SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Masci Frank J.) "

Search: WFRF:(Masci Frank J.)

  • Result 1-50 of 61
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Kupfer, Thomas, et al. (author)
  • Year 1 of the ZTF high-cadence Galactic plane survey : strategy, goals, and early results on new single-mode hot subdwarf B-star pulsatos
  • 2021
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 505:1, s. 1254-1267
  • Journal article (peer-reviewed)abstract
    • We present the goals, strategy, and first results of the high-cadence Galactic plane survey using the Zwicky Transient Facility (ZTF). The goal of the survey is to unveil the Galactic population of short-period variable stars, including short-period binaries, and stellar pulsators with periods less than a few hours. Between 2018 June and 2019 January, we observed 64 ZTF fields resulting in 2990 deg2 of high stellar density in the ZTF-r band along the Galactic plane. Each field was observed continuously for 1.5 to 6 h with a cadence of 40 sec. Most fields have between 200 and 400 observations obtained over 2–3  continuous nights. As part of this survey, we extract a total of ≈230 million individual objects with at least 80 epochs obtained during the high-cadence Galactic plane survey reaching an average depth of ZTF–r ≈ 20.5 mag. For four selected fields with 2–10 million individual objects per field, we calculate different variability statistics and find that ≈1–2  per cent of the objects are astrophysically variable over the observed period. We present a progress report on recent discoveries, including a new class of compact pulsators, the first members of a new class of Roche lobe filling hot subdwarf binaries as well as new ultracompact double white dwarfs and flaring stars. Finally, we present a sample of 12 new single-mode hot subdwarf B-star pulsators with pulsation amplitudes between ZTF–r = 20–76 mmag and pulsation periods between P = 5.8–16 min with a strong cluster of systems with periods ≈6 min. All of the data have now been released in either ZTF Data Release 3 or Data Release 4.
  •  
3.
  • Hammerstein, Erica, et al. (author)
  • The Final Season Reimagined : 30 Tidal Disruption Events from the ZTF-I Survey
  • 2023
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 942:1
  • Journal article (peer-reviewed)abstract
    • Tidal disruption events (TDEs) offer a unique way to study dormant black holes. While the number of observed TDEs has grown thanks to the emergence of wide-field surveys in the past few decades, questions regarding the nature of the observed optical, UV, and X-ray emission remain. We present a uniformly selected sample of 30 spectroscopically classified TDEs from the Zwicky Transient Facility Phase I survey operations with follow-up Swift UV and X-ray observations. Through our investigation into correlations between light-curve properties, we recover a shallow positive correlation between the peak bolometric luminosity and decay timescales. We introduce a new spectroscopic class of TDE, TDE-featureless, which are characterized by featureless optical spectra. The new TDE-featureless class shows larger peak bolometric luminosities, peak blackbody temperatures, and peak blackbody radii. We examine the differences between the X-ray bright and X-ray faint populations of TDEs in this sample, finding that X-ray bright TDEs show higher peak blackbody luminosities than the X-ray faint subsample. This sample of optically selected TDEs is the largest sample of TDEs from a single survey yet, and the systematic discovery, classification, and follow-up of this sample allows for robust characterization of TDE properties, an important stepping stone looking forward toward the Rubin era.
  •  
4.
  • Jencson, Jacob E., et al. (author)
  • AT 2019qyl in NGC 300 : Internal Collisions in the Early Outflow from a Very Fast Nova in a Symbiotic Binary
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 920:2
  • Journal article (peer-reviewed)abstract
    • Nova eruptions, thermonuclear explosions on the surfaces of white dwarfs (WDs), are now recognized to be among the most common shock-powered astrophysical transients. We present the early discovery and rapid ultraviolet (UV), optical, and infrared (IR) temporal development of AT 2019qyl, a recent nova in the nearby Sculptor Group galaxy NGC 300. The light curve shows a rapid rise lasting ≲1 day, reaching a peak absolute magnitude of MV = −9.2 mag and a very fast decline, fading by 2 mag over 3.5 days. A steep dropoff in the light curves after 71 days and the rapid decline timescale suggest a low-mass ejection from a massive WD with MWD ≳ 1.2 M⊙. We present an unprecedented view of the early spectroscopic evolution of such an event. Three spectra prior to the peak reveal a complex, multicomponent outflow giving rise to internal collisions and shocks in the ejecta of an He/N-class nova. We identify a coincident IR-variable counterpart in the extensive preeruption coverage of the transient location and infer the presence of a symbiotic progenitor system with an O-rich asymptotic-giant-branch donor star, as well as evidence for an earlier UV-bright outburst in 2014. We suggest that AT 2019qyl is analogous to the subset of Galactic recurrent novae with red-giant companions such as RS Oph and other embedded nova systems like V407 Cyg. Our observations provide new evidence that internal shocks between multiple, distinct outflow components likely contribute to the generation of the shock-powered emission from such systems.
  •  
5.
  • Kasliwal, Mansi M., et al. (author)
  • Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 905:2
  • Journal article (peer-reviewed)abstract
    • We present a systematic search for optical counterparts to 13 gravitational wave (GW) triggers involving at least one neutron star during LIGO/Virgo's third observing run (O3). We searched binary neutron star (BNS) and neutron star black hole (NSBH) merger localizations with the Zwicky Transient Facility (ZTF) and undertook follow-up with the Global Relay of Observatories Watching Transients Happen (GROWTH) collaboration. The GW triggers had a median localization area of 4480 deg(2), a median distance of 267 Mpc, and false-alarm rates ranging from 1.5 to 10(-25) yr(-1). The ZTF coverage in the g and r bands had a median enclosed probability of 39%, median depth of 20.8 mag, and median time lag between merger and the start of observations of 1.5 hr. The O3 follow-up by the GROWTH team comprised 340 UltraViolet/Optical/InfraRed (UVOIR) photometric points, 64 OIR spectra, and three radio images using 17 different telescopes. We find no promising kilonovae (radioactivity-powered counterparts), and we show how to convert the upper limits to constrain the underlying kilonova luminosity function. Initially, we assume that all GW triggers are bona fide astrophysical events regardless of false-alarm rate and that kilonovae accompanying BNS and NSBH mergers are drawn from a common population; later, we relax these assumptions. Assuming that all kilonovae are at least as luminous as the discovery magnitude of GW170817 (-16.1 mag), we calculate that our joint probability of detecting zero kilonovae is only 4.2%. If we assume that all kilonovae are brighter than -16.6 mag (the extrapolated peak magnitude of GW170817) and fade at a rate of 1 mag day(-1) (similar to GW170817), the joint probability of zero detections is 7%. If we separate the NSBH and BNS populations based on the online classifications, the joint probability of zero detections, assuming all kilonovae are brighter than -16.6 mag, is 9.7% for NSBH and 7.9% for BNS mergers. Moreover, no more than <57% (<89%) of putative kilonovae could be brighter than -16.6 mag assuming flat evolution (fading by 1 mag day(-1)) at the 90% confidence level. If we further take into account the online terrestrial probability for each GW trigger, we find that no more than <68% of putative kilonovae could be brighter than -16.6 mag. Comparing to model grids, we find that some kilonovae must have M-ej M, X-lan > 10(-4), or > 30 degrees to be consistent with our limits. We look forward to searches in the fourth GW observing run; even 17 neutron star mergers with only 50% coverage to a depth of -16 mag would constrain the maximum fraction of bright kilonovae to <25%.
  •  
6.
  • Perley, Daniel A., et al. (author)
  • The Zwicky Transient Facility Bright Transient Survey. II. A Public Statistical Sample for Exploring Supernova Demographics
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 904:1
  • Journal article (peer-reviewed)abstract
    • We present a public catalog of transients from the Zwicky Transient Facility (ZTF) Bright Transient Survey, a magnitude-limited (m g or r filter) survey for extragalactic transients in the ZTF public stream. We introduce cuts on survey coverage, sky visibility around peak light, and other properties unconnected to the nature of the transient, and show that the resulting statistical sample is spectroscopically 97% complete at <18 mag, 93% complete at <18.5 mag, and 75% complete at <19 mag. We summarize the fundamental properties of this population, identifying distinct duration-luminosity correlations in a variety of supernova (SN) classes and associating the majority of fast optical transients with well-established spectroscopic SN types (primarily SN Ibn and II/IIb). We measure the Type Ia SN and core-collapse (CC) SN rates and luminosity functions, which show good consistency with recent work. About 7% of CC SNe explode in very low-luminosity galaxies (M-i > -16 mag), 10% in red-sequence galaxies, and 1% in massive ellipticals. We find no significant difference in the luminosity or color distributions between the host galaxies of SNe Type II and SNe Type Ib/c, suggesting that line-driven wind stripping does not play a major role in the loss of the hydrogen envelope from their progenitors. Future large-scale classification efforts with ZTF and other wide-area surveys will provide high-quality measurements of the rates, properties, and environments of all known types of optical transients and limits on the existence of theoretically predicted but as yet unobserved explosions.
  •  
7.
  • Soumagnac, Maayane T., et al. (author)
  • Early Ultraviolet Observations of Type IIn Supernovae Constrain the Asphericity of Their Circumstellar Material
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 899:1
  • Journal article (peer-reviewed)abstract
    • We present a survey of the early evolution of 12 Type IIn supernovae (SNe IIn) at ultraviolet and visible light wavelengths. We use this survey to constrain the geometry of the circumstellar material (CSM) surrounding SN IIn explosions, which may shed light on their progenitor diversity. In order to distinguish between aspherical and spherical CSM, we estimate the blackbody radius temporal evolution of the SNe IIn of our sample, following the method introduced by Soumagnac et al. We find that higher-luminosity objects tend to show evidence for aspherical CSM. Depending on whether this correlation is due to physical reasons or to some selection bias, we derive a lower limit between 35% and 66% for the fraction of SNe IIn showing evidence for aspherical CSM. This result suggests that asphericity of the CSM surrounding SNe IIn is common-consistent with data from resolved images of stars undergoing considerable mass loss. It should be taken into account for more realistic modeling of these events.
  •  
8.
