SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Mejhert N) "

Search: WFRF:(Mejhert N)

  • Result 1-44 of 44
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Forrest, ARR, et al. (author)
  • A promoter-level mammalian expression atlas
  • 2014
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 507:7493, s. 462-
  • Journal article (peer-reviewed)
  •  
2.
  • Noguchi, S, et al. (author)
  • FANTOM5 CAGE profiles of human and mouse samples
  • 2017
  • In: Scientific data. - : Springer Science and Business Media LLC. - 2052-4463. ; 4, s. 170112-
  • Journal article (peer-reviewed)abstract
    • In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Claussnitzer, Melina, et al. (author)
  • Leveraging cross-species transcription factor binding site patterns: from diabetes risk Loci to disease mechanisms.
  • 2014
  • In: Cell. - : Elsevier BV. - 1097-4172 .- 0092-8674. ; 156:1-2, s. 343-358
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central to disease susceptibility. We show that integrative computational analysis of phylogenetic conservation with a complexity assessment of co-occurring transcription factor binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in disease. Analysis of established type 2 diabetes risk loci revealed a striking clustering of distinct homeobox TFBS. We identified the PRRX1 homeobox factor as a repressor of PPARG2 expression in adipose cells and demonstrate its adverse effect on lipid metabolism and systemic insulin sensitivity, dependent on the rs4684847 risk allele that triggers PRRX1 binding. Thus, cross-species conservation analysis at the level of co-occurring TFBS provides a valuable contribution to the translation of genetic association signals to disease-related molecular mechanisms.
  •  
16.
  • Dahlman, I, et al. (author)
  • Adipose tissue pathways involved in weight loss of cancer cachexia
  • 2010
  • In: British Journal of Cancer. - : Springer Science and Business Media LLC. - 0007-0920 .- 1532-1827. ; 102:10, s. 1541-8
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: The regulatory gene pathways that accompany loss of adipose tissue in cancer cachexia are unknown and were explored using pangenomic transcriptome profiling. METHODS: Global gene expression profiles of abdominal subcutaneous adipose tissue were studied in gastrointestinal cancer patients with (n=13) or without (n=14) cachexia. RESULTS: Cachexia was accompanied by preferential loss of adipose tissue and decreased fat cell volume, but not number. Adipose tissue pathways regulating energy turnover were upregulated, whereas genes in pathways related to cell and tissue structure (cellular adhesion, extracellular matrix and actin cytoskeleton) were downregulated in cachectic patients. Transcriptional response elements for hepatic nuclear factor-4 (HNF4) were overrepresented in the promoters of extracellular matrix and adhesion molecule genes, and adipose HNF4 mRNA was downregulated in cachexia. CONCLUSIONS: Cancer cachexia is characterised by preferential loss of adipose tissue; muscle mass is less affected. Loss of adipose tissue is secondary to a decrease in adipocyte lipid content and associates with changes in the expression of genes that regulate energy turnover, cytoskeleton and extracellular matrix, which suggest high tissue remodelling. Changes in gene expression in cachexia are reciprocal to those observed in obesity, suggesting that regulation of fat mass at least partly corresponds to two sides of the same coin.
  •  
17.
  • Dufau, J, et al. (author)
  • In vitro and ex vivo models of adipocytes
  • 2021
  • In: American journal of physiology. Cell physiology. - : American Physiological Society. - 1522-1563 .- 0363-6143. ; 320:5, s. C822-C841
  • Journal article (peer-reviewed)abstract
    • Adipocytes are specialized cells with pleiotropic roles in physiology and pathology. Several types of fat cells with distinct metabolic properties coexist in various anatomically defined fat depots in mammals. White, beige, and brown adipocytes differ in their handling of lipids and thermogenic capacity, promoting differences in size and morphology. Moreover, adipocytes release lipids and proteins with paracrine and endocrine functions. The intrinsic properties of adipocytes pose specific challenges in culture. Mature adipocytes float in suspension culture due to high triacylglycerol content and are fragile. Moreover, a fully differentiated state, notably acquirement of the unilocular lipid droplet of white adipocyte, has so far not been reached in two-dimensional culture. Cultures of mouse and human-differentiated preadipocyte cell lines and primary cells have been established to mimic white, beige, and brown adipocytes. Here, we survey various models of differentiated preadipocyte cells and primary mature adipocyte survival describing main characteristics, culture conditions, advantages, and limitations. An important development is the advent of three-dimensional culture, notably of adipose spheroids that recapitulate in vivo adipocyte function and morphology in fat depots. Challenges for the future include isolation and culture of adipose-derived stem cells from different anatomic location in animal models and humans differing in sex, age, fat mass, and pathophysiological conditions. Further understanding of fat cell physiology and dysfunction will be achieved through genetic manipulation, notably CRISPR-mediated gene editing. Capturing adipocyte heterogeneity at the single-cell level within a single fat depot will be key to understanding diversities in cardiometabolic parameters among lean and obese individuals.
