SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Nåbo Arne 1958 ) "

Search: WFRF:(Nåbo Arne 1958 )

  • Result 1-26 of 26
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ahlström, Christer, et al. (author)
  • Effects of visual, cognitive and haptic tasks on driving performance indicators
  • 2012
  • In: Advances in Human Aspects of Road and Rail Transportation. - San Francisco, USA : CRC Press. - 9781439871232 ; , s. 673-682
  • Conference paper (peer-reviewed)abstract
    • A driving simulator study was conducted by using the same setup in two driving simulators, one with a moving base and one with a fixed base. The aim of the study was to investigate a selection of commonly used performance indicators (PIs) for their sensitivity to secondary tasks loading on different modalities and levels of difficulty, and to evaluate their robustness across simulator platforms. The results showed that, across platforms, the longitudinal PIs behaved similarly whereas the lateral control and eye movement based performance indicators differed. For modality, there were considerable effects on lateral, longitudinal as well as eye movement PIs. However, there were only limited differences between the baseline and the cognitive and haptic tasks. For difficulty, clear effects on PIs related to lateral control and eye movements were shown. Additionally, it should be noted that there were large individual differences for several of the PIs. In conclusion, many of the most commonly used PIs are susceptible to individual differences, and, especially the PIs for lateral control, to the platform and environment where they are acquired, which is why generalizations should be made with caution.
  •  
2.
  • Aramrattana, Maytheewat, 1988-, et al. (author)
  • A Novel Risk Indicator for Cut-In Situations
  • 2020
  • In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020. - Piscataway, NJ : Institute of Electrical and Electronics Engineers Inc.. - 9781728141497 - 9781728141503
  • Conference paper (peer-reviewed)abstract
    • Cut-in situations occurs when a vehicle intentionally changes lane and ends up in front of another vehicle or in-between two vehicles. In such situations, having a method to indicate the collision risk prior to making the cut-in maneuver could potentially reduce the number of sideswipe and rear end collisions caused by the cut-in maneuvers. This paper propose a new risk indicator, namely cut-in risk indicator (CRI), as a way to indicate and potentially foresee collision risks in cut-in situations. As an example use case, we applied CRI on data from a driving simulation experiment involving a manually driven vehicle and an automated platoon in a highway merging situation. We then compared the results with time-to-collision (TTC), and suggest that CRI could correctly indicate collision risks in a more effective way. CRI can be computed on all vehicles involved in the cut-in situations, not only for the vehicle that is cutting in. Making it possible for other vehicles to estimate the collision risk, for example if a cut-in from another vehicle occurs, the surrounding vehicles could be warned and have the possibility to react in order to potentially avoid or mitigate accidents. 
  •  
3.
  • Aramrattana, Maytheewat, et al. (author)
  • A simulation framework for cooperative intelligent transport systems testing and evaluation
  • 2019
  • In: Transportation Research Part F. - Kidlington : Elsevier. - 1369-8478 .- 1873-5517. ; 61:February, s. 268-280
  • Journal article (peer-reviewed)abstract
    • Connected and automated driving in the context of cooperative intelligent transport systems (C-ITS) is an emerging area in transport systems research. Interaction and cooperation between actors in transport systems are now enabled by the connectivity by means of vehicle-to-vehicle and vehicle-to-infrastructure (V2X) communication. To ensure the goals of C-ITS, which are safer and more efficient transport systems, testing and evaluation are required before deployment of C-ITS applications. Therefore, this paper presents a simulation framework-consisting of driving-, traffic-, and network-simulators-for testing and evaluation of C-ITS applications. Examples of cooperative adaptive cruise control (CACC) applications are presented, and are used as test cases for the simulation framework as well as to elaborate on potential use cases of it. Challenges from combining the simulators into one framework, and limitations are reported and discussed. Finally, the paper concludes with future development directions, and applications of the simulation framework in testing and evaluation of C-ITS.
  •  
4.