  • Bruch, Rachel J., et al. (author)
  • A Large Fraction of Hydrogen-rich Supernova Progenitors Experience Elevated Mass Loss Shortly Prior to Explosion
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 912:1
  • Journal article (peer-reviewed)abstract
    • Spectroscopic detection of narrow emission lines traces the presence of circumstellar mass distributions around massive stars exploding as core-collapse supernovae. Transient emission lines disappearing shortly after the supernova explosion suggest that the material spatial extent is compact and implies an increased mass loss shortly prior to explosion. Here, we present a systematic survey for such transient emission lines (Flash Spectroscopy) among Type II supernovae detected in the first year of the Zwicky Transient Facility survey. We find that at least six out of ten events for which a spectrum was obtained within two days of the estimated explosion time show evidence for such transient flash lines. Our measured flash event fraction (>30% at 95% confidence level) indicates that elevated mass loss is a common process occurring in massive stars that are about to explode as supernovae.
  •  
9.
  • Bruch, Rachel J., et al. (author)
  • The Prevalence and Influence of Circumstellar Material around Hydrogen-rich Supernova Progenitors
  • 2023
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 952:2
  • Journal article (peer-reviewed)abstract
    • Narrow transient emission lines (flash-ionization features) in early supernova (SN) spectra trace the presence of circumstellar material (CSM) around the massive progenitor stars of core-collapse SNe. The lines disappear within days after the SN explosion, suggesting that this material is spatially confined, and originates from enhanced mass loss shortly (months to a few years) prior to the explosion. We performed a systematic survey of H-rich (Type II) SNe discovered within less than 2 days from the explosion during the first phase of the Zwicky Transient Facility survey (2018–2020), finding 30 events for which a first spectrum was obtained within <2 days from the explosion. The measured fraction of events showing flash-ionization features (>36% at the 95% confidence level) confirms that elevated mass loss in massive stars prior to SN explosion is common. We find that SNe II showing flash-ionization features are not significantly brighter, nor bluer, nor more slowly rising than those without. This implies that CSM interaction does not contribute significantly to their early continuum emission, and that the CSM is likely optically thin. We measured the persistence duration of flash-ionization emission and find that most SNe show flash features for ≈5 days. Rarer events, with persistence timescales >10 days, are brighter and rise longer, suggesting these may be intermediate between regular SNe II and strongly interacting SNe IIn.
  •  
10.
  • Coughlin, Michael W., et al. (author)
  • GROWTH on S190425z : Searching Thousands of Square Degrees to Identify an Optical or Infrared Counterpart to a Binary Neutron Star Merger with the Zwicky Transient Facility and Palomar Gattini-IR
  • 2019
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 885:1
  • Journal article (peer-reviewed)abstract
    • The third observing run by LVC has brought the discovery of many compact binary coalescences. Following the detection of the first binary neutron star merger in this run (LIGO/Virgo S190425z), we performed a dedicated follow-up campaign with the Zwicky Transient Facility (ZTF) and Palomar Gattini-IR telescopes. The initial skymap of this single-detector gravitational wave (GW) trigger spanned most of the sky observable from Palomar Observatory. Covering 8000 deg(2) of the initial skymap over the next two nights, corresponding to 46% integrated probability, ZTF system achieved a depth of 21 m(AB) in g- and r-bands. Palomar Gattini-IR covered 2200 square degrees in J-band to a depth of 15.5 mag, including 32% integrated probability based on the initial skymap. The revised skymap issued the following day reduced these numbers to 21% for the ZTF and 19% for Palomar Gattini-IR. We narrowed 338,646 ZTF transient ?alerts? over the first two nights of observations to 15 candidate counterparts. Two candidates, ZTF19aarykkb and ZTF19aarzaod, were particularly compelling given that their location, distance, and age were consistent with the GW event, and their early optical light curves were photometrically consistent with that of kilonovae. These two candidates were spectroscopically classified as young core-collapse supernovae. The remaining candidates were ruled out as supernovae. Palomar Gattini-IR did not identify any viable candidates with multiple detections only after merger time. We demonstrate that even with single-detector GW events localized to thousands of square degrees, systematic kilonova discovery is feasible.
  •  
11.
  • Ho, Anna Y. Q., et al. (author)
  • SN 2020bvc : A Broad-line Type Ic Supernova with a Double-peaked Optical Light Curve and a Luminous X-Ray and Radio Counterpart
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 902:1
  • Journal article (peer-reviewed)abstract
    • We present optical, radio, and X-ray observations of SN 2020bvc (=ASASSN-20bs, ZTF 20aalxlis), a nearby (z = 0.0252; d.=.114Mpc) broad-line (BL) Type Ic supernova (SN) and the first double-peaked Ic-BL discovered without a gamma-ray burst (GRB) trigger. Our observations show that SN 2020bvc shares several properties in common with the Ic-BL SN 2006aj, which was associated with the low-luminosity gamma-ray burst (LLGRB) 060218. First, the 10 GHz radio luminosity (L-radio approximate to 10(37) erg s(-1)) is brighter than ordinary core-collapse SNe but fainter than LLGRB SNe such as SN 1998bw (associated with LLGRB 980425). We model our VLA observations (spanning 13-43 days) as synchrotron emission from a mildly relativistic (v greater than or similar to 0.3c) forward shock. Second, with Swift and Chandra, we detect X-ray emission (L-X approximate to 10(41) erg s(-1)) that is not naturally explained as inverse Compton emission or part of the same synchrotron spectrum as the radio emission. Third, high-cadence (6x night(-1)) data from the Zwicky Transient Facility (ZTF) show a double-peaked optical light curve, the first peak from shock cooling of extended low-mass material (mass M-e < 10(-2) M-circle dot at radius R-e > 10(12) cm) and the second peak from the radioactive decay of 56Ni. SN 2020bvc is the first double-peaked Ic-BL SN discovered without a GRB trigger, so it is noteworthy that it shows X-ray and radio emission similar to LLGRB SNe. For four of the five other nearby (z less than or similar to 0.05) Ic-BL SNe with ZTF high-cadence data, we rule out a first peak like that seen in SN 2006aj and SN 2020bvc, i.e., that lasts approximate to 1 day.and reaches a peak luminosity M approximate to -18. Follow-up X-ray and radio observations of Ic-BL SNe with well-sampled early optical light curves will establish whether double-peaked optical light curves are indeed predictive of LLGRB-like X-ray and radio emission.
  •  
12.
  • Horesh, Assaf, et al. (author)
  • A Non-equipartition Shock Wave Traveling in a Dense Circumstellar Environment around SN 2020oi
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 903:2
  • Journal article (peer-reviewed)abstract
    • We report the discovery and panchromatic follow-up observations of the young Type Ic supernova (SN Ic) SN 2020oi in M100, a grand-design spiral galaxy at a mere distance of 14 Mpc. We followed up with observations at radio, X-ray, and optical wavelengths from only a few days to several months after explosion. The optical behavior of the supernova is similar to those of other normal SNe Ic. The event was not detected in the X-ray band but our radio observations revealed a bright mJy source (L-nu approximate to 1.2 x 10(27) erg s(-1) Hz(-1)). Given the relatively small number of stripped envelope SNe for which radio emission is detectable, we used this opportunity to perform a detailed analysis of the comprehensive radio data set we obtained. The radio-emitting electrons initially experience a phase of inverse Compton cooling, which leads to steepening of the spectral index of the radio emission. Our analysis of the cooling frequency points to a large deviation from equipartition at the level of epsilon(e)/epsilon(B) greater than or similar to 200, similar to a few other cases of stripped envelope SNe. Our modeling of the radio data suggests that the shock wave driven by the SN ejecta into the circumstellar matter (CSM) is moving at similar to 3 x 10(4) km s(-1). Assuming a constant mass loss from the stellar progenitor, we find that the mass-loss rate is (M)over dot approximate to 1.4 x 10(-4) M-circle dot yr(-1) for an assumed wind velocity of 1000 km s(-1). The temporal evolution of the radio emission suggests a radial CSM density structure steeper than the standard r(-2).
  •  
13.
  • Jencson, Jacob E., et al. (author)
  • Discovery of an Intermediate-luminosity Red Transient in M51 and Its Likely Dust-obscured, Infrared-variable Progenitor
  • 2019
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 880:2
  • Journal article (peer-reviewed)abstract
    • We present the discovery of an optical transient (OT) in Messier. 51, designated M51 OT2019-1 (also ZTF 19aadyppr, AT 2019abn, ATLAS19bz1), by the Zwicky Transient Facility (ZTF). The OT rose over 15. days to an observed luminosity of M-r = -13 (nu L-nu = 9 x 10(6) L-circle dot), in the luminosity gap between novae and typical supernovae (SNe). Spectra during the outburst show a red continuum, Balmer emission with a velocity width of approximate to 400 km s(-1), Ca II and [Ca II] emission, and absorption features characteristic of an F-type supergiant. The spectra and multiband light curves are similar to the so-called SN impostors and intermediate-luminosity red transients (ILRTs). We directly identify the likely progenitor in archival Spitzer Space Telescope imaging with a 4.5 mu m luminosity of M-[4.5] approximate to -12.2 mag and a [3.6]-[4.5] color redder than 0.74 mag, similar to those of the prototype ILRTs SN 2008S and NGC 300 OT2008-1. Intensive monitoring of M51 with Spitzer further reveals evidence for variability of the progenitor candidate at [ 4.5] in the years before the OT. The progenitor is not detected in pre-outburst Hubble Space Telescope optical and near-IR images. The optical colors during outburst combined with spectroscopic temperature constraints imply a higher reddening of E(B - V) approximate to 0.7 mag and higher intrinsic luminosity of M-r approximate to -14.9 mag (nu L-nu = 5.3 x 10(7) L-circle dot) near peak than seen in previous ILRT candidates. Moreover, the extinction estimate is higher on the rise than on the plateau, suggestive of an extended phase of circumstellar dust destruction. These results, enabled by the early discovery of M51. OT2019-1 and extensive pre-outburst archival coverage, offer new clues about the debated origins of ILRTs and may challenge the hypothesis that they arise from the electron-capture induced collapse of extreme asymptotic giant branch stars.