  •  
18.
  •  
19.
  • Ehrlund, A, et al. (author)
  • Transcriptional Dynamics During Human Adipogenesis and Its Link to Adipose Morphology and Distribution
  • 2017
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 66:1, s. 218-230
  • Journal article (peer-reviewed)abstract
    • White adipose tissue (WAT) can develop into several phenotypes with different pathophysiological impact on type 2 diabetes. To better understand the adipogenic process, the transcriptional events that occur during in vitro differentiation of human adipocytes were investigated and the findings linked to WAT phenotypes. Single-molecule transcriptional profiling provided a detailed map of the expressional changes of genes, enhancers, and long noncoding RNAs, where different types of transcripts share common dynamics during differentiation. Common signatures include early downregulated, transient, and late induced transcripts, all of which are linked to distinct developmental processes during adipogenesis. Enhancers expressed during adipogenesis overlap significantly with genetic variants associated with WAT distribution. Transiently expressed and late induced genes are associated with hypertrophic WAT (few but large fat cells), a phenotype closely linked to insulin resistance and type 2 diabetes. Transcription factors that are expressed early or transiently affect differentiation and adipocyte function and are controlled by several well-known upstream regulators such as glucocorticosteroids, insulin, cAMP, and thyroid hormones. Taken together, our results suggest a complex but highly coordinated regulation of adipogenesis.
  •  
20.
  • Flanagan, John N., et al. (author)
  • Role of follistatin in promoting adipogenesis in women
  • 2009
  • In: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 94:8, s. 3003-9
  • Journal article (peer-reviewed)abstract
    • CONTEXT: Follistatin is a glycoprotein that binds and neutralizes biological activities of TGFbeta superfamily members including activin and myostatin. We previously identified by expression profiling that follistatin levels in white adipose tissue (WAT) were regulated by obesity. OBJECTIVE: The objective of the study was to elucidate the role of follistatin in human WAT and obesity. DESIGN: We measured secreted follistatin protein from WAT biopsies and fat cells in vitro. We also quantified follistatin mRNA expression in sc and visceral WAT and in WAT-fractionated cells and related it to obesity status, body region, and cellular origin. We investigated the effects of follistatin on adipocyte differentiation of progenitor cells in vitro. PARTICIPANTS: Women (n = 66) with a wide variation in body mass index were recruited by advertisement and from a clinic for weight-reduction therapy. RESULTS: WAT secreted follistatin in vitro. Follistatin mRNA levels in sc but not visceral WAT were decreased in obesity and restored to nonobese levels after weight reduction. Follistatin mRNA levels were high in the stroma-vascular fraction of WAT and low in adipocytes. Recombinant follistatin treatment promoted adipogenic differentiation of progenitor cells and neutralized the inhibitory action of myostatin on differentiation in vitro. Moreover, activin and myostatin signaling receptors were detected in WAT and adipocytes. CONCLUSION: Follistatin is a new adipokine important for adipogenesis. Down-regulated WAT expression of follistatin in obesity may counteract adiposity but could, by inhibiting adipogenesis, contribute to hypertrophic obesity (large fat cells) and insulin resistance.
  •  
21.
  •  
22.
  •  
23.
