SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Mudring Anja Verena Professor) "

Search: WFRF:(Mudring Anja Verena Professor)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Siebeneichler, Stefanie, 1990- (author)
  • Magnetic frustration and low-dimensional magnetism : in transition metal fluorophosphates and square-lattice intermetallic compounds
  • 2022
  • Doctoral thesis (other academic/artistic)abstract
    • Solids can display a variety of vastly different magnetic properties. Besides the generally well known ferromagnets, antiferromagnets with their antiparallel arrangements of magnetic moments can exhibit a wide range of complex magnetic behavior such as magnetic frustration or low-dimensional antiferromagnetism. Magnetic frustration emerges from competing magnetic interactions and typically leads to unusual magnetic ground states such as incommensurate or non-collinear magnetic structures or spin glasses. Low-dimensional magnetic behavior occurs if the magnetic interactions within a solid become negligible in at least one dimension in space. These magnetic phenomena are not restricted to certain compound classes but commonly linked to structural features such as the magnetic ion lattice geometry or the topology of the crystal structure. Effects of magnetic frustration are most pronounced in materials with high crystal symmetries and commonly observed in antiferromagnets with certain magnetic ion lattices such as triangular or square nets. Low-dimensional magnetic interactions may arise from a spacial separation of the magnetic ions within the unit cell. Furthermore, complex magnetic properties may also arise from intricate magnetic ion lattices with unusual topologies, as it is often the case in open framework materials. This thesis focuses on the magnetic properties of a series of transition metal (T) fluorophosphates (T = Fe, Co, Ni) that display a variety of crystal structure topologies, the cubic perovskite (NH4)CoF3 as well as the intermetallic phases LaMn2(Ge1-xSix)2 and LaMn2-xAu4+x in which the Mn atoms form square nets.Ionothermal reactions, a soft-chemistry approach based on ionic liquids (ILs), was employed to synthesize the above mentioned transition metal phosphates and fluoride. Ionic liquids are salts with melting points below 100 ◦C that typically contain organic cations. Task-specific ILs may be designed to fulfill multiple purposes within an ionothermal synthesis. Thus, an IL may be the solvent, mineralizer, fluorine source and structure directing agent all in one. Thanks to the unique properties of ILs, ionothermal syntheses enable the formation of a wide range of crystal structure topologies from low-dimensional motifs to open frameworks. Furthermore, kinetics plays an important role during the crystal structure formation in an ionothermal reaction and may lead to metastable phases.Nearly all presented compounds display some type of complex magnetic behavior including magnetic frustration on the triangular and square lattices, incommensurate and/or non-collinear magnetic structures, spin glass behavior and low-dimensional magnetism of a spin dimer or chain. The magnetic properties were studied using magnetization measurements in combination with other techniques such as powder neutron and X-ray diffraction (PND, PXRD) and specific heat measurements. Temperature dependent PND measurements were employed to determine the magnetic structures and phase transitions in selected frustrated systems. A number of incommensurate and/or non-collinear arrangements of the magnetic moments including the 120◦, canted ferromagnetic, helical, conical and the so-called hedgehog spin-vortex crystal (SVC) state were observed. Density functional theory (DFT) calculations were performed to determine the total energies of possible magnetic structure solutions that cannot be distinguished from PND. Furthermore, some magnetic phase diagrams were established.
  •  
2.
  • Adranno, Brando, 1993- (author)
  • In Light of Ionic Materials : A short exploration of ionic materials for light-related applications
  • 2022
  • Doctoral thesis (other academic/artistic)abstract
    • Ionic liquids (ILs) have been one of the most attractive classes of materials of the last decades. The reason behind this is their peculiar set of properties, which enable their possible application in several research fields. ILs are salts that exhibit a very low melting point, which has been arbitrarily defined to be below 100 °C. Due to their ionic nature, ILs have little to no vapor pressure and they often demonstrate good electrical conductivity and high thermal and electrochemical stability. In this work, the focus is directed toward the exploitation of ILs for the engineering of materials that can have a primary role in light-emitting or light-absorbing devices. Materials belonging to the first type are explored in Papers I-III, while the ones belonging to the second are tackled in Papers IV and V.There has always been a struggle to find a balance between costs and the efficiency of emitting materials for application in dedicated devices. In Papers I-III, two strategies are taken into account to address this issue. Finding inspiration from ionic complexes of Mn(II), newly designed ionic materials and ILs emitting green light are proposed as an alternative to the more expensive heavy metals-based ones such as Ir(III) and Pt(II). Coming closer to an ideal compromise of cost and performance, fully organic and extremely cheap low-melting salts based on the 8-hydroxyquinoline unit were prepared. These compounds revealed efficient fluorescence in the blue region of the spectrum for such simple molecules, paving the way for the preparation of possibly inexpensive light-emitting devices.In Paper IV, direct absorption of light is taken into consideration with photoresponsive ionic liquids, which undergo cis-trans isomerization. Due to this feature and their ionic nature, these materials could be adopted into photoswitches. Additionally, the effect of functional groups on the isomerization of the ILs and on the ability of the materials to undergo mesophase formation was studied.One of the key components of dye-sensitized solar cells is the electrolytic mediator sandwiched between two electrodes. This has been a matter of intense study due to issues regarding its stability, which impair the device's performance. ILs can be adopted in devices to solve this issue. In Paper V, triazolium ILs allowed the manufacturing of devices with higher efficiencies and longer lifetimes than the ones realized with imidazolium relatives. These materials allowed for the stability of the ionic couple I-/I3- and moisture resistance due to their non-hygroscopic nature.