  •  
14.
  • Soumagnac, Maayane T., et al. (author)
  • SN 2018fif : The Explosion of a Large Red Supergiant Discovered in Its Infancy by the Zwicky Transient Facility
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 902:1
  • Journal article (peer-reviewed)abstract
    • High-cadence transient surveys are able to capture supernovae closer to their first light than ever before. Applying analytical models to such early emission, we can constrain the progenitor stars' properties. In this paper, we present observations of SN 2018fif (ZTF 18abokyfk). The supernova was discovered close to first light and monitored by the Zwicky Transient Facility (ZTF) and the Neil Gehrels Swift Observatory. Early spectroscopic observations suggest that the progenitor of SN 2018fif was surrounded by relatively small amounts of circumstellar material compared to all previous cases. This particularity, coupled with the high-cadence multiple-band coverage, makes it a good candidate to investigate using shock-cooling models. We employ the SOPRANOS code, an implementation of the model by Sapir & Waxman and its extension to early times by Morag et al. Compared with previous implementations, SOPRANOS has the advantage of including a careful account of the limited temporal validity domain of the shock-cooling model as well as allowing usage of the entirety of the early UV data. We find that the progenitor of SN 2018fif was a large red supergiant with a radius of R = 744.0(-128.0)(+183.0) R-circle dot and an ejected mass of M-ej = 9.3(-5.8)(+0.4) M-circle dot. Our model also gives information on the explosion epoch, the progenitor's inner structure, the shock velocity, and the extinction. The distribution of radii is double-peaked, with smaller radii corresponding to lower values of the extinction, earlier recombination times, and a better match to the early UV data. If these correlations persist in future objects, denser spectroscopic monitoring constraining the time of recombination, as well as accurate UV observations (e.g., with ULTRASAT), will help break the extinction/radius degeneracy and independently determine both.
  •  
15.
  • Stein, Robert, et al. (author)
  • A tidal disruption event coincident with a high-energy neutrino
  • 2021
  • In: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; :5, s. 510-518
  • Journal article (peer-reviewed)abstract
    • Cosmic neutrinos provide a unique window into the otherwise hidden mechanism of particle acceleration in astrophysical objects. The IceCube Collaboration recently reported the likely association of one high-energy neutrino with a flare from the relativistic jet of an active galaxy pointed towards the Earth. However a combined analysis of many similar active galaxies revealed no excess from the broader population, leaving the vast majority of the cosmic neutrino flux unexplained. Here we present the likely association of a radio-emitting tidal disruption event, AT2019dsg, with a second high-energy neutrino. AT2019dsg was identified as part of our systematic search for optical counterparts to high-energy neutrinos with the Zwicky Transient Facility. The probability of finding any coincident radio-emitting tidal disruption event by chance is 0.5%, while the probability of finding one as bright in bolometric energy flux as AT2019dsg is 0.2%. Our electromagnetic observations can be explained through a multizone model, with radio analysis revealing a central engine, embedded in a UV photosphere, that powers an extended synchrotron-emitting outflow. This provides an ideal site for petaelectronvolt neutrino production. Assuming that the association is genuine, our observations suggest that tidal disruption events with mildly relativistic outflows contribute to the cosmic neutrino flux. The tidal disruption event AT2019dsg is probably associated with a high-energy neutrino, suggesting that such events can contribute to the cosmic neutrino flux. The electromagnetic emission is explained in terms of a central engine, a photosphere and an extended synchrotron-emitting outflow.
  •  
16.
  • Szkody, Paula, et al. (author)
  • Cataclysmic Variables in the Second Year of the Zwicky Transient Facility
  • 2021
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 162:3
  • Journal article (peer-reviewed)abstract
    • Using a filter in the GROWTH Marshal based on color and the amplitude and timescale of variability, we have identified 372 objects as known or candidate cataclysmic variables (CVs) during the second year of the operation of the Zwicky Transient Facility. From the available difference imaging data, we found that 93 are previously confirmed CVs and 279 are strong candidates. Spectra of four of the candidates confirm them as CVs by the presence of Balmer emission lines, while one of the four has prominent He ii lines indicative of containing a magnetic white dwarf. Gaia EDR3 parallaxes are available for 154 of these systems, resulting in distances from 108–2096 pc and absolute magnitudes in the range of 7.5–15.0, with the largest number of candidates between 10.5 and 12.5. The total numbers are 21% higher than from the previous year of the survey with a greater number of distances available but a smaller percentage of systems close to the Galactic plane. Comparison of these findings with a machine-learning method of searching all the light curves reveals large differences in each data set related to the parameters involved in the search process.
  •  
17.
  • van Velzen, Sjoert, et al. (author)
  • Seventeen Tidal Disruption Events from the First Half of ZTF Survey Observations : Entering a New Era of Population Studies
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 908:1
  • Journal article (peer-reviewed)abstract
    • While tidal disruption events (TDEs) have long been heralded as laboratories for the study of quiescent black holes, the small number of known TDEs and uncertainties in their emission mechanism have hindered progress toward this promise. Here we present 17 new TDEs that have been detected recently by the Zwicky Transient Facility along with Swift UV and X-ray follow-up observations. Our homogeneous analysis of the optical/UV light curves, including 22 previously known TDEs from the literature, reveals a clean separation of light-curve properties with spectroscopic class. The TDEs with Bowen fluorescence features in their optical spectra have smaller blackbody radii, lower optical luminosities, and higher disruption rates compared to the rest of the sample. The small subset of TDEs that show only helium emission lines in their spectra have the longest rise times, the highest luminosities, and the lowest rates. A high detection rate of Bowen lines in TDEs with small photometric radii could be explained by the high density that is required for this fluorescence mechanism. The stellar debris can provide a source for this dense material. Diffusion of photons through this debris may explain why the rise and fade timescale of the TDEs in our sample are not correlated. We also report, for the first time, the detection of soft X-ray flares from a TDE on similar to day timescales. Based on the fact that the X-ray flares peak at a luminosity similar to the optical/UV blackbody luminosity, we attribute them to brief glimpses through a reprocessing layer that otherwise obscures the inner accretion flow.
  •  
18.
  • Yao, Yuhan, et al. (author)
  • Multi-wavelength Observations of AT2019wey : a New Candidate Black Hole Low-mass X-ray Binary
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 920:2
  • Journal article (peer-reviewed)abstract
    • AT2019wey (SRGA J043520.9+552226, SRGE J043523.3+552234) is a transient first reported by the ATLAS optical survey in 2019 December. It rose to prominence upon detection, three months later, by the Spektrum-Roentgen-Gamma (SRG) mission in its first all-sky survey. X-ray observations reported in Yao et al. suggest that AT2019wey is a Galactic low-mass X-ray binary (LMXB) with a black hole (BH) or neutron star (NS) accretor. Here we present ultraviolet, optical, near-infrared, and radio observations of this object. We show that the companion is a short-period (P ≲ 16 hr) low-mass (<1 M⊙) star. We consider AT2019wey to be a candidate BH system since its locations on the Lradio–LX and Lopt–LX diagrams are closer to BH binaries than NS binaries. We demonstrate that from 2020 June to August, despite the more than 10 times brightening at radio and X-ray wavelengths, the optical luminosity of AT2019wey only increased by 1.3–1.4 times. We interpret the UV/optical emission before the brightening as thermal emission from a truncated disk in a hot accretion flow and the UV/optical emission after the brightening as reprocessing of the X-ray emission in the outer accretion disk. AT2019wey demonstrates that combining current wide-field optical surveys and SRG provides a way to discover the emerging population of short-period BH LMXB systems with faint X-ray outbursts.
  •  
19.
  • Yao, Yuhan, et al. (author)
  • The Tidal Disruption Event AT2021ehb : Evidence of Relativistic Disk Reflection, and Rapid Evolution of the Disk-Corona System
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 937:1
  • Journal article (peer-reviewed)abstract
    • We present X-ray, UV, optical, and radio observations of the nearby (≈78 Mpc) tidal disruption event AT2021ehb/ZTF21aanxhjv during its first 430 days of evolution. AT2021ehb occurs in the nucleus of a galaxy hosting a≈107 M⊙ black hole (MBH inferred from host galaxy scaling relations). High-cadence Swift and Neutron Star Interior Composition Explorer (NICER) monitoring reveals a delayed X-ray brightening. The spectrum first undergoes a gradual soft → hard transition and then suddenly turns soft again within 3 days at δt≈272 days during which the X-ray flux drops by a factor of 10. In the joint NICER+NuSTAR observation (δt = 264 days, harder state), we observe a prominent nonthermal component up to 30 keV and an extremely broad emission line in the iron K band. The bolometric luminosity of AT2021ehb reaches a maximum of 6.0+10.4-3.8%LEdd when the X-ray spectrum is the hardest. During the dramatic X-ray evolution, no radio emission is detected, the UV/optical luminosity stays relatively constant, and the optical spectra are featureless. We propose the following interpretations: (i) the soft → hard transition may be caused by the gradual formation of a magnetically dominated corona; (ii) hard X-ray photons escape from the system along solid angles with low scattering optical depth (∼a few) whereas the UV/optical emission is likely generated by reprocessing materials with much larger column density—the system is highly aspherical; and (iii) the abrupt X-ray flux drop may be triggered by the thermal–viscous instability in the inner accretion flow, leading to a much thinner disk.
  •  
20.