  • Kulyte, A, et al. (author)
  • Additive effects of microRNAs and transcription factors on CCL2 production in human white adipose tissue
  • 2014
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 63:4, s. 1248-1258
  • Journal article (peer-reviewed)abstract
    • Adipose tissue inflammation is present in insulin-resistant conditions. We recently proposed a network of microRNAs (miRNAs) and transcription factors (TFs) regulating the production of the proinflammatory chemokine (C-C motif) ligand-2 (CCL2) in adipose tissue. We presently extended and further validated this network and investigated if the circuits controlling CCL2 can interact in human adipocytes and macrophages. The updated subnetwork predicted that miR-126/-193b/-92a control CCL2 production by several TFs, including v-ets erythroblastosis virus E26 oncogene homolog 1 (avian) (ETS1), MYC-associated factor X (MAX), and specificity protein 12 (SP1). This was confirmed in human adipocytes by the observation that gene silencing of ETS1, MAX, or SP1 attenuated CCL2 production. Combined gene silencing of ETS1 and MAX resulted in an additive reduction in CCL2 production. Moreover, overexpression of miR-126/-193b/-92a in different pairwise combinations reduced CCL2 secretion more efficiently than either miRNA alone. However, although effects on CCL2 secretion by co-overexpression of miR-92a/-193b and miR-92a/-126 were additive in adipocytes, the combination of miR-126/-193b was primarily additive in macrophages. Signals for miR-92a and -193b converged on the nuclear factor-κB pathway. In conclusion, TF and miRNA-mediated regulation of CCL2 production is additive and partly relayed by cell-specific networks in human adipose tissue that may be important for the development of insulin resistance/type 2 diabetes.
  •  
24.
  • Kulyte, A, et al. (author)
  • MicroRNA profiling links miR-378 to enhanced adipocyte lipolysis in human cancer cachexia
  • 2014
  • In: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; 306:3, s. E267-E274
  • Journal article (peer-reviewed)abstract
    • Cancer cachexia is associated with pronounced adipose tissue loss due to, at least in part, increased fat cell lipolysis. MicroRNAs (miRNAs) have recently been implicated in controlling several aspects of adipocyte function. To gain insight into the possible impact of miRNAs on adipose lipolysis in cancer cachexia, global miRNA expression was explored in abdominal subcutaneous adipose tissue from gastrointestinal cancer patients with ( n = 10) or without ( n = 11) cachexia. Effects of miRNA overexpression or inhibition on lipolysis were determined in human in vitro differentiated adipocytes. Out of 116 miRNAs present in adipose tissue, five displayed distinct cachexia-associated expression according to both microarray and RT-qPCR. Four (miR-483–5p/-23a/-744/-99b) were downregulated, whereas one (miR-378) was significantly upregulated in cachexia. Adipose expression of miR-378 associated strongly and positively with catecholamine-stimulated lipolysis in adipocytes. This correlation is most probably causal because overexpression of miR-378 in human adipocytes increased catecholamine-stimulated lipolysis. In addition, inhibition of miR-378 expression attenuated stimulated lipolysis and reduced the expression of LIPE, PLIN1, and PNPLA2, a set of genes encoding key lipolytic regulators. Taken together, increased miR-378 expression could play an etiological role in cancer cachexia-associated adipose tissue loss via effects on adipocyte lipolysis.
  •  
25.
  • Kulyte, A, et al. (author)
  • MTCH2 in human white adipose tissue and obesity
  • 2011
  • In: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 96:10, s. E1661-E1665
  • Journal article (peer-reviewed)abstract
    • Context:Genome-wide association studies have identified single-nucleotide polymorphisms in approximately 40 loci associated with obesity-related traits. How these loci regulate obesity is largely unknown. One obesity-associated single-nucleotide polymorphism is close to the MTCH2 gene (mitochondrial carrier homolog 2).Objective:The objective of the study was to assess the expression of genes in obesity-associated loci in abdominal sc white adipose tissue (scWAT) in relation to obesity. A more comprehensive expression study was performed on MTCH2.Design:mRNA levels of 66 genes from 40 loci were determined by microarray in scWAT from lean and obese women (n = 30). MTCH2 mRNA was measured by quantitative RT-PCR in lean and obese before and after weight loss in intact adipose pieces and isolated adipocytes, paired samples of scWAT and omental WAT, and primary adipocyte cultures (n = 191 subjects in total). MTCH2 genotypes were compared with mRNA expression in 96 women. MTCH2 protein was examined in scWAT of 38 individuals.Results:Adipose expression of eight genes was significantly associated with obesity; of these, MTCH2 displayed the highest absolute signal. MTCH2 mRNA and protein expression was significantly increased in obese women but was not affected by weight loss. MTCH2 was enriched in isolated fat cells and increased during adipocyte differentiation. There was no cis influence of MTCH2 genotypes on mRNA levels.Conclusion:MTCH2 is highly expressed in human WAT and adipocytes with increased levels in obese women. These results suggest that MTCH2 may play a role in cellular processes underlying obesity.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  • Maqdasy, S, et al. (author)