  •  
3.
  • Renier, Olivier, 1995- (author)
  • Exploring The Versatility Of Ionic Liquids : From fundamental understanding to materials inspired from ionic liquids
  • 2022
  • Doctoral thesis (other academic/artistic)abstract
    • Ionic liquids (ILs) have gained popularity as “green” and safe replacements for conventional organic solvents. They are defined as ionic salts displaying a melting point below 100 °C. Some of their unique characteristics also include negligible vapour pressure, good electrical conductivity as well as good thermal and chemical stability. While their “green” nature has since been disputed, they can be used and applied in many additional fields, such as solar energy production, new lighting technology and much more. In this thesis, the aim is to gain fundamental knowledge on ILs, specifically their structures and behaviour, in order to design materials tailored for specific applications. We also aim to use ILs to access otherwise difficult to synthesize materials and study their properties and applications.The thermal properties of ILs are one of their most important characteristics. However, it is still poorly understood how the structural aspects of ILs influence their particular thermal behaviour. By studying different systems, we derived relationships between the structure and the thermal behaviour of ILs. Hydrogen bonding and other supramolecular interactions play a major role in controlling both the melting temperature and the IL's ability to support a liquid crystalline mesophase. This control was shown both in a series of ILs based on 1-alkyl-3-dodecylimidazolium bromide and in a series of ILs based on azobenzene-imidazolium compounds.The stability issues associated with the electrolytes used in dye-sensitized solar cells (DSSCs) present a major disadvantage. We tested using ILs as electrolytes to avoid this problem. In our study, we used 1,3-dialkyltriazolium ILs as electrolytes in combination with the iodide redox couple, and not only was the stability of the DSSC improved but also the performance of IL-based DSSCs.Efficient luminescent materials are always sought after. Using ILs in combination with lanthanides, we achieved highly luminescent compounds as well as some magnetic ones. ILs can also be used to access anhydrous forms of otherwise hydrophilic species, such as ions of the lanthanides. We have used acetate ILs to attain water free complexes of the ions from the whole lanthanide series, starting from the hydrated species. This simple process could be applied to more species of hydrophilic metals that are otherwise known to form hydrates.Finally, the ligand obtained through ILs, 1,3-diethylimidazole-2-thione was used to aid in the studying of phase transitions when combined with zinc chloride (ZnCl2). It helped to reveal a yet unseen amorphous step in the solid-solid phase transition from a single crystal into another one, where morphology of the particle was preserved. I forsee that more fundamental structural studies can be conducted by forcing the coordination of the soft-donor nitrogen onto lanthanides by using dicyanamide ILs in the future.
  •  
4.