  • Yao, Yuhan, et al. (author)
  • ZTF Early Observations of Type Ia Supernovae. I. Properties of the 2018 Sample
  • 2019
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 886:2
  • Journal article (peer-reviewed)abstract
    • Early-time observations of Type Ia supernovae (SNe Ia) are essential to constrain the properties of their progenitors. In this paper, we present high-quality light curves of 127 SNe Ia discovered by the Zwicky Transient Facility (ZTF) in 2018. We describe our method to perform forced point-spread function photometry, which can be applied to other types of extragalactic transients. With a planned cadence of six observations per night (three g + three r), all of the 127 SNe Ia are detected in both g and r bands more than 10 days (in the rest frame) prior to the epoch of g-band maximum light. The redshifts of these objects range from z = 0.0181 to 0.165; the median redshift is 0.074. Among the 127 SNe, 50 are detected at least 14 days prior to maximum light (in the rest frame), with a subset of nine objects being detected more than 17 days before g-band peak. This is the largest sample of young SNe Ia collected to date; it can be used to study the shape and color evolution of the rising light curves in unprecedented detail. We discuss six peculiar events in this sample: one 02cx-like event ZTF18abclfee (SN 2018crl), one Ia-CSM SN ZTF18aaykjei (SN 2018cxk), and four objects with possible super-Chandrasekhar mass progenitors: ZTF18abhpgje (SN 2018eul), ZTF18abdpvnd (SN 2018dvf), ZTF18aawpcel (SN 2018cir), and ZTF18abddmrf (SN 2018dsx).
  •  
21.
  • Ye, Quanzhi, et al. (author)
  • Toward Efficient Detection of Small Near-Earth Asteroids Using the Zwicky Transient Facility (ZTF)
  • 2019
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 131:1001
  • Journal article (peer-reviewed)abstract
    • We describe ZStreak, a semi-real-time pipeline specialized in detecting small, fast-moving, near-Earth asteroids (NEAs), which is currently operating on the data from the newly commissioned Zwicky Transient Facility (ZTF) survey. Based on a prototype originally developed by Waszczak et al. (2017) for the Palomar Transient Factory (PTF), the predecessor of ZTF, ZStreak features an improved machine-learning model that can cope with the 10x data rate increment between PTF and ZTF. Since its first discovery on 2018 February 5 (2018 CL), ZTF/ZStreak has discovered 45 confirmed new NEAs over a total of 232 observable nights until 2018 December 31. Most of the discoveries are small NEAs, with diameters less than similar to 100. m. By analyzing the discovery circumstances, we find that objects having the first to last detection time interval under 2. hr are at risk of being lost. We will further improve real-time follow-up capabilities, and work on suppressing false positives using deep learning.
  •  
22.
  • Anand, Shreya, et al. (author)
  • Collapsars as Sites of r-process Nucleosynthesis : Systematic Photometric Near-infrared Follow-up of Type Ic-BL Supernovae
  • 2024
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 962:1
  • Journal article (peer-reviewed)abstract
    • One of the open questions following the discovery of GW170817 is whether neutron star (NS) mergers are the only astrophysical sites capable of producing r-process elements. Simulations have shown that 0.01–0.1 M⊙ of r-process material could be generated in the outflows originating from the accretion disk surrounding the rapidly rotating black hole that forms as a remnant to both NS mergers and collapsing massive stars associated with long-duration gamma-ray bursts (collapsars). The hallmark signature of r-process nucleosynthesis in the binary NS merger GW170817 was its long-lasting near-infrared (NIR) emission, thus motivating a systematic photometric study of the light curves of broad-lined stripped-envelope (Ic-BL) supernovae (SNe) associated with collapsars. We present the first systematic study of 25 SNe Ic-BL—including 18 observed with the Zwicky Transient Facility and 7 from the literature—in the optical/NIR bands to determine what quantity of r-process material, if any, is synthesized in these explosions. Using semi-analytic models designed to account for r-process production in SNe Ic-BL, we perform light curve fitting to derive constraints on the r-process mass for these SNe. We also perform independent light curve fits to models without the r-process. We find that the r-process-free models are a better fit to the light curves of the objects in our sample. Thus, we find no compelling evidence of r-process enrichment in any of our objects. Further high-cadence infrared photometric studies and nebular spectroscopic analysis would be sensitive to smaller quantities of r-process ejecta mass or indicate whether all collapsars are completely devoid of r-process nucleosynthesis.
  •  
23.
  • Andreoni, Igor, et al. (author)
  • Constraining the Kilonova Rate with Zwicky Transient Facility Searches Independent of Gravitational Wave and Short Gamma-Ray Burst Triggers
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 904:2
  • Journal article (peer-reviewed)abstract
    • The first binary neutron star merger, GW170817, was accompanied by a radioactivity-powered optical/infrared transient called a kilonova. To date, no compelling kilonova has been found in all-sky optical surveys, independently of short gamma-ray burst and gravitational-wave triggers. In this work, we searched the first 23 months of the Zwicky Transient Facility (ZTF) data stream for candidate kilonovae in the form of rapidly evolving transients. We combined ZTF alert queries with forced point-spread-function photometry and nightly flux stacking to increase our sensitivity to faint and fast transients. Automatic queries yielded >11,200 candidates, 24 of which passed quality checks and selection criteria based on a grid of kilonova models tailored for both binary neutron star and neutron star-black hole mergers. None of the candidates in our sample was deemed a possible kilonova after thorough vetting. The sources that passed our selection criteria are dominated by Galactic cataclysmic variables. We identified two fast transients at high Galactic latitude, one of which is the confirmed afterglow of long-duration GRB.190106A, the other is a possible cosmological afterglow. Using a survey simulation code, we constrained the kilonova rate for a range of models including top-hat, linearly decaying light curves, and synthetic light curves obtained with radiative transfer simulations. For prototypical GW170817-like kilonovae, we constrain the rate to be R < 1775 Gpc(-3) yr(-1) (95% confidence). By assuming a population of kilonovae with the same geometry and composition of GW170817 observed under a uniform viewing angle distribution, we obtained a constraint on the rate of R.<.4029 Gpc(-3) yr(-1).
  •  
24.
  • Bellm, Eric C., et al. (author)
  • The Zwicky Transient Facility : System Overview, Performance, and First Results
  • 2019
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 131:995
  • Journal article (peer-reviewed)abstract
    • The Zwicky Transient Facility (ZTF) is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope. A custom-built wide-field camera provides a 47 deg(2) field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey, the Palomar Transient Factory. We describe the design and implementation of the camera and observing system. The ZTF data system at the Infrared Processing and Analysis Center provides near-real-time reduction to identify moving and varying objects. We outline the analysis pipelines, data products, and associated archive. Finally, we present on-sky performance analysis and first scientific results from commissioning and the early survey. ZTF's public alert stream will serve as a useful precursor for that of the Large Synoptic Survey Telescope.
  •  
25.
  • Bulla, Mattia, et al. (author)
  • ZTF Early Observations of Type Ia Supernovae. III. Early-time Colors As a Test for Explosion Models and Multiple Populations
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 902:1
  • Journal article (peer-reviewed)abstract
    • Colors of Type Ia supernovae (SNe Ia) in the first few days after explosion provide a potential discriminant between different models. In this paper, we present g - r colors of 65 SNe Ia discovered within 5 days from first light by the Zwicky Transient Facility in 2018, a sample that is about three times larger than that in the literature. We find that g - r colors are intrinsically rather homogeneous at early phases, with about half of the dispersion attributable to photometric uncertainties (0.18 mag). Colors are nearly constant starting from 6 days after first light (g-r similar to -0.15 mag), while the time evolution at earlier epochs is characterized by a continuous range of slopes, from events rapidly transitioning from redder to bluer colors (slope of similar to-0.25 mag day(-1)) to events with a flatter evolution. The continuum in the slope distribution is in good agreement both with models requiring some amount of Ni-56 mixed in the outermost regions of the ejecta and with double-detonation models having thin helium layers (M-He = 0.01 M-circle dot) and varying carbon-oxygen core masses. At the same time, six events show evidence for a distinctive red bump signature predicted by double-detonation models with larger helium masses. We finally identify a significant correlation between the early-timeg - rslopes and supernova brightness, with brighter events associated to flatter color evolution (p-value = 0.006). The distribution of slopes, however, is consistent with being drawn from a single population, with no evidence for two components as claimed in the literature based on B - V colors.
  •  
26.
  • Cao, Yi, et al. (author)
  • ABSENCE OF FAST-MOVING IRON IN AN INTERMEDIATE TYPE Ia SUPERNOVA BETWEEN NORMAL AND SUPER-CHANDRASEKHAR
  • 2016
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 823:2
  • Journal article (peer-reviewed)abstract
    • In this paper, we report observations of a peculiar SN Ia iPTF13asv (a.k.a., SN2013cv) from the onset of the explosion to months after its peak. The early-phase spectra of iPTF13asv show an absence of iron absorption, indicating that synthesized iron elements are confined to low-velocity regions of the ejecta, which, in turn, implies a stratified ejecta structure along the line of sight. Our analysis of iPTF13asv's light curves and spectra shows that it is an intermediate case between normal and super-Chandrasekhar events. On the one hand, its light curve shape (B-band Delta m(15)=1.03 +/- 0.01) and overall spectral features resemble those of normal SNe Ia. On the other hand, its large peak optical and UV luminosity (M-B = -19.84 mag, M-uvm2 = -15.5 mag) and its low but almost constant Si II velocities of about 10,000 km s (1) are similar to those in super-Chandrasekhar events, and its persistent carbon signatures in the spectra are weaker than those seen commonly in super-Chandrasekhar events. We estimate a Ni-56 mass of 0.81(-0.18)(+0.10) M-circle dot and a total ejecta mass of 1.59(-0.12)(+0.45) M-circle dot. The large ejecta mass of iPTF13asv and its stratified ejecta structure together seemingly favor a double-degenerate origin.
  •  
27.
  • Coughlin, Michael W., et al. (author)
  • 2900 Square Degree Search for the Optical Counterpart of Short Gamma-Ray Burst GRB 180523B with the Zwicky Transient Facility
  • 2019
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 131:998
  • Journal article (peer-reviewed)abstract
    • There is significant interest in the models for production of short gamma-ray bursts (GRBs). Until now, the number of known short GRBs with multi-wavelength afterglows has been small. While the Fermi GRB Monitor detects many GRBs relative to the Neil Gehrels Swift Observatory, the large localization regions makes the search for counterparts difficult. With the Zwicky Transient Facility (ZTF) recently achieving first light, it is now fruitful to use its combination of depth (m(AB) similar to 20.6), field of view (approximate to 47 square degrees), and survey cadence (every similar to 3 days) to perform Target of Opportunity observations. We demonstrate this capability on GRB 180523B, which was recently announced by the Fermi GRB Monitor as a short GRB. ZTF imaged approximate to 2900 square degrees of the localization region, resulting in the coverage of 61.6% of the enclosed probability over two nights to a depth of m(AB) similar to 20.5. We characterized 14 previously unidentified transients, and none were found to be consistent with a short GRB counterpart. This search with the ZTF shows it is an efficient camera for searching for coarsely localized short GRB and gravitational-wave counterparts, allowing for a sensitive search with minimal interruption to its nominal cadence.