  • Aramrattana, Maytheewat, et al. (author)
  • A Simulation Study on Effects of Platooning Gaps on Drivers of Conventional Vehicles in Highway Merging Situations
  • 2021
  • In: IEEE transactions on intelligent transportation systems (Print). - Piscataway, NJ : Institute of Electrical and Electronics Engineers Inc.. - 1524-9050 .- 1558-0016.
  • Journal article (peer-reviewed)abstract
    • Platooning refers to a group of vehicles that--enabled by wireless vehicle-to-vehicle (V2V) communication and vehicle automation--drives with short inter-vehicular distances. Before its deployment on public roads, several challenging traffic situations need to be handled. Among the challenges are cut-in situations, where a conventional vehicle--a vehicle that has no automation or V2V communication--changes lane and ends up between vehicles in a platoon. This paper presents results from a simulation study of a scenario, where a conventional vehicle, approaching from an on-ramp, merges into a platoon of five cars on a highway. We created the scenario with four platooning gaps: 15, 22.5, 30, and 42.5 meters. During the study, the conventional vehicle was driven by 37 test persons, who experienced all the platooning gaps using a driving simulator. The participants' opinions towards safety, comfort, and ease of driving between the platoon in each gap setting were also collected through a questionnaire. The results suggest that a 15-meter gap prevents most participants from cutting in, while causing potentially dangerous maneuvers and collisions when cut-in occurs. A platooning gap of at least 30 meters yield positive opinions from the participants, and facilitating more smooth cut-in maneuvers while less collisions were observed. 
  •  
5.
  • Aramrattana, Maytheewat, et al. (author)
  • Cooperative Driving Simulation
  • 2016
  • In: Proceedings of the Driving Simulation Conference 2016. ; , s. 123-132
  • Conference paper (peer-reviewed)abstract
    • For a few decades, driving simulators have been supporting research and development of advanced driver assistance systems (ADAS). In the near future, connected vehicles are expected to be deployed. Driving simulators will need to support evaluation of cooperative driving applications within cooperative intelligent transportation systems (C-ITS) scenarios. C-ITS utilize vehicle-to-vehicle and vehicle-to-infrastructure (V2X) communication. Simulation of the inter vehicle communication is often not supported in driving simulators. On the other hand, previous efforts have been made to connect network simulators and traffic simulators, to perform C-ITS simulations. Nevertheless, interactions between actors in the system is an essential aspect of C-ITS. Driving simulators can provide the opportunity to study interactions and reactions of human drivers to the system. This paper present simulation of a C-ITS scenario using a combination of driving, network, and traffic simulators. The architecture of the solution and important challenges of the integration are presented. A scenario from Grand Cooperative Driving Challenge (GCDC) 2016 is implemented in the simulator as an example use case. Lastly, potential usages and future developments are discussed.
  •  
6.
  • Aramrattana, Maytheewat, et al. (author)
  • Safety Analysis of Cooperative Adaptive Cruise Control in Vehicle Cut-in Situations
  • 2017
  • In: Proceedings of 2017 4th International Symposium on Future Active Safety Technology towards Zero-Traffic-Accidents (FAST-zero). - : Society of Automotive Engineers of Japan.
  • Conference paper (peer-reviewed)abstract
    • Cooperative adaptive cruise control (CACC) is a cooperative intelligent transport systems (C-ITS) function, which especially when used in platooning applications, possess many expected benefits including efficient road space utilization and reduced fuel consumption. Cut-in manoeuvres in platoons can potentially reduce those benefits, and are not desired from a safety point of view. Unfortunately, in realistic traffic scenarios, cut-in manoeuvres can be expected, especially from non-connected vehicles. In this paper two different controllers for platooning are explored, aiming at maintaining the safety of the platoon while a vehicle is cutting in from the adjacent lane. A realistic scenario, where a human driver performs the cut-in manoeuvre is used to demonstrate the effectiveness of the controllers. Safety analysis of CACC controllers using time to collision (TTC) under such situation is presented. The analysis using TTC indicate that, although potential risks are always high in CACC applications such as platooning due to the small inter-vehicular distances, dangerous TTC (TTC < 6 seconds) is not frequent. Future research directions are also discussed along with the results.
