid and the host rocks, which changes the hydro-chemical composition of the geothermal water/fluid and enriches trace elements. Existence of arsenic (As) is reported from different hydrothermal systems as well as several region in groundwater system at elevated concentration globally, compared to 10 μg/L WHO (World health Organization) guideline. The distribution of dissolved major and minor elements, including arsenic (As) was studied in hydrothermal systems of Taiwan. For the first time in Taiwan As(V) and As(III) species were researched from the three principal geological settings of Taiwan. Aim was to understand the cycling, fate and transport and potential impact of As on the surficial hydrological systems. Water samples were collected from sixteen hydrothermal springs of 3 different geological settings. Three groups of hydrothermal spring water samples could be distinguished: (i) strongly acidic (pH<3), sulfate-enriched waters of H-SO4-type (Yangmingshan, and Taipu, Beitou), (ii) slightly alkaline waters (pH: 8–8.95) (Jiben, Antung and Kung-Tzu-Ling), and (iii) circum-neutral waters (pH 6.47–7.41) of Na-HCO3/Na-Cl-HCO3-type (Wulai, Hongye, Rueisuei, Chung-Lun and Biolai). The waters are enriched with alkali and alkali earth metals compared to drinking water. Similarly, the water of most of the geothermal springs were found to be enriched with As (highest concentration at Beitou: 1.456 mg/L) with As(III) being the principal As species. Arsenic concentrations of hydrothermal spring waters in igneous rock terrains exhibit highest concentrations (0.69±0.71 mg/L) followed by those of sedimentary (0.16±0.14 mg/L) and metamorphic (0.06±0.02 mg/L) terrains. The discharged geothermal springs water contaminate the surface and groundwater (including drinking and irrigation water resources), where significant levels of arsenic and other toxic element have detected and hence being a significant risk for human health and environmental.
  •  
13.
  • Maity, J. P., et al. (author)
  • Investigation of arsenic contamination from geothermal water in different geological settings of Taiwan : Hydrogeochemical and microbial signatures
  • 2016
  • In: Arsenic Research and Global Sustainability - Proceedings of the 6th International Congress on Arsenic in the Environment, AS 2016. - : CRC Press/Balkema. - 9781138029415 ; , s. 84-85
  • Conference paper (peer-reviewed)abstract
    • The dissemination of dissolved elements, including arsenic (As(V)/As(III)) and microbial diversity was studied in hydrothermal systems of Taiwan considering three different principal geological settings such as Igneous rock terrains, Metamorphic terrains and Sedimentary terrains to understand the cycling, fate and transport and potential impact of As on hydrological systems. The results were indicated as strongly acidic (pH< 3), sulfate-enriched waters of H-SO4-type in igneous-sedimentary rock terrains, slightly alkaline waters (pH: 8–8.95) in metamorphic terrains, and circum-neutral waters (pH 6.47–7.41) of Na-HCO3/Na-Cl-HCO3-type in metamorphic-sedimentary terrains. The geothermal waters were enriched with As in igneous terrains (Beitou: 1.46 mg/L) as compared to sedimentary (0.16 ± 0.14 mg/L) or metamorphic (0.06 ± 0.02 mg/L) terrains. The 16S rRNA gene sequence of bacterial diversity indicates prevalence of mesophilic sulfur- and thiosulfate-oxidizing bacterium in Taipu (igneous rock terrains). The discharge from geothermal springs with significant levels of As and other toxic element contaminate the surface and groundwater of environment.
  •  
14.