  •  
28.
  • De, Kishalay, et al. (author)
  • The Zwicky Transient Facility Census of the Local Universe. I. Systematic Search for Calcium-rich Gap Transients Reveals Three Related Spectroscopic Subclasses
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 905:1
  • Journal article (peer-reviewed)abstract
    • Using the Zwicky Transient Facility alert stream, we are conducting a large spectroscopic campaign to construct a complete, volume-limited sample of transients brighter than 20 mag, and coincident within 100 '' of galaxies in the Census of the Local Universe catalog. We describe the experiment design and spectroscopic completeness from the first 16 months of operations, which have classified 754 supernovae. We present results from a systematic search for calcium-rich gap transients in the sample of 22 low-luminosity (peak absolute magnitude M > -17), hydrogen-poor events found in the experiment. We report the detection of eight new events, and constrain their volumetric rate to greater than or similar to 15% +/- 5% of the SN Ia rate. Combining this sample with 10 previously known events, we find a likely continuum of spectroscopic properties ranging from events with SN Ia-like features (Ca-Ia objects) to those with SN Ib/c-like features (Ca-Ib/c objects) at peak light. Within the Ca-Ib/c events, we find two populations distinguished by their red (g - r approximate to 1.5 mag) or green (g - r approximate to 0.5 mag) colors at the r-band peak, wherein redder events show strong line blanketing features and slower light curves (similar to Ca-Ia objects), weaker He lines, and lower [Ca II]/[O I] in the nebular phase. We find that all together the spectroscopic continuum, volumetric rates, and striking old environments are consistent with the explosive burning of He shells on low-mass white dwarfs. We suggest that Ca-Ia and red Ca-Ib/c objects arise from the double detonation of He shells, while green Ca-Ib/c objects are consistent with low-efficiency burning scenarios like detonations in low-density shells or deflagrations.
  •  
29.
  • Frederick, Sara, et al. (author)
  • A Family Tree of Optical Transients from Narrow-line Seyfert 1 Galaxies
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 920:1
  • Journal article (peer-reviewed)abstract
    • The Zwicky Transient Facility (ZTF) has discovered five events (0.01 < z < 0.4) belonging to an emerging class of active galactic nuclei (AGNs) undergoing smooth, large-amplitude, and rapidly rising flares. This sample consists of several transients initially classified as supernovae with narrow spectral lines. However, upon closer inspection, all of the host galaxies display Balmer lines with FWHM(H beta) similar to 900-1400 km s(-1), characteristic of a narrow-line Seyfert 1 (NLSy1) galaxy. The transient events are long lived, over 400 days on average in the observed frame. We report UV and X-ray follow-up of the flares and observe persistent UV emission, with two of the five transients detected with luminous X-ray emission, ruling out a supernova interpretation. We compare the properties of this sample to previously reported flaring NLSy1 galaxies and find that they fall into three spectroscopic categories: 1) Balmer line profiles and Fe ii complexes typical of NLSy1s, 2) strong He ii profiles, and 3) He ii profiles including Bowen fluorescence features. The latter are members of the growing class of AGN flares attributed to enhanced accretion reported by Trakhtenbrot et al. We consider physical interpretations in the context of related transients from the literature. For example, two of the sources show high-amplitude rebrightening in the optical, ruling out a simple tidal disruption event scenario for those transients. We conclude that three of the sample belong to the Trakhtenbrot et al. class and two are tidal disruption events in NLSy1s. We also hypothesize as to why NLSy1s are preferentially the sites of such rapid enhanced flaring activity.
  •  
30.
  • Frederick, Sara, et al. (author)
  • A New Class of Changing-look LINERs
  • 2019
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 883:1
  • Journal article (peer-reviewed)abstract
    • We report the discovery of six active galactic nuclei (AGNs) caught turning on during the first nine months of the Zwicky Transient Facility (ZTF) survey. The host galaxies were classified as low-ionization nuclear emissionline region galaxies (LINERs) by weak narrow forbidden line emission in their archival SDSS spectra, and detected by ZTF as nuclear transients. In five of the cases, we found via follow-up spectroscopy that they had transformed into broad-line AGNs, reminiscent of the changing-look LINER iPTF16bco. In one case, ZTF18aajupnt/ AT2018dyk, follow-up Hubble Space Telescope ultraviolet and ground-based optical spectra revealed the transformation into a narrow-line Seyfert 1 with strong [Fe VII, X, XIV] and He II lambda 4686 coronal lines. Swift monitoring observations of this source reveal bright UV emission that tracks the optical flare, accompanied by a luminous soft X-ray flare that peaks similar to 60 days later. Spitzer follow-up observations also detect a luminous midinfrared flare, implying a large covering fraction of dust. Archival light curves of the entire sample from CRTS, ATLAS, and ASAS-SN constrain the onset of the optical nuclear flaring from a prolonged quiescent state. Here we present the systematic selection and follow-up of this new class of changing-look LINERs, compare their properties to previously reported changing-look Seyfert galaxies, and conclude that they are a unique class of transients well-suited to test the uncertain physical processes associated with the LINER accretion state.
  •  
31.
  • Ho, Anna Y. Q., et al. (author)
  • Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova : Pre-explosion Emission and a Rapidly Rising Luminous Transient
  • 2019
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 887:2
  • Journal article (peer-reviewed)abstract
    • We present detailed observations of ZTF18abukavn (SN2018gep), discovered in high-cadence data from the Zwicky Transient Facility as a rapidly rising (1.4 +/- 0.1 mag hr(-1)) and luminous (M-g,M- peak = -20 mag) transient. It is spectroscopically classified as a broad-lined stripped-envelope supernova (Ic-BL SN). The high peak luminosity (L-bol greater than or similar to 3 x 10(44) erg s(-1)), the short rise time (t(rise) = 3 days in g band), and the blue colors at peak (g-r similar to -0.4) all resemble the high-redshift Ic-BL iPTF16asu, as well as several other unclassified fast transients. The early discovery of SN2018gep (within an hour of shock breakout) enabled an intensive spectroscopic campaign, including the highest-temperature (T-eff greater than or similar to 40,000 K) spectra of a stripped-envelope SN. A retrospective search revealed luminous (M-g similar to M-r approximate to -14 mag) emission in the days to weeks before explosion, the first definitive detection of precursor emission for a Ic-BL. We find a limit on the isotropic gamma-ray energy release E-gamma,E- iso < 4.9 x 10(48) erg, a limit on X-ray emission L-X < 10(40) erg s(-1), and a limit on radio emission nu L-v less than or similar to 10(37) erg s(-1). Taken together, we find that the early (< 10 days) data are best explained by shock breakout in a massive shell of dense circumstellar material (0.02 M-circle dot) at large radii (3 x 10(14) cm) that was ejected in eruptive pre-explosion mass-loss episodes. The late-time (> 10 days) light curve requires an additional energy source, which could be the radioactive decay of Ni-56.
  •  
32.
  • Ho, Anna Y. Q., et al. (author)
  • The Broad-lined Ic Supernova ZTF18aaqjovh (SN 2018bvw) : An Optically Discovered Engine-driven Supernova Candidate with Luminous Radio Emission
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 893:2
  • Journal article (peer-reviewed)abstract
    • We present ZTF18aaqjovh (SN 2018bvw), a high-velocity (broad-lined) stripped-envelope (Type Ic) supernova (Ic-BL SN) discovered in the Zwicky Transient Facility one-day cadence survey. ZTF18aaqjovh shares a number of features in common with engine-driven explosions: the photospheric velocity and the shape of the optical light curve are very similar to those of the Type.Ic-BL SN 1998bw, which was associated with a low-luminosity gamma-ray burst (LLGRB) and had relativistic ejecta. However, the radio luminosity of ZTF18aaqjovh is almost two orders of magnitude fainter than that of SN 1998bw at the same velocity phase, and the shock velocity is at most mildly relativistic (v.=.0.06-0.4c). A search of high-energy catalogs reveals no compelling gamma-ray burst (GRB) counterpart to ZTF18aaqjovh, and the limit on the prompt GRB luminosity of g >> ' L 1.6 10 erg s, iso 48 1 excludes a classical GRB but not an LLGRB. Altogether, ZTF18aaqjovh represents another transition event between engine-driven SNe associated with GRBs and ordinary Ic-BL SNe.
  •  
33.
  • Ho, Anna Y. Q., et al. (author)
  • ZTF20aajnksq (AT 2020blt) : A Fast Optical Transient at z ≈ 2.9 with No Detected Gamma-Ray Burst Counterpart
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 905:2
  • Journal article (peer-reviewed)abstract
    • We present ZTF20aajnksq (AT 2020blt), a fast-fading (Delta r = 2.3 mag in Delta t = 1.3 days) red (g - r 0.6 mag) and luminous (M-1626 A = -25.9 mag) optical transient at z = 2.9 discovered by the Zwicky Transient Facility (ZTF). AT 2020blt shares several features in common with afterglows to long-duration gamma-ray bursts (GRBs): (1) an optical light curve well-described by a broken power law with a break at t(j) = 1 d (observer frame); (2) a luminous (L0.3-10 KeV = 10(46) erg s(-1)) X-ray counterpart; and (3) luminous (L-10 GHz = 4 x 10(31) erg s(-1) Hz(-1)) radio emission. However, no GRB was detected in the 0.74 days between the last ZTF nondetection (r > 21.36 mag) and the first ZTF detection (r = 19.60 mag), with an upper limit on the isotropic-equivalent gamma-ray energy release of E-gamma,E-iso < 7 x 10(52) erg. AT 2020blt is thus the third afterglow-like transient discovered without a detected GRB counterpart (after PTF11agg and ZTF19abvizsw) and the second (after ZTF19abvizsw) with a redshift measurement. We conclude that the properties of AT 2020blt are consistent with a classical (initial Lorentz factor Gamma(0) greater than or similar to 100) on-axis GRB that was missed by high-energy satellites. Furthermore, by estimating the rate of transients with light curves similar to that of AT 2020blt in ZTF high-cadence data, we agree with previous results that there is no evidence for an afterglow-like phenomenon that is significantly more common than classical GRBs, such as dirty fireballs. We conclude by discussing the status and future of fast-transient searches in wide-field high-cadence optical surveys.