  •  
7.
  • Aramrattana, Maytheewat, 1988-, et al. (author)
  • Simulation of cut-in by manually driven vehicles in platooning scenarios
  • 2017
  • In: IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC. - Piscataway, NJ : IEEE. - 9781538615256 - 9781538615263 - 9781538615270
  • Conference paper (peer-reviewed)abstract
    • In the near future, Cooperative Intelligent Transport System (C-ITS) applications are expected to be deployed. To support this, simulation is often used to design and evaluate the applications during the early development phases. Simulations of C-ITS scenarios often assume a fleet of homogeneous vehicles within the transportation system. In contrast, once C-ITS is deployed, the traffic scenarios will consist of a mixture of connected and non-connected vehicles, which, in addition, can be driven manually or automatically. Such mixed cases are rarely analysed, especially those where manually driven vehicles are involved. Therefore, this paper presents a C-ITS simulation framework, which incorporates a manually driven car through a driving simulator interacting with a traffic simulator, and a communication simulator, which together enable modelling and analysis of C-ITS applications and scenarios. Furthermore, example usages in the scenarios, where a manually driven vehicle cut-in to a platoon of Cooperative Adaptive Cruise Control (CACC) equipped vehicles are presented.
  •  
8.
  • Bhatti, Harrison John, 1979-, et al. (author)
  • A Multidimensional Readiness Index for the Electrification of the Transportation System in China, Norway, and Sweden
  • 2023
  • In: Future Transportation. - Basel : MDPI. - 2673-7590. ; 3:4, s. 1360-1384
  • Journal article (peer-reviewed)abstract
    • The main objective of this paper is to develop a readiness index model that can serve as an analytical tool for exploring the achievements of the electrification of transportation systems. We have applied this readiness index model to evaluate the readiness positioning of China, Norway, and Sweden towards transportation electrification. We have chosen these three countries as they represent diversity among countries adopting electric transportation system solutions. Our developed readiness index model has four key dimensions: technological readiness, political readiness, societal readiness, and economic readiness. The embeddedness of all four dimensions in one model provides a multi-perspective way of analyzing and evaluating the readiness levels of countries moving towards transforming their transportation system. Therefore, we named the model a “multidimensional readiness index”. Our main conclusions are that political processes and decisiveness are the most important factors, followed by societal needs and economic ability, with the current technology as the fourth. Without the participation of dedicated and determined political decision makers, the other three factors are challenging to obtain. Political decision makers need to facilitate economic means to support the transformation in society and affected industries to balance the economic disadvantages of the electrically powered vehicle systems until they pass the cost disadvantage turning point. The development of relevant technology is no longer the significant barrier it was at the beginning of this transformation about 20 years ago. The technology for electrically powered transportation systems and devices is widely available now, although it is continuously evolving and being improved. Associated industries cannot be expected to initiate, finance, take risks, and take the lead in this global societal transformation without clear and strong political support.
  •  
9.