  • Maity, J. P., et al. (author)
  • Removal of fluoride from water through bacterial-surfactin mediated novel hydroxyapatite nanoparticle and its efficiency assessment : Adsorption isotherm, adsorption kinetic and adsorption Thermodynamics
  • 2018
  • In: Environmental Nanotechnology, Monitoring and Management. - : Elsevier. - 2215-1532. ; 9, s. 18-28
  • Journal article (peer-reviewed)abstract
    • Fluoride contamination in water due to natural and anthropogenic activities has been documented as serious problems worldwide commanding a major threat to the environment. Present study focuses to synthesis bacterial-surfactin (Bacillus subtilis) mediated nano-hydroxyapatite (HAp), novel adsorbents for defluoridation. HAp particle size and morphology were controlled by varying temperature of 90–150 °C and pH of 7–11, respectively. The TEM and SEM micrographs reveal that the short-rod particle is observed 20–30 nm at 90 °C and pH 11. The ratio between the length (nm) and width (nm) of nanoparticle are decreased from 4.17 to 1.65 with increasing pH (7–11). The selected area diffraction (SAD) of particles are indicated uniform rod-like monocrystals. The XRD and FTIR observations were indicated the synthesized HAp nanoparticles were well-crystallized with purity phase and high quality. The study reflected that the fluoride removal from contaminated water by HAp was increased significantly (R2 = 99) with the increasing adsorbent concentration, temperature and time, with two-step adsorption process as the first portion a rapid adsorption occurs during first 90 min after which equilibrium is slowly achieved. The adsorption process is closer to Freundlich isotherm (R2 > 98) than to Langmuir isotherm (R2 ≈ 92), indicating HAp as a good adsorbent (n > 3). Above 97% of fluoride removal were noticed at a HAp dose of 0.06 g/10 mL. The adsorption kinetics more fit with pseudo-second-order (R2= 99) in compare to pseudo-first-order (R2 ≈ 91). The slope and intercept of Arrhenius equation indicated the activation/adsorption energy (Ea) of 3.199 kJ/mol and frequency factor (A) of 1.78 1/s. Adsorption thermodynamic parameters (free energy (ΔG < 0), enthalpy (ΔH > 0) and entropy (ΔS > 0)) indicates the spontaneous and endothermic reactions of the adsorption process. Thus, newly synthesized HAp nanoparticles exhibit as a good adsorbent for fluoride removal, theoretically and experimentally being applicable for environmental pollution control.
  •  
15.
  • Abu-Khader, M. M., et al. (author)
  • Radon in the groundwater in the Amman-Zarqa Basin and related environments in Jordan
  • 2018
  • In: Groundwater for Sustainable Development. - : Elsevier. - 2352-801X. ; 7, s. 73-81
  • Journal article (peer-reviewed)abstract
    • The occurrence of radon (222Rn) in environment (groundwater and indoor air) from geogenic sources is receiving an growing attention due to its adverse impact on human health worldwide including Jordan. Highlighting the current status of radon in Jordan, the present study of radon concentrations in ground waters in the Amman-Zarqa basin (AZB) was investigated. Groundwater samples were collected from fifteen wells located in three main areas of Ras Al-Ain, Al-Rsaifeh and Al-Hashemite. Radon concentration was measure using Liquid scintillation counting (LSC) Tri- Carb 3110 with discriminator and the highest values for radon concentration in water were observed in Al-Rsaifeh area and ranged from 4.52 up to 30.70 Bq/l with an average of 11.22 Bq/l, which were attributed to the decay of naturally distributed uranium in phosphate rock from Al-Rsaifeh mines. In Ras Al-Ain area, the radon concentration were noted ranged from 0.6 to 5.55 Bq/l with an average of 2.82 Bq/l, and also in Al-Hashemite area were ranged from 0.77 to 5.37 Bq/l with an average of 4.04 Bq/l. The overall average concentration of tested samples was 5.77 Bq/l and found within the acceptable international levels. Ground water samples of Ras Al-Ain area showed good quality as was tested of low salinity. It recorded the lowest average radon concentration of 2.82 Bq/l. Also, Radon indoor and building materials was reviewed. In conclusion, this study presented an urged need for developing national regulations and standards as well as awareness program concerning the radon status in Jordan.Elsevier B.V.
  •  
16.