  •  
34.
  • Karambelkar, Viraj R., et al. (author)
  • Volumetric Rates of Luminous Red Novae and Intermediate-luminosity Red Transients with the Zwicky Transient Facility
  • 2023
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 948:2
  • Journal article (peer-reviewed)abstract
    • Luminous red novae (LRNe) are transients characterized by low luminosities and expansion velocities, and they are associated with mergers or common-envelope ejections in stellar binaries. Intermediate-luminosity red transients (ILRTs) are an observationally similar class with unknown origins, but they are generally believed to be either electron-capture supernovae in super-asymptotic giant branch stars or outbursts in dusty luminous blue variables (LBVs). In this paper, we present a systematic sample of eight LRNe and eight ILRTs detected as part of the Census of the Local Universe (CLU) experiment on the Zwicky Transient Facility (ZTF). The CLU experiment spectroscopically classifies ZTF transients associated with nearby (<150 Mpc) galaxies, achieving 80% completeness for m ( r ) < 20 mag. Using the ZTF-CLU sample, we derive the first systematic LRNe volumetric rate of 7.8-3.7+6.5x10-5 M ( r ) <= -11 mag. We find that, in this luminosity range, the LRN rate scales as dN/dL proportional to L-2.5 +/- 0.3 L (-1.4 +/- 0.3) for lower-luminosity LRNe (M ( V ) >= -10 mag). The steeper power law for LRNe at high luminosities is consistent with the massive merger rates predicted by binary population synthesis models. We find that the rates of the brightest LRNe (M ( r ) <= -13 mag) are consistent with a significant fraction of them being progenitors of double compact objects that merge within a Hubble time. For ILRTs, we derive a volumetric rate of 2.6-1.4+1.8x10-6 M ( r ) <= -13.5 mag, which scales as dN/dL proportional to L-2.5 +/- 0.5
  •  
35.
  • Kool, Erik C., et al. (author)
  • A radio-detected type Ia supernova with helium-rich circumstellar material
  • 2023
  • In: Nature. - 0028-0836 .- 1476-4687. ; 617:7961, s. 477-482
  • Journal article (peer-reviewed)abstract
    • Type Ia supernovae (SNe Ia) are thermonuclear explosions of degenerate white dwarf stars destabilized by mass accretion from a companion star1, but the nature of their progenitors remains poorly understood. A way to discriminate between progenitor systems is through radio observations; a non-degenerate companion star is expected to lose material through winds2 or binary interaction3 before explosion, and the supernova ejecta crashing into this nearby circumstellar material should result in radio synchrotron emission. However, despite extensive efforts, no type Ia supernova (SN Ia) has ever been detected at radio wavelengths, which suggests a clean environment and a companion star that is itself a degenerate white dwarf star4,5. Here we report on the study of SN 2020eyj, a SN Ia showing helium-rich circumstellar material, as demonstrated by its spectral features, infrared emission and, for the first time in a SN Ia to our knowledge, a radio counterpart. On the basis of our modelling, we conclude that the circumstellar material probably originates from a single-degenerate binary system in which a white dwarf accretes material from a helium donor star, an often proposed formation channel for SNe Ia (refs. 6,7). We describe how comprehensive radio follow-up of SN 2020eyj-like SNe Ia can improve the constraints on their progenitor systems.
  •  
36.
  • Liu, Chang, et al. (author)
  • SN 2020jgb : A Peculiar Type Ia Supernova Triggered by a Helium-shell Detonation in a Star-forming Galaxy
  • 2023
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 946:2
  • Journal article (peer-reviewed)abstract
    • The detonation of a thin (less than or similar to 0.03 M (circle dot)) helium shell (He-shell) atop a similar to 1 M (circle dot) white dwarf (WD) is a promising mechanism to explain normal Type Ia supernovae (SNe Ia), while thicker He-shells and less massive WDs may explain some recently observed peculiar SNe Ia. We present observations of SN 2020jgb, a peculiar SN Ia discovered by the Zwicky Transient Facility (ZTF). Near maximum brightness, SN 2020jgb is slightly subluminous (ZTF g-band absolute magnitude -18.7 mag less than or similar to M ( g ) less than or similar to -18.2 mag depending on the amount of host-galaxy extinction) and shows an unusually red color (0.2 mag less than or similar to g (ZTF) - r (ZTF) less than or similar to 0.4 mag) due to strong line-blanketing blueward of similar to 5000 angstrom. These properties resemble those of SN 2018byg, a peculiar SN Ia consistent with an He-shell double detonation (DDet) SN. Using detailed radiative transfer models, we show that the optical spectroscopic and photometric evolution of SN 2020jgb is broadly consistent with a similar to 0.95-1.00 M (circle dot) (C/O core + He-shell) progenitor ignited by a greater than or similar to 0.1 M (circle dot) He-shell. However, one-dimensional radiative transfer models without non-local-thermodynamic-equilibrium treatment cannot accurately characterize the line-blanketing features, making the actual shell mass uncertain. We detect a prominent absorption feature at similar to 1 mu m in the near-infrared (NIR) spectrum of SN 2020jgb, which might originate from unburnt helium in the outermost ejecta. While the sample size is limited, we find similar 1 mu m features in all the peculiar He-shell DDet candidates with NIR spectra obtained to date. SN 2020jgb is also the first peculiar He-shell DDet SN discovered in a star-forming dwarf galaxy, indisputably showing that He-shell DDet SNe occur in both star-forming and passive galaxies, consistent with the normal SN Ia population.
  •  
37.
  • Perley, Daniel A., et al. (author)
  • Real-time discovery of AT2020xnd : a fast, luminous ultraviolet transient with minimal radioactive ejecta
  • 2021
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 508:4, s. 5138-5147
  • Journal article (peer-reviewed)abstract
    • The many unusual properties of the enigmatic AT2018cow suggested that at least some subset of the empirical class of fast blue optical transients (FBOTs) represents a genuinely new astrophysical phenomenon. Unfortunately, the intrinsic rarity and fleeting nature of these events have made it difficult to identify additional examples early enough to acquire the observations necessary to constrain theoretical models. We present here the Zwicky Transient Facility discovery of AT2020xnd (ZTF20acigmel, the 'Camel') at z = 0.243, the first unambiguous AT2018cow analogue to be found and confirmed in real time. AT2018cow and AT2020xnd share all key observational properties: a fast optical rise, sustained high photospheric temperature, absence of a second peak attributable to ejection of a radioactively heated stellar envelope, extremely luminous radio, millimetre, and X-ray emission, and a dwarf-galaxy host. This supports the argument that AT2018cow-like events represent a distinct phenomenon from slower-evolving radio-quiet supernovae, likely requiring a different progenitor or a different central engine. The sample properties of the four known members of this class to date disfavour tidal disruption models but are consistent with the alternative model of an accretion powered jet following the direct collapse of a massive star to a black hole. Contextual filtering of alert streams combined with rapid photometric verification using multiband imaging provides an efficient way to identify future members of this class, even at high redshift.
  •  
38.
  • Purdum, Josiah N., et al. (author)
  • Time-series and Phase-curve Photometry of the Episodically Active Asteroid (6478) Gault in a Quiescent State Using APO, GROWTH, P200, and ZTF
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 911:2
  • Journal article (peer-reviewed)abstract
    • We observed the episodically active asteroid (6478) Gault in 2020 with multiple telescopes in Asia and North America and found that it is no longer active after its recent outbursts at the end of 2018 and the start of 2019. The inactivity during this apparition allowed us to measure the absolute magnitude of Gault of H ( r ) = 14.63 +/- 0.02, G ( r ) = 0.21 +/- 0.02 from our secular phase-curve observations. In addition, we were able to constrain Gault's rotation period using time-series photometric lightcurves taken over 17 hr on multiple days in 2020 August, September, and October. The photometric lightcurves have a repeating less than or similar to 0.05 mag feature suggesting that (6478) Gault has a rotation period of similar to 2.5 hr and may have a semispherical or top-like shape, much like the near-Earth asteroids Ryugu and Bennu. The rotation period of similar to 2.5 hr is near the expected critical rotation period for an asteroid with the physical properties of (6478) Gault, suggesting that its activity observed over multiple epochs is due to surface mass shedding from its fast rotation spin-up by the Yarkovsky-O'Keefe-Radzievskii-Paddack effect.
  •  
39.
  • Sharma, Yashvi, et al. (author)
  • A Systematic Study of Ia-CSM Supernovae from the ZTF Bright Transient Survey
  • 2023
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 948:1
  • Journal article (peer-reviewed)abstract
    • Among the supernovae (SNe) that show strong interaction with a circumstellar medium (CSM), there is a rare subclass of Type Ia supernovae, SNe Ia-CSM, which show strong narrow hydrogen emission lines much like SNe IIn but on top of a diluted Type Ia spectrum. The only previous systematic study of this class identified 16 SNe Ia-CSM, eight historic and eight from the Palomar Transient Factory (PTF). Now using the successor survey to PTF, the Zwicky Transient Facility (ZTF), we have classified 12 additional SNe Ia-CSM through the systematic Bright Transient Survey (BTS). Consistent with previous studies, we find these SNe to have slowly evolving optical light curves with peak absolute magnitudes between -19.1 and -21, spectra having weak H ss and large Balmer ldecrements of similar to 7. Out of the 10 SNe from our sample observed by NEOWISE, nine have 3 sigma detections, with some SNe showing a reduction in the red wing of Ha, indicative of newly formed dust. We do not find our SN Ia-CSM sample to have a significantly different distribution of equivalent widths of He I.5876 than SNe IIn as observed in Silverman et al. The hosts tend to be late-type galaxies with recent star formation. We derive a rate estimate of 29+(27)(21) Gpc(-3) yr(-1) for SNe Ia-CSM, which is similar to 0.02%-0.2% of the SN Ia rate. We also identify six ambiguous SNe IIn/Ia-CSM in the BTS sample and including them gives an upper limit rate of 0.07%-0.8%. This work nearly doubles the sample of well-studied Ia-CSM objects in Silverman et al., increasing the total number to 28.
