SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Mesulam M. M.) "

Search: WFRF:(Mesulam M. M.)

  • Result 1-14 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Vogel, Jacob W., et al. (author)
  • Four distinct trajectories of tau deposition identified in Alzheimer’s disease
  • 2021
  • In: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 27:5, s. 871-881
  • Journal article (peer-reviewed)abstract
    • Alzheimer’s disease (AD) is characterized by the spread of tau pathology throughout the cerebral cortex. This spreading pattern was thought to be fairly consistent across individuals, although recent work has demonstrated substantial variability in the population with AD. Using tau-positron emission tomography scans from 1,612 individuals, we identified 4 distinct spatiotemporal trajectories of tau pathology, ranging in prevalence from 18 to 33%. We replicated previously described limbic-predominant and medial temporal lobe-sparing patterns, while also discovering posterior and lateral temporal patterns resembling atypical clinical variants of AD. These ‘subtypes’ were stable during longitudinal follow-up and were replicated in a separate sample using a different radiotracer. The subtypes presented with distinct demographic and cognitive profiles and differing longitudinal outcomes. Additionally, network diffusion models implied that pathology originates and spreads through distinct corticolimbic networks in the different subtypes. Together, our results suggest that variation in tau pathology is common and systematic, perhaps warranting a re-examination of the notion of ‘typical AD’ and a revisiting of tau pathological staging. © 2021, The Author(s), under exclusive licence to Springer Nature America, Inc.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Zhou, XP, et al. (author)
  • Non-coding variability at the APOE locus contributes to the Alzheimer's risk
  • 2019
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 3310-
  • Journal article (peer-reviewed)abstract
    • Alzheimer’s disease (AD) is a leading cause of mortality in the elderly. While the coding change of APOE-ε4 is a key risk factor for late-onset AD and has been believed to be the only risk factor in the APOE locus, it does not fully explain the risk effect conferred by the locus. Here, we report the identification of AD causal variants in PVRL2 and APOC1 regions in proximity to APOE and define common risk haplotypes independent of APOE-ε4 coding change. These risk haplotypes are associated with changes of AD-related endophenotypes including cognitive performance, and altered expression of APOE and its nearby genes in the human brain and blood. High-throughput genome-wide chromosome conformation capture analysis further supports the roles of these risk haplotypes in modulating chromatin states and gene expression in the brain. Our findings provide compelling evidence for additional risk factors in the APOE locus that contribute to AD pathogenesis.
  •  
6.
  •  
7.
  • Wang, Li-San, et al. (author)
  • Rarity of the Alzheimer Disease-Protective APP A673T Variant in the United States.
  • 2015
  • In: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 72:2
  • Journal article (peer-reviewed)abstract
    • Recently, a rare variant in the amyloid precursor protein gene (APP) was described in a population from Iceland. This variant, in which alanine is replaced by threonine at position 673 (A673T), appears to protect against late-onset Alzheimer disease (AD). We evaluated the frequency of this variant in AD cases and cognitively normal controls to determine whether this variant will significantly contribute to risk assessment in individuals in the United States.
  •  
8.
  •  
9.
  • Van Deerlin, Vivian M, et al. (author)
  • Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:3, s. 234-239
  • Journal article (peer-reviewed)abstract
    • Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile dementia. The predominant neuropathology is FTLD with TAR DNA-binding protein (TDP-43) inclusions (FTLD-TDP). FTLD-TDP is frequently familial, resulting from mutations in GRN (which encodes progranulin). We assembled an international collaboration to identify susceptibility loci for FTLD-TDP through a genome-wide association study of 515 individuals with FTLD-TDP. We found that FTLD-TDP associates with multiple SNPs mapping to a single linkage disequilibrium block on 7p21 that contains TMEM106B. Three SNPs retained genome-wide significance following Bonferroni correction (top SNP rs1990622, P = 1.08 x 10(-11); odds ratio, minor allele (C) 0.61, 95% CI 0.53-0.71). The association replicated in 89 FTLD-TDP cases (rs1990622; P = 2 x 10(-4)). TMEM106B variants may confer risk of FTLD-TDP by increasing TMEM106B expression. TMEM106B variants also contribute to genetic risk for FTLD-TDP in individuals with mutations in GRN. Our data implicate variants in TMEM106B as a strong risk factor for FTLD-TDP, suggesting an underlying pathogenic mechanism.