  • Chen, C. -Y, et al. (author)
  • Occurrence of arsenic and related microbial signature of hydrothermal systems in Western Turkey
  • 2012
  • In: Understanding the Geological and Medical Interface of Arsenic, As 2012 - 4th International Congress: Arsenic in the Environment. - : CRC Press. - 9780415637633 ; , s. 486-488
  • Conference paper (peer-reviewed)abstract
    • The naturally occurring aqueous Arsenic (As) and other toxic elements are found around the world. The present study concentrates on arsenic concentrations, speciation and related microbial diversity in a hydrothermal system in Western Turkey. The surface temperatures of hot springs reach up to 90°C and deep well (reservoir) temperatures vary in the range of 40 to 230°C. The elements such as As, B, Br, Ba, Cr, Fe, Mn, V and Zn are found in high concentration in hydrothermal waters. Hydrogeochemically, Seferihisar hot spring exhibited a Na-Cl water type. On the other hand, Karahayit, Pamukkale, Emirfaki, Alaşehir and Sart exhibit a Ca-HCO 3 water type and Çitgöl exhibited a Na-HCO 3-SO 4 water type. The arsenic (As) concentrations in geothermal waters of Western Anatolia have been detected to range from 0.03 mg/L to 1.5 mg/L, including Buharkent (İnalti) (1.50 ± 0.005 mg/L), Kizildere (1.13 ± 0.005 mg/L), Eynal (0.71 ± 0.005 mg/L) and Sarayköy (0.06 ± 0.004 mg/L). Arsenic (III) is the dominant species in geothermal water of Western Anatolia. The 16S rRNA gene sequences of bacterial diversity show that the thermophilic, sulfur/thiosulfate-oxidizing bacterium (Thiobacter subterraneus) is present in Kula geothermal water and mesophilic sulfur- and thiosulfate-oxidizing Sulfurovum lithotrophicum bacterium occurs in Sarayköy geothermal spring. Also, Bacillus fumarioli, (a thermophilic, aerobic endospore forming bacterium growing on (NH 4) 2 SO 4, MgSO 4 and MnSO 4 at 50-55°C), Schlegelella thermodepolymerans and Methylocaldum szegediense are rich in geothermal water.
  •  
17.
  • Islam, A. B. M. R., et al. (author)
  • Arsenic mineral dissolution and possible mobilization in mineral-microbe-groundwater environment
  • 2013
  • In: Journal of Hazardous Materials. - : Elsevier BV. - 0304-3894 .- 1873-3336. ; 262, s. 989-996
  • Journal article (peer-reviewed)abstract
    • Arsenic (As) is widely distributed in the nature as ores or minerals. It has been attracted much attention for the global public health issue, especially for groundwater As contamination. The aim of this study was to elucidate the characteristics of microbes in groundwater where As-minerals were dissolved. An ex situ experiment was conducted with 7 standard As-minerals in bacteria-free groundwater and stored in experimental vessels for 1 year without supplementary nutrients. The pH (6.7-8.4) and EhS.H.E. (24-548mV) changed between initial (0 day) and final stages (365 days) of experiment. The dissolution of As was detected higher from arsenolite (4240±8.69mg/L) and native arsenic (4538±9.02mg/L), whereas moderately dissolved from orpiment (653±3.56mg/L) and realgar (319±2.56mg/L) in compare to arsenopyrite (85±1.25mg/L) and tennantite (3±0.06mg/L). Optical microscopic, scanning electron microscopic observations and flurometric enumeration revealed the abundance of As-resistant bacillus, coccus and filamentous types of microorganisms on the surface of most of As-mineral. 4'-6-Diamidino-2-phenylindole (DAPI)-stained epifluorescence micrograph confirmed the presence of DNA and carboxyfluorescein diacetate (CFDA) staining method revealed the enzymatically active bacteria on the surface of As-minerals such as in realgar (As4S4). Therefore, the microbes enable to survive and mobilize the As in groundwater by dissolution/bioweathering of As-minerals.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-17 of 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view