  •  
40.
  • Sharma, Yashvi, et al. (author)
  • Dramatic Rebrightening of the Type-changing Stripped-envelope Supernova SN 2023aew
  • 2024
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 966:2
  • Journal article (peer-reviewed)abstract
    • Multipeaked supernovae with precursors, dramatic light-curve rebrightenings, and spectral transformation are rare, but are being discovered in increasing numbers by modern night-sky transient surveys like the Zwicky Transient Facility. Here, we present the observations and analysis of SN 2023aew, which showed a dramatic increase in brightness following an initial luminous (−17.4 mag) and long (∼100 days) unusual first peak (possibly precursor). SN 2023aew was classified as a Type IIb supernova during the first peak but changed its type to resemble a stripped-envelope supernova (SESN) after the marked rebrightening. We present comparisons of SN 2023aew's spectral evolution with SESN subtypes and argue that it is similar to SNe Ibc during its main peak. P-Cygni Balmer lines are present during the first peak, but vanish during the second peak's photospheric phase, before Hα resurfaces again during the nebular phase. The nebular lines ([O i], [Ca ii], Mg i], Hα) exhibit a double-peaked structure that hints toward a clumpy or nonspherical ejecta. We analyze the second peak in the light curve of SN 2023aew and find it to be broader than that of normal SESNe as well as requiring a very high 56Ni mass to power the peak luminosity. We discuss the possible origins of SN 2023aew including an eruption scenario where a part of the envelope is ejected during the first peak and also powers the second peak of the light curve through interaction of the SN with the circumstellar medium.
  •  
41.
  • Srinivasaragavan, Gokul P., et al. (author)
  • Characterizing the Ordinary Broad-line Type Ic SN 2023pel from the Energetic GRB 230812B
  • 2024
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 960:2
  • Journal article (peer-reviewed)abstract
    • We report observations of the optical counterpart of the long gamma-ray burst (GRB) GRB 230812B and its associated supernova (SN) SN 2023pel. The proximity (z = 0.36) and high energy (Eγ,iso ∼ 1053 erg) make it an important event to study as a probe of the connection between massive star core collapse and relativistic jet formation. With a phenomenological power-law model for the optical afterglow, we find a late-time flattening consistent with the presence of an associated SN. SN 2023pel has an absolute peak r-band magnitude of Mr = −19.46 ± 0.18 mag (about as bright as SN 1998bw) and evolves on quicker timescales. Using a radioactive heating model, we derive a nickel mass powering the SN of MNi = 0.38 ± 0.01 M⊙ and a peak bolometric luminosity of Lbol ∼ 1.3 × 1043 erg s−1. We confirm SN 2023pel's classification as a broad-line Type Ic SN with a spectrum taken 15.5 days after its peak in the r band and derive a photospheric expansion velocity of vph = 11,300 ± 1600 km s−1 at that phase. Extrapolating this velocity to the time of maximum light, we derive the ejecta mass Mej = 1.0 ± 0.6 M⊙ and kinetic energy EKE = 1.3 +3.3/-1.2 x 1051 erg. We find that GRB 230812B/SN 2023pel has SN properties that are mostly consistent with the overall GRB-SN population. The lack of correlations found in the GRB-SN population between SN brightness and Eγ,iso for their associated GRBs across a broad range of 7 orders of magnitude provides further evidence that the central engine powering the relativistic ejecta is not coupled to the SN powering mechanism in GRB-SN systems.
  •  
42.
  • van Velzen, Sjoert, et al. (author)
  • The First Tidal Disruption Flare in ZTF : From Photometric Selection to Multi-wavelength Characterization
  • 2019
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 872:2
  • Journal article (peer-reviewed)abstract
    • We present Zwicky Transient Facility (ZTF) observations of the tidal disruption flare AT2018zr/PS18kh reported by Holoien et al. and detected during ZTF commissioning. The ZTF light curve of the tidal disruption event (TDE) samples the rise-to-peak exceptionally well, with 50. days of g- and r-band detections before the time of maximum light. We also present our multi-wavelength follow-up observations, including the detection of a thermal (kT approximate to 100 eV) X-ray source that is two orders of magnitude fainter than the contemporaneous optical/UV blackbody luminosity, and a stringent upper limit to the radio emission. We use observations of 128 known active galactic nuclei (AGNs) to assess the quality of the ZTF astrometry, finding a median host-flare distance of 0.'' 2 for genuine nuclear flares. Using ZTF observations of variability from known AGNs and supernovae we show how these sources can be separated from TDEs. A combination of light-curve shape, color, and location in the host galaxy can be used to select a clean TDE sample from multi-band optical surveys such as ZTF or the Large Synoptic Survey Telescope.
  •  
43.
  • Ward, Charlotte, et al. (author)
  • Variability-selected Intermediate-mass Black Hole Candidates in Dwarf Galaxies from ZTF and WISE
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 936:2
  • Journal article (peer-reviewed)abstract
    • While it is difficult to observe the first black hole seeds in the early universe, we can study intermediate-mass black holes (IMBHs) in local dwarf galaxies for clues about their origins. In this paper we present a sample of variability-selected active galactic nuclei (AGN) in dwarf galaxies using optical photometry from the Zwicky Transient Facility (ZTF) and forward-modeled mid-IR photometry of time-resolved Wide-field Infrared Survey Explorer (WISE) co-added images. We found that 44 out of 25,714 dwarf galaxies had optically variable AGN candidates and 148 out of 79,879 dwarf galaxies had mid-IR variable AGN candidates, corresponding to active fractions of 0.17% ± 0.03% and 0.19% ± 0.02%, respectively. We found that spectroscopic approaches to AGN identification would have missed 81% of our ZTF IMBH candidates and 69% of our WISE IMBH candidates. Only nine candidates have been detected previously in radio, X-ray, and variability searches for dwarf galaxy AGN. The ZTF and WISE dwarf galaxy AGN with broad Balmer lines have virial masses of 105 M⊙ < MBH < 107 M⊙, but for the rest of the sample, BH masses predicted from host galaxy mass range between 105.2 M⊙ < MBH < 107.25 M⊙. We found that only 5 of 152 previously reported variability-selected AGN candidates from the Palomar Transient Factory in common with our parent sample were variable in ZTF. We also determined a nuclear supernova fraction of 0.05% ± 0.01% yr−1 for dwarf galaxies in ZTF. Our ZTF and WISE IMBH candidates show the promise of variability searches for the discovery of otherwise hidden low-mass AGN.
  •  
44.
  • Yao, Yuhan, et al. (author)
  • SN2019dge : A Helium-rich Ultra-stripped Envelope Supernova
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 900:1
  • Journal article (peer-reviewed)abstract
    • We present observations of ZTF18abfcmjw (SN2019dge), a helium-rich supernova with a fast-evolving light curve indicating an extremely low ejecta mass (approximate to 0.33M(circle dot)) and low kinetic energy (approximate to 1.3 x 10(50)erg). Early-time (<4 days after explosion) photometry reveals evidence of shock cooling from an extended helium-rich envelope of similar to 0.1 M-circle dot located similar to 1.2 x 10(13) cm from the progenitor. Early-time He II line emission and subsequent spectra show signatures of interaction with helium-rich circumstellar material, which extends from greater than or similar to 5 x 10(13)cm to greater than or similar to 2 x 10(16)cm. We interpret SN2019dge as a helium-rich supernova from an ultra-stripped progenitor, which originates from a close binary system consisting of a mass-losing helium star and a low-mass main-sequence star or a compact object (i.e., a white dwarf, a neutron star, or a black hole). We infer that the local volumetric birth rate of 19dge-like ultra-stripped SNe is in the range of 1400-8200 Gpc(-3)yr(-1) (i.e., 2%-12% of core-collapse supernova rate). This can be compared to the observed coalescence rate of compact neutron star binaries that are not formed by dynamical capture.
  •  
45.
  • Bolin, Bryce T., et al. (author)
  • Characterization of the Nucleus, Morphology, and Activity of Interstellar Comet 2I/Borisov by Optical and Near-infrared GROWTH, Apache Point, IRTF, ZTF, and Keck Observations
  • 2020
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 160:1
  • Journal article (peer-reviewed)abstract
    • We present visible and near-infrared (NIR) photometric and spectroscopic observations of interstellar object (ISO) 2I/Borisov taken from 2019 September 10 to 2019 December 20 using the GROWTH, the Apache Point Observatory Astrophysical Research Consortium 3.5 m, and the NASA Infrared Telescope Facility 3.0 m combined with pre- and postdiscovery observations of 2I obtained by the Zwicky Transient Facility from 2019 March 17 to 2019 May 5. Comparison with imaging of distant solar system comets shows an object very similar to mildly active solar system comets with an outgassing rate of similar to 10(27)mol s(-1). The photometry, taken in filters spanning the visible and NIR range, shows a gradual brightening trend of similar to 0.03 mag day(-1)since 2019 September 10 UTC for a reddish object becoming neutral in the NIR. The light curve from recent and prediscovery data reveals a brightness trend suggesting the recent onset of significant H2O sublimation with the comet being active with super volatiles such as CO at heliocentric distances >6 au consistent with its extended morphology. Using the advanced capability to significantly reduce the scattered light from the coma enabled by high-resolution NIR images from Keck adaptive optics taken on 2019 October 4, we estimate a diameter for 2I's nucleus of less than or similar to 1.4 km. We use the size estimates of 1I/'Oumuamua and 2I/Borisov to roughly estimate the slope of the ISO size distribution, resulting in a slope of similar to 3.4 1.2, similar to solar system comets and bodies produced from collisional equilibrium.