  • Bhatti, Harrison John, 1979-, et al. (author)
  • A System Approach to Electrification of Transportation – An International Comparison
  • 2022
  • Reports (other academic/artistic)abstract
    • Globally, the transportation system is transforming from a fossil-based to an electrification system. Some countries are leading in the transformation process. Some countries are rapidly catching up to become market leaders in developing and introducing new techniques and equipment that support the transformation process in their countries. In contrast, others are still relying on their old fossil-based system or could not have enough understanding of how to deal with this complex transformation of the transportation system.The electrification of the transportation system is not an isolated system that can be handled as a single technological element. It is a group of multiple technologies, political, societal, and economic sub-systems each of these sub-systems is embedded in each other, forming the whole system. Therefore, it is important to see and manage the system from a holistic perspective to transform the transportation electrification system efficiently. We have selected eight countries from three different continents – Asia (China, India), Australia, which is a country and continent, and Europe (Germany, Norway, Slovenia, Sweden, and the UK) to explore the transformational process of transportation electrification based on each countries’ conditions. We have chosen these continents as they are diversified in adopting transportation electrification system solutions.Our main conclusions are that the political processes and political decisiveness are the most important, followed by the societal and economic, with technology as the fourth. The other three are difficult to obtain without dedicated and determined political decision-makers. Political decision-makers need to use economic means to support the transformation in society and industry to balance the economic disadvantage of electric systems until they pass the cost disadvantage turning point. Technology is no longer a significant barrier as it was about 20 years ago. Now, technology is available, although it can be improved. The important part is to understand how to utilize the existing technology efficiently to transform the old fossil-based transportation system into new electrification of the transportation system. Without clear and strong political support, the industry cannot be expected to initiate, finance, take risks, and take the lead in this global societal transformation.Our analysis shows that China is being positioned as the leading country in the world in the electrification of the transportation system because of the strong technological advancements, control of the entire value chain, strong government decisiveness, and execution power in developing and implementing favorable electric vehicle (EV) policies, the willingness of the public sector to take the lead and citizens support to adopt clean technology. Norway has rapidly become one of the newcomers with large numbers of registered electric vehicles according to its population size within a few years, despite lacking manufacturing electric vehicles (EVs) and equipment for transportation electrification. Germany is leading in the technological sector of transportation electrification within Europe with its prestigious top-selling electric vehicle brands in Germany, such as Volkswagen, Mercedes Benz, BMW, Smart, and Audi, and establishing a battery Gigafactory with an annual potential production capacity of 60 GWh. However, Germany is still lagging behind from the societal perspective of not having enough sales of electric vehicles compared to gasoline-based vehicles. Sweden is a rapidly growing country in the electrification of transport, with three vehicle manufacturers introducing EVs in 2021 and developing electric roads system for more than ten years. Sweden is also working on establishing a new 50 GWh battery manufacturing plant in Gothenburg, Sweden. The UK is also catching up with its other European countries in transforming the transportation system with its strong government support. The British government has kept transportation electrification on its national agenda and considering building a Gigafactory to obtain a position as a future battery leader. However, the UK's adoption rate of electric vehicles is still slow compared to fossil-based vehicles. India, Australia, and Slovenia are far behind in the process of transportation transformation than China, Norway, Germany, Sweden, and the UK. One of the common reasons in all these countries is their governments' baby steps even though they have high ambitions. Their governments require a revolutionized and systems approach to enable remarkable change in the transformation process.
  •  
10.
  • Bhatti, Harrison John, 1979-, et al. (author)
  • Electric Roads : Energy Supplied by Local Renewable Energy Sources and Microgrid Distribution System
  • 2019
  • Conference paper (other academic/artistic)abstract
    • The electric road system is an emerging concept in this modern era. The advancement of technology has made it possible to give this concept a real shape (electric road system). However, the energy provided to the electric roads is still produced by non-renewable energy sources, which are completely unhealthy and harmful for society. Furthermore, the traditional grid is not suited to integrate with decentralized/localized energy generation and distribution systems. It is an ineffectual and environmentally extravagant system. Therefore, the preliminary contribution of this research is to introduce a decentralized/localized energy generation system based on renewable energy sources and energy distribution to electric roads through the emerging technology of microgrid and smart grid systems, which have the capability to integrate with renewable energy sources easily. Thus, producing electricity with renewable energy sources is environmentally friendly, less expensive, and available without charges. However, each source of energy has some environmental impacts and cost differences. A brief description of the environmental and cost impact of renewable energy sources (wind, solar) is also presented. 
  •  
11.