  •  
10.
  •  
11.
  •  
12.
  • Olofsson, Jonas K., et al. (author)
  • A cortical pathway to olfactory naming : evidence from primary progressive aphasia
  • 2013
  • In: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 136, s. 1245-1259
  • Journal article (peer-reviewed)abstract
    • It is notoriously difficult to name odours. Without the benefit of non-olfactory information, even common household smells elude our ability to name them. The neuroscientific basis for this olfactory language 'deficit' is poorly understood, and even basic models to explain how odour inputs gain access to transmodal representations required for naming have not been put forward. This study used patients with primary progressive aphasia, a clinical dementia syndrome characterized by primary deficits in language, to investigate the interactions between olfactory inputs and lexical access by assessing behavioural performance of olfactory knowledge and its relationship to brain atrophy. We specifically hypothesized that the temporal pole would play a key role in linking odour object representations to transmodal networks, given its anatomical proximity to olfactory and visual object processing areas. Behaviourally, patients with primary progressive aphasia with non-semantic subtypes were severely impaired on an odour naming task, in comparison with an age-matched control group. However, with the availability of picture cues or word cues, odour matching performance approached control levels, demonstrating an inability to retrieve but not to recognize the name and nature of the odorant. The magnitude of cortical thinning in the temporal pole was found to correlate with reductions in odour familiarity and odour matching to visual cues, whereas the inferior frontal gyrus correlated with both odour naming and matching. Volumetric changes in the mediodorsal thalamus correlated with the proportion of categorical mismatch errors, indicating a possible role of this region in error-signal monitoring to optimize recognition of associations linked to the odour. A complementary analysis of patients with the semantic subtype of primary progressive aphasia, which is associated with marked temporopolar atrophy, revealed much more pronounced impairments of odour naming and matching. In identifying the critical role of the temporal pole and inferior frontal gyrus in transmodal linking and verbalization of olfactory objects, our findings provide a new neurobiological foundation for understanding why even common odours are hard to name.
  •  
13.
  • Olofsson, Jonas K., et al. (author)
  • A Designated Odor-Language Integration System in the Human Brain
  • 2014
  • In: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 34:45, s. 14864-14873
  • Journal article (peer-reviewed)abstract
    • Odors are surprisingly difficult to name, but the mechanism underlying this phenomenon is poorly understood. In experiments using event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI), we investigated the physiological basis of odor naming with a paradigm where olfactory and visual object cues were followed by target words that either matched or mismatched the cue. We hypothesized that word processing would not only be affected by its semantic congruency with the preceding cue, but would also depend on the cue modality (olfactory or visual). Performance was slower and less precise when linking a word to its corresponding odor than to its picture. The ERP index of semantic incongruity (N400), reflected in the comparison of nonmatching versus matching target words, was more constrained to posterior electrode sites and lasted longer on odor-cue (vs picture-cue) trials. In parallel, fMRI cross-adaptation in the right orbitofrontal cortex (OFC) and the left anterior temporal lobe (ATL) was observed in response to words when preceded by matching olfactory cues, but not by matching visual cues. Time-series plots demonstrated increased fMRI activity in OFC and ATL at the onset of the odor cue itself, followed by response habituation after processing of a matching (vs nonmatching) target word, suggesting that predictive perceptual representations in these regions are already established before delivery and deliberation of the target word. Together, our findings underscore the modality-specific anatomy and physiology of object identification in the human brain.
  •  
14.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-14 of 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view