SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Majumdar Shubhankar) "

Search: WFRF:(Majumdar Shubhankar)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Borah, Jintu, et al. (author)
  • AiCareBreath : IoT Enabled Location Invariant Novel Unified Model for Predicting Air Pollutants to Avoid Related Respiratory Disease
  • 2024
  • In: IEEE Internet of Things Journal. - : IEEE. - 2327-4662. ; 11:8, s. 14625-14633
  • Journal article (peer-reviewed)abstract
    • This article presents a location-invariant air pollution prediction model with good geographic generalizability. The model uses a Light GBR as part of a machine-learning framework to capture the spatial identification of air contaminants. Given the dynamic nature of air pollution, the model also uses a Random Forest to capture temporal dependencies in the data. Our model uses a transfer learning strategy to deal with location variability. The algorithm can learn concentration patterns because it has been trained on a vast dataset of air quality measurements from various locations. The trained model is then improved using information from a particular target site, customizing it to the features of the target area. Experiments are carried out on a comprehensive dataset containing air pollution measurements from various places to assess the efficacy of the proposed model. The recommended method performs better than standard models at forecasting air pollution levels, proving its dependability in various geographical settings. An interpretability analysis is also performed to learn about the variables affecting air pollution levels. We identify the geographical patterns associated with high pollutant concentrations by visualizing the learned representations within the model, giving important information for environmental planning and mitigation methods. The observations show that the model outperforms state-of-the-art forecasting based on RNNs and transformer-based models. The suggested methodology for forecasting air contaminants has the potential to improve air quality management and aid in decision-making across numerous regions. This helps safeguard the environment and public health by creating more precise and dependable air pollution forecast systems. 
  •  
2.
  • Ghayvat, Hemant, et al. (author)
  • ReCognizing SUspect and PredictiNg ThE SpRead of Contagion Based on Mobile Phone LoCation DaTa (COUNTERACT) : A system of identifying COVID-19 infectious and hazardous sites, detecting disease outbreaks based on the internet of things, edge computing, and artificial intelligence
  • 2021
  • In: Sustainable cities and society. - : Elsevier. - 2210-6707. ; 69
  • Journal article (peer-reviewed)abstract
    • Human movement is a significant factor in extensive spatial-transmission models of contagious viruses. The proposed COUNTERACT system recognizes infectious sites by retrieving location data from a mobile phone device linked with a particular infected subject. The proposed approach is computing an incubation phase for the subject's infection, backpropagation through the subjects’ location data to investigate a location where the subject has been during the incubation period. Classifying to each such site as a contagious site, informing exposed suspects who have been to the contagious location, and seeking near real-time or real-time feedback from suspects to affirm, discard, or improve the recognition of the infectious site. This technique is based on the contraption to gather confirmed infected subject and possibly carrier suspect area location, correlating location for the incubation days. Security and privacy are a specific thing in the present research, and the system is used only through authentication and authorization. The proposed approach is for healthcare officials primarily. It is different from other existing systems where all the subjects have to install the application. The cell phone associated with the global positioning system (GPS) location data is collected from the COVID-19 subjects.
  •  
3.
  • Patel, Chirag, et al. (author)
  • DBGC : Dimension-Based Generic Convolution Block for Object Recognition
  • 2022
  • In: Sensors. - : MDPI. - 1424-8220. ; 22:5
  • Journal article (peer-reviewed)abstract
    • The object recognition concept is being widely used a result of increasing CCTV surveillance and the need for automatic object or activity detection from images or video. Increases in the use of various sensor networks have also raised the need of lightweight process frameworks. Much research has been carried out in this area, but the research scope is colossal as it deals with open-ended problems such as being able to achieve high accuracy in little time using lightweight process frameworks. Convolution Neural Networks and their variants are widely used in various computer vision activities, but most of the architectures of CNN are application-specific. There is always a need for generic architectures with better performance. This paper introduces the Dimension-Based Generic Convolution Block (DBGC), which can be used with any CNN to make the architecture generic and provide a dimension-wise selection of various height, width, and depth kernels. This single unit which uses the separable convolution concept provides multiple combinations using various dimension-based kernels. This single unit can be used for height-based, width-based, or depth-based dimensions; the same unit can even be used for height and width, width and depth, and depth and height dimensions. It can also be used for combinations involving all three dimensions of height, width, and depth. The main novelty of DBGC lies in the dimension selector block included in the proposed architecture. Proposed unoptimized kernel dimensions reduce FLOPs by around one third and also reduce the accuracy by around one half; semi-optimized kernel dimensions yield almost the same or higher accuracy with half the FLOPs of the original architecture, while optimized kernel dimensions provide 5 to 6% higher accuracy with around a 10 M reduction in FLOPs.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view