  • Bhatti, Harrison John, et al. (author)
  • Multidimensional Readiness Index for Electrification of Transportation System in China, Norway, and Sweden
  • 2022
  • Reports (other academic/artistic)abstract
    •  The main objective of this paper is to develop a readiness index model that can serve as an analytical tool for exploring the achievements of electrification of transportation systems. We have applied this readiness index model to evaluate the readiness positioning of China, Norway, and Sweden towards transport electrification. We have chosen these three countries as they represent diversity among countries that are in the process of adopting electrified transport system solutions. Our developed readiness index model has four key dimensions, technological readiness, political readiness, societal readiness, and economic readiness. The embeddedness of all four dimensions in one model provides a multi-perspective way of analyzing and evaluating the readiness levels of countries moving towards transforming the transportation system. Therefore, we named the model a“multidimensional readiness index.”Our main conclusions are that the political processes and political decisiveness involved are the most important factors followed by the societal needs and economic ability, with the current technology available as the fourth. Without the participation of dedicated and determined political decision-makers being involved, the other three factors are challenging to obtain. Political decision-makers need to facilitate the use of economic means to support the transformation in the society and affected industries to balance the initial economic disadvantages of the electrically-powered systems until they pass the cost disadvantage turning point. The development of the relevant technology is no longer a great barrier as it was at the beginning of this transformation, about 20 years ago. The technology for electrically powered transportation systems and devices is widely available now, although it is continuously evolving and being improved. Associated industries cannot be expected to initiate, finance, take the risk, and take the lead in this global societal transformation without clear and strong political support.Based on our multidimensional readiness index analysis, China is being positioned as the leading country in the world in the electrification of its transportation systems. This is mainly so because of the strong technology advancements, control of the entire value chain of research, development (R&D), and manufacturing of EVs, strong government decisiveness, and execution power in developing and implementing favorable electric vehicle (EV) policies. The willingness of China’s public sector to take the lead and their citizen’s support to adopt clean technology are additional factors facilitating this advancement. Norway has rapidly become one of the newcomers in electrification with large numbers of registered electric vehicles, despite lacking manufacturing industries of electric vehicles. Sweden is a rapidly developing country in the electrification of transport, with three vehicle manufacturers introducing EVs in 2021. The government has been committed to building demonstration sites for electric roads systems for more than ten years. Sweden is also working on establishing battery manufacturing facilities dedicated to the needs of electrified transportation equipment and systems. 
  •  
12.
  • Danilovic, Mike, et al. (author)
  • Exploring battery-swapping for electric vehicles in China 1.0
  • 2021
  • Reports (other academic/artistic)abstract
    • In this report we explore the situation in China vis-à-vis battery-swapping technology, its history, the current level of achievements, direction of the technology and its implications for society. We have chosen to explore battery-swapping solutions because they are complementary to stationary charging piles, and because their introduction in China has been ongoing since 2010. We want to understand the motivation, drives and barriers to this development and explore the underlying technical as well as the business aspects of establishing and expanding these new solutions. As researchers, it is our ambition to explore and understand the underling aspects, motives and drivers as well as conditions, challenges and consequences, in this case, the introduction of battery-swapping systems. Battery-swapping is not new. It was explored in Europe, Israel and the USA before China took the initiative to develop large scale swapping systems. This is explored in the Appendix to provide a historical and context-based understanding of its origin and global status in order to better understand the Chinese situation. Our focus is initially on new energy vehicles (NEV), more specific the segment of small electric cars. We are aware that there are also buses, trucks, heavy duty vehicles, small sized two- and three wheelers etc. that use battery-swapping technology, however, they are not focused upon in this paper.
  •  
13.