  •  
46.
  • Cao, Yi, et al. (author)
  • SN2002es-LIKE SUPERNOVAE FROM DIFFERENT VIEWING ANGLES
  • 2016
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 832:1
  • Journal article (peer-reviewed)abstract
    • In this article, we compare optical light curves of two SN2002es-like Type Ia supernovae (SNe), iPTF14atg and iPTF14dpk, from the intermediate Palomar Transient Factory. Although the two light curves resemble each other around and after maximum, they show distinct early-phase rise behavior in the r-band. On the one hand, iPTF14atg revealed a slow and steady rise that lasted for 22 days with a mean rise rate of 0.2-0.3 mag day(-1), before it reached the R-band peak (- 18.05 mag). On the other hand, iPTF14dpk rose rapidly to - 17 mag within a day of discovery with a rise rate > 1.8 mag day(-1), and then rose slowly to its peak (- 18.19 mag) with a rise rate similar to iPTF14atg. The apparent total rise time of iPTF14dpk is therefore only 16 days. We show that emission from iPTF14atg before - 17 days with respect to its maximum can be entirely attributed to radiation produced by collision between the SN and its companion star. Such emission is absent from iPTF14dpk probably because of an unfavored viewing angle, provided that SN2002es-like events arise from the same progenitor channel. We further show that an SN2002es-like SN may experience a dark phase after the explosion but before its radioactively powered light curve becomes visible. This dark phase may be lit by radiation from supernova-companion interaction.
  •  
47.
  • Carreres, Bastien, et al. (author)
  • Growth-rate measurement with type-Ia supernovae using ZTF survey simulations
  • 2023
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 674
  • Journal article (peer-reviewed)abstract
    • Measurements of the growth rate of structures at z < 0.1 with peculiar velocity surveys have the potential of testing the validity of general relativity on cosmic scales. In this work, we present growth-rate measurements from realistic simulated sets of type-Ia supernovae (SNe Ia) from the Zwicky Transient Facility (ZTF). We describe our simulation methodology, the light-curve fitting, and peculiar velocity estimation. Using the maximum likelihood method, we derived constraints on fσ8 using only ZTF SN Ia peculiar velocities. We carefully tested the method and we quantified biases due to selection effects (photometric detection, spectroscopic follow-up for typing) on several independent realizations. We simulated the equivalent of 6 years of ZTF data, and considering an unbiased spectroscopically typed sample at z < 0.06, we obtained unbiased estimates of fσ8 with an average uncertainty of 19% precision. We also investigated the information gain in applying bias correction methods. Our results validate our framework, which can be used on real ZTF data.
  •  
48.
  • Corsi, Alessandra, et al. (author)
  • A Search for Relativistic Ejecta in a Sample of ZTF Broad-lined Type Ic Supernovae
  • 2023
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 953:2
  • Journal article (peer-reviewed)abstract
    • The dividing line between gamma-ray bursts (GRBs) and ordinary stripped-envelope core-collapse supernovae (SNe) is yet to be fully understood. Observationally mapping the variety of ejecta outcomes (ultrarelativistic, mildly relativistic, or nonrelativistic) in SNe of Type Ic with broad lines (Ic-BL) can provide a key test to stellar explosion models. However, this requires large samples of the rare SN Ic-BL events with follow-up observations in the radio, where fast ejecta can be probed largely free of geometry and viewing angle effects. Here, we present the results of a radio (and X-ray) follow-up campaign of 16 SNe Ic-BL detected by the Zwicky Transient Facility (ZTF). Our radio campaign resulted in four counterpart detections and 12 deep upper limits. None of the events in our sample is as relativistic as SN 1998bw and we constrain the fraction of SN 1998bw-like explosions to <19% (3σ Gaussian equivalent), a factor of ≈2 smaller than previously established. We exclude relativistic ejecta with radio luminosity densities in between ≈5 × 1027 erg s−1 Hz−1 and ≈1029 erg s−1 Hz−1 at t ≳ 20 days since explosion for ≈60% of the events in our sample. This shows that SNe Ic-BL similar to the GRB-associated SNe 1998bw, 2003lw, and 2010bh, or to the relativistic SNe 2009bb and iPTF17cw, are rare. Our results also exclude an association of the SNe Ic-BL in our sample with largely off-axis GRBs with energies E ≳ 1050 erg. The parameter space of SN 2006aj-like events (faint and fast-peaking radio emission) is, on the other hand, left largely unconstrained, and systematically exploring it represents a promising line of future research.
  •  
49.
  • Das, Kaustav K., et al. (author)
  • Probing the Low-mass End of Core-collapse Supernovae Using a Sample of Strongly-stripped Calcium-rich Type IIb Supernovae from the Zwicky Transient Facility
  • 2023
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 959:1
  • Journal article (peer-reviewed)abstract
    • The fate of stars in the zero-age main-sequence (ZAMS) range ≈8–12 M⊙ is unclear. They could evolve to form white dwarfs or explode as electron-capture supernovae (SNe) or iron core-collapse SNe (CCSNe). Even though the initial mass function indicates that this mass range should account for over 40% of all CCSN progenitors, few have been observationally confirmed, likely due to the faintness and rapid evolution of some of these transients. In this paper, we present a sample of nine Ca-rich/O-poor Type IIb SNe detected by the Zwicky Transient Facility with progenitors likely in this mass range. These sources have a [Ca ii] λλ7291, 7324/[O i] λλ6300, 6364 flux ratio of ≳2 in their nebular spectra. Comparing the measured [O i] luminosity (≲1039 erg s−1) and derived oxygen mass (≈0.01 M⊙) with theoretical models, we infer that the progenitor ZAMS mass for these explosions is less than 12 M⊙. The ejecta properties (Mej ≲ 1 M⊙ and Ekin ∼ 1050 erg) are also consistent. The low ejecta mass of these sources indicates a class of strongly-stripped SNe that is a transition between the regular stripped-envelope SNe and ultra-stripped SNe. The progenitor could be stripped by a main-sequence companion and result in the formation of a neutron star−main sequence binary. Such binaries have been suggested to be progenitors of neutron star−white dwarf systems that could merge within a Hubble time and be detectable with LISA.
  •  
50.
  • Irani, Ido, et al. (author)
  • On the Origin of SN 2016hil-A Type II Supernova in the Remote Outskirts of an Elliptical Host
  • 2019
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 887:2
  • Journal article (peer-reviewed)abstract
    • Type II supernovae (SNe) stem from the core collapse of massive (>8 M-circle dot) stars. Due to their short lifespan, we expect a very low rate of such events in elliptical hosts, where the star formation rate is low, and which are mostly comprised of an old stellar population. SN 2016hil (iPTF16hil) is an SN II located in the extreme outskirts of an elliptical galaxy at z.=.0.0608 (projected distance 27.2 kpc). It was detected near peak (M-r similar to -17 mag) 9 days after the last non-detection. The event has some potentially peculiar properties: it presented an apparently double-peaked light curve, and its spectra suggest low metallicity content (Z < 0.4 Z(circle dot)). We place a tentative upper limit on the mass of a potential faint host at log M/M-circle dot = 7.27(-0.24)(+0.43) using deep optical imaging from Keck/LRIS. In light of this, we discuss the possibility of the progenitor forming locally and other more exotic formation scenarios such as a merger or common-envelope evolution causing a time-delayed explosion. Further observations of the explosion site in the UV are needed in order to distinguish between the cases. Regardless of the origin of the transient, observing a population of such seemingly hostless SNe II could have many uses, including an estimate the amount of faint galaxies in a given volume, and tests of the prediction of a time-delayed population of core-collapse SNe in locations otherwise unfavorable for the detection of such events.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 61
Type of publication
journal article (61)
Type of content
peer-reviewed (61)
Author/Editor
Masci, Frank J. (58)
Kasliwal, Mansi M. (46)
Bellm, Eric C. (42)
Fremling, Christoffe ... (37)
De, Kishalay (35)
Graham, Matthew J. (33)
show more...
Sollerman, Jesper (32)
Gal-Yam, Avishay (29)
Cenko, S. Bradley (27)
Laher, Russ R. (27)
Rusholme, Ben (26)
Dekany, Richard (26)
Kupfer, Thomas (26)
Perley, Daniel A. (25)
Andreoni, Igor (25)
Yao, Yuhan (24)
Duev, Dmitry A. (24)
Neill, James D. (22)
Ho, Anna Y. Q. (21)
Riddle, Reed (21)
Yan, Lin (21)
Miller, Adam A. (21)
Sharma, Yashvi (20)
Kulkarni, Shrinivas ... (19)
Kulkarni, S. R. (19)
Schulze, Steve (19)
Walters, Richard (19)
Shupe, David L. (18)
Soumagnac, Maayane T ... (18)
Golkhou, V. Zach (17)
Sollerman, Jesper, 1 ... (16)
Nordin, Jakob (13)
Kool, Erik C. (12)
Goobar, Ariel (12)
Anand, Shreya (12)
Karambelkar, Viraj (12)
Smith, Roger (12)
Mahabal, Ashish (12)
Coughlin, Michael W. (11)
Tzanidakis, Anastasi ... (11)
Hale, David (11)
Taggart, Kirsty (11)
Rigault, Mickael (11)
Ofek, Eran O. (10)
Hung, Tiara (10)
Ahumada, Tomas (10)
Helou, George (10)
Blagorodnova, Nadejd ... (10)
Gezari, Suvi (10)
van Velzen, Sjoert (10)
show less...
University
Stockholm University (59)
Royal Institute of Technology (4)
Uppsala University (1)
Lund University (1)
Chalmers University of Technology (1)
Karolinska Institutet (1)
show more...
Högskolan Dalarna (1)
show less...
Language
English (61)
Research subject (UKÄ/SCB)
Natural sciences (60)
Medical and Health Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view