  • Hammond, Oliver S., et al. (author)
  • Molecular Architecture Effects on Bulk Nanostructure in Bis(Orthoborate) Ionic Liquids
  • 2023
  • In: Small. - : John Wiley and Sons Inc. - 1613-6810 .- 1613-6829. ; 29
  • Journal article (peer-reviewed)abstract
    • A series of 19 ionic liquids (ILs) based on phosphonium and imidazolium cations of varying alkyl-chain lengths with the orthoborate anions bis(oxalato)borate [BOB]−, bis(mandelato)borate, [BMB]− and bis(salicylato)borate, [BScB]−, are synthesized and studied using small-angle neutron scattering (SANS). All measured systems display nanostructuring, with 1-methyl-3-n-alkyl imidazolium-orthoborates forming clearly bicontinuous L3 spongelike phases when the alkyl chains are longer than C6 (hexyl). L3 phases are fitted using the Teubner and Strey model, and diffusely-nanostructured systems are primarily fitted using the Ornstein-Zernicke correlation length model. Strongly-nanostructured systems have a strong dependence on the cation, with molecular architecture variation explored to determine the driving forces for self-assembly. The ability to form well-defined complex phases is effectively extinguished in several ways: methylation of the most acidic imidazolium ring proton, replacing the imidazolium 3-methyl group with a longer hydrocarbon chain, substitution of [BOB]− by [BMB]−, or exchanging the imidazolium for phosphonium systems, irrespective of phosphonium architecture. The results suggest there is only a small window of opportunity, in terms of molecular amphiphilicity and cation:anion volume matching, for the formation of stable extensive bicontinuous domains in pure bulk orthoborate-based ILs. Particularly important for self-assembly processes appear to be the ability to form H-bonding networks, which offer additional versatility in imidazolium systems. © 2023 The Authors.
  •  
5.
  • Hammond, Oliver S., et al. (author)
  • Small-Angle Neutron Scattering Insights into 2-Ethylhexyl Laurate : A Remarkable Bioester
  • 2024
  • In: ACS Sustainable Chemistry and Engineering. - : American Chemical Society (ACS). - 2168-0485. ; 12:5, s. 1816-1821
  • Journal article (peer-reviewed)abstract
    • Commercial (protiated) samples of the "green" and biodegradable bioester 2-ethylhexyl laurate (2-EHL) were mixed with D-2-EHL synthesized by hydrothermal deuteration, with the mixtures demonstrating bulk structuring in small-angle neutron scattering measurements. Analysis in a polymer scattering framework yielded a radius of gyration (R (g)) of 6.5 angstrom and a Kuhn length (alternatively described as the persistence length or average segment length) of 11.2 angstrom. Samples of 2-EHL dispersed in acetonitrile formed self-assembled structures exceeding the molecular dimensions of the 2-EHL, with a mean aggregation number (N-agg) of 3.5 +/- 0.2 molecules across the tested concentrations. We therefore present structural evidence that this ester can function as a nonionic (co)-surfactant. The available surfactant-like conformations appear to enable performance beyond the low calculated hydrophilic-lipophilic balance value of 2.9. Overall, our data offer an explanation for 2-EHL's interfacial adsorption properties via self-assembly, resulting in strong emolliency and lubricity for this sustainable ester-based bio-oil.
  •  
6.
  • Li, Sichao, et al. (author)
  • Anion Architecture Controls Structure and Electroresponsivity of Anhalogenous Ionic Liquids in a Sustainable Fluid
  • 2024
  • In: Journal of Physical Chemistry B. - : American Chemical Society. - 1520-6106 .- 1520-5207. ; 128:17, s. 4231-4242
  • Journal article (peer-reviewed)abstract
    • Three nonhalogenated ionic liquids (ILs) dissolved in 2-ethylhexyl laurate (2-EHL), a biodegradable oil, are investigated in terms of their bulk and electro-interfacial nanoscale structures using small-angle neutron scattering (SANS) and neutron reflectivity (NR). The ILs share the same trihexyl(tetradecyl)phosphonium ([P6,6,6,14]+) cation paired with different anions, bis(mandelato)borate ([BMB]−), bis(oxalato)borate ([BOB]−), and bis(salicylato)borate ([BScB]−). SANS shows a high aspect ratio tubular self-assembly structure characterized by an IL core of alternating cations and anions with a 2-EHL-rich shell or corona in the bulk, the geometry of which depends upon the anion structure and concentration. NR also reveals a solvent-rich interfacial corona layer. Their electro-responsive behavior, pertaining to the structuring and composition of the interfacial layers, is also influenced by the anion identity. [P6,6,6,14][BOB] exhibits distinct electroresponsiveness to applied potentials, suggesting an ion exchange behavior from cation-dominated to anion-rich. Conversely, [P6,6,6,14][BMB] and [P6,6,6,14][BScB] demonstrate minimal electroresponses across all studied potentials, related to their different dissociative and diffusive behavior. A mixed system is dominated by the least soluble IL but exhibits an increase in disorder. This work reveals the subtlety of anion architecture in tuning bulk and electro-interfacial properties, offering valuable molecular insights for deploying nonhalogenated ILs as additives in biodegradable lubricants and supercapacitors. 
  •  
7.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view