  • Fu, Jiali, 1973-, et al. (author)
  • Locating charging infrastructure for freight transport using multiday travel data
  • 2024
  • In: Transport Policy. - London : Elsevier. - 0967-070X .- 1879-310X. ; 152, s. 21-28
  • Journal article (peer-reviewed)abstract
    • Vehicle electrification has shown the potential to reduce environmental impacts and greenhouse gas emissions from the transport sector. As electric vehicles (EVs) become increasingly prominent, the efficient placement of charging infrastructure poses a complex challenge that demands careful consideration. This paper delves into the investigation of how travel and parking patterns, derived from empirical data on freight vehicles, influence the optimal distribution of charging infrastructure across the freight network. This paper presents a node-based approach to optimize the allocation of charging infrastructure tailored explicitly for freight transport. The study identifies optimal locations for operator-owned charging infrastructure by leveraging GPS-based data collected from a fleet of freight vehicles operating in the greater Gothenburg metropolitan area. This research aims to enhance our understanding of the charging infrastructure requirements inherent in the freight transport system and provide decision support to logistics companies contemplating the shift from conventional fossil fuel vehicles to electric freight vehicles. The proposed model holds the potential for seamless adaptation to diverse freight transport systems, offering valuable insights to expedite the transition toward fossil-free freight transport on a broader scale. 
  •  
14.
  • Kircher, Katja, 1973-, et al. (author)
  • Secondary Task Workload Test Bench – 2TB : final report
  • 2014
  • Reports (other academic/artistic)abstract
    • The main aim of this study was to investigate a selection of commonly used performance indicators (PIs) that have been reported to be sensitive to distraction and workload. More specifically, the PIs were tested for their ability to differentiate between task modalities (visual, cognitive and haptic) and task difficulty (easy, medium and hard). It was investigated whether possible differences were constant across two traffic situations (with/without lead vehicle) and two driving simulators. The experiment was conducted in the VTI Driving Simulator III, an advanced moving-base simulator, and in the Volvo Car Corporation driving simulator, an advanced fixed-base simulator. Both simulators were equipped with Smart Eye Pro eye tracking systems. A visual, a cognitive and a haptic secondary task were chosen to test the ability of the PIs to distinguish between the tasks’ loading on different modalities. Some of the main results from the study were:There were only minor differences between the two simulators for driving behaviour as described by longitudinal PIs. There was no overall offset, and the main difference was that the visual task led to stronger speed reductions in the moving-base simulator, which influenced both the mean speed and the speeding index.Regarding lateral PIs, major differences between the two simulators were found, both as a general offset and for those factor combinations that include modality and task difficulty level.With the visual or the haptic task active, the drivers positioned themselves further to the left and the variation in lateral position was higher in the fixed-base simulator.The number of lane crossings did not differ considerably between the simulators, but the lane departure area was larger on average in the fixed-base simulator, again influenced by modality, with the largest lane departure areas for the visual task, and in the case of the fixed-base simulator for the haptic task as well.Most of the eye movement related PIs had a general offset between the simulators. The drivers in the fixed-base simulator accumulated more time with their eyes off the road, especially during the visual and the cognitive tasks, while the drivers in the moving-base simulator cast longer single glances at the display.
  •  
15.
  • Käck, Svetla, 1977-, et al. (author)
  • Batteribytessystem för tunga fordon i Sverige : en genomförbarhetsstudie
  • 2024
  • In: Sammanställning av referat från Transportforum 2024. - Linköping : Statens väg- och transportforskningsinstitut. ; , s. 320-321
  • Conference paper (other academic/artistic)abstract