  • Impaired phosphocreatine metabolism in white adipocytes promotes inflammation
  • 2022
  • In: Nature metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 4:2, s. 190-
  • Journal article (peer-reviewed)abstract
    • The mechanisms promoting disturbed white adipocyte function in obesity remain largely unclear. Herein, we integrate white adipose tissue (WAT) metabolomic and transcriptomic data from clinical cohorts and find that the WAT phosphocreatine/creatine ratio is increased and creatine kinase-B expression and activity is decreased in the obese state. In human in vitro and murine in vivo models, we demonstrate that decreased phosphocreatine metabolism in white adipocytes alters adenosine monophosphate-activated protein kinase activity via effects on adenosine triphosphate/adenosine diphosphate levels, independently of WAT beigeing. This disturbance promotes a pro-inflammatory profile characterized, in part, by increased chemokine (C-C motif) ligand 2 (CCL2) production. These data suggest that the phosphocreatine/creatine system links cellular energy shuttling with pro-inflammatory responses in human and murine white adipocytes. Our findings provide unexpected perspectives on the mechanisms driving WAT inflammation in obesity and may present avenues to target adipocyte dysfunction.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  • Mileti, E, et al. (author)
  • Human White Adipose Tissue Displays Selective Insulin Resistance in the Obese State
  • 2021
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 70:7, s. 1486-1497
  • Journal article (peer-reviewed)abstract
    • Selective hepatic insulin resistance is a feature of obesity and type 2 diabetes. Whether similar mechanisms operate in white adipose tissue (WAT) of those with obesity and to what extent these are normalized by weight loss are unknown. We determined insulin sensitivity by hyperinsulinemic euglycemic clamp and insulin response in subcutaneous WAT by RNA sequencing in 23 women with obesity before and 2 years after bariatric surgery. To control for effects of surgery, women postsurgery were matched to never-obese women. Multidimensional analyses of 138 samples allowed us to classify the effects of insulin into three distinct expression responses: a common set was present in all three groups and included genes encoding several lipid/cholesterol biosynthesis enzymes; a set of obesity-attenuated genes linked to tissue remodeling and protein translation was selectively regulated in the two nonobese states; and several postobesity-enriched genes encoding proteins involved in, for example, one-carbon metabolism were only responsive to insulin in the women who had lost weight. Altogether, human WAT displays a selective insulin response in the obese state, where most genes are normalized by weight loss. This comprehensive atlas provides insights into the transcriptional effects of insulin in WAT and may identify targets to improve insulin action.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  •  
42.
  •  
43.
  •  
44.
  • Shen, J. X., et al. (author)
  • 3D Adipose Tissue Culture Links the Organotypic Microenvironment to Improved Adipogenesis
  • 2021
  • In: Advanced Science. - : Wiley. - 2198-3844. ; 8:16
  • Journal article (peer-reviewed)abstract
    • Obesity and type 2 diabetes are strongly associated with adipose tissue dysfunction and impaired adipogenesis. Understanding the molecular underpinnings that control adipogenesis is thus of fundamental importance for the development of novel therapeutics against metabolic disorders. However, translational approaches are hampered as current models do not accurately recapitulate adipogenesis. Here, a scaffold-free versatile 3D adipocyte culture platform with chemically defined conditions is presented in which primary human preadipocytes accurately recapitulate adipogenesis. Following differentiation, multi-omics profiling and functional tests demonstrate that 3D adipocyte cultures feature mature molecular and cellular phenotypes similar to freshly isolated mature adipocytes. Spheroids exhibit physiologically relevant gene expression signatures with 4704 differentially expressed genes compared to conventional 2D cultures (false discovery rate < 0.05), including the concerted expression of factors shaping the adipogenic niche. Furthermore, lipid profiles of >1000 lipid species closely resemble patterns of the corresponding isogenic mature adipocytes in vivo (R2 = 0.97). Integration of multi-omics signatures with analyses of the activity profiles of 503 transcription factors using global promoter motif inference reveals a complex signaling network, involving YAP, Hedgehog, and TGFβ signaling, that links the organotypic microenvironment in 3D culture to the activation and reinforcement of PPARγ and CEBP activity resulting in improved adipogenesis. 
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-44 of 44

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view