    • Elektrifieringen av tunga transporter möter flera stora utmaningar. Möjliga laddningstekniker har olika styrkor och svagheter och bör utvärderas för att hitta de lösningarna som är bäst anpassade till förhållandena för tung trafik. För en snabb elektrifiering behövs elektrifieringslösningar som åkerier och logistikföretag har råd att investera i och som ger ett fordonsutnyttjande i nivå med dagens. Internationella erfarenheter tyder på att batteribytestekniken kan vara en konkurrenskraftig laddningslösning som har en har en hög potential för en snabb uppskalning. Batteribyteslösningar har redan idag en hög mognadsgrad tekniskt, och går dessutom att bygga ut på ett sätt där anskaffning av fordon och utbyggnad av laddstationer kan ske samtidigt och stegvis. Projektet är en genomförandestudie av hur batteribytestekniken skulle kunna tillämpas för tunga fordon för godstransporter i just Sverige. Det genomförs av VTI och Linköpings Universitet under 2023 och är finansierat av Energimyndigheten. Vi kartlägger både tekniska och affärsmässiga förutsättningar för batteribytessystem för tunga fordon i ett svenskt sammanhang. Projektet inkorporerar bland annat intervjuer med aktörer i Sverige, omvärldsbevakning för tekniken internationellt, analys av teknisk integration för både fordon och stationer, vilket inkluderar nödvändiga certifieringar med mera, samt modellering och simulering av några fallstudier. En omställning kommer att medföra stora effekter för transportföretagen och även för samhället, då man knyter tätare ihop transport- och energisystemen. Vi utvärderar potentialen för batteribytestekniken på kort och långt sikt, samt diskuterar kring antaganden, för- och nackdelar, samt hur påverkan ändras vid övergång från en mindre till en större skala. En del kunskap vänder sig till transportbranschens aktörer och belyser frågor såsom vilka logistiksystem lämpar sig bäst, hur ser kalkylen ut i jämförelse med andra alternativ. Här ingår även frågeställningar hur man kan optimera och designa batteristorlekar och total kapacitet.  Batteribyteslösningar har flera fördelar såsom att fordonets- och batteriets livscykler kan delas så att cirkulära flöden och affärsmodeller kan optimeras separat; det tar fem minuter att byta ett tomt batteri till ett fulladdat, vilket ger ett högt fordonsutnyttjande. Laddstationerna möjliggör en skonsam inkoppling till elnätet och skulle dessutom kunna användas som energilager som stödjer elnätet vid behov. 
  •  
16.
  • Lihua Liu, Jasmine, 1978-, et al. (author)
  • Electrification of the Transportation System in China : Exploring Battery Technology for Electrical Vehicles in China 1.0
  • 2021
  • Reports (other academic/artistic)abstract
    • Batteries is one of the main systems of electric vehicle. Batteries determine the total performance and define the capabilities of the electric vehicle regardless it is a passenger vehicle or heavy truck. Batteries are also determining the total price of the electric vehicle to large extend. In our first two reports on battery-swapping, Exploring Battery-Swapping For Electric Vehicles in China 1.0, and Exploring Battery-Swapping for Heavy Trucks in China 1.0, our focus was on passengers’ vehicles, and heavy trucks and the development and estab- lishment of large-scale battery-swapping systems in the Chinese context.Due to the importance of batteries for the performance of electric vehicles, it is important to explore and understand the development of technologies for batteries in China as China is not only largest manufacturer of electric vehicles but also one of the largest developers and manufacturers of batteries used in electric vehicles.In this report we are focusing on the technology development in historic perspective of the last 15 years in China. We see that the lithium-ion technology is the dominant technology, but we also see new emerging battery technologies that might be the game changer for the performance of electric vehicles. We demonstrate the dynamics of main battery technologies, LFP (lithium iron manganese, LiFeO4, battery cell) battery and NMC (lithium nickel manga- nese cobalt oxide battery cell) battery, the distribution of installed volumes between LFP and NMC in the Chinese market. During the early days of modern battery, the LFP battery technology were dominant with 69% of the market while NMC had 27% of the market. Over the last 5 years we can see big change where NMC is moving to the 67% level and LFP is going down to 32%. During the emerging stage of the China’s new energy vehicle development, LFP batteries account for 69-72% of the installed capacity due to their low cost and mature technology.With the introduction of NMC batteries into the mar- ket, their energy density, capacity and operational vehicle range and safety performance have been improved compared with LFP batteries. In recent years, the installed capacity of NMC battery technology accounts for two-thirds of the market in China. With the intensification of competition in the new energy vehicle market, NMC batteries with higher energy density and better cost efficiency ratio have become the new favorite and are still the mainstream of the market until now.The CTP (cell to pack) technology of CATL (Contemporary Amperex Technology Co., Limited) improves the energy density and group efficiency of NMC battery, and the blade battery developed by BYD improves the energy density and safety performance based on the low cost of LFP battery. LFP battery market share expected to grow.However, professionals in the industry point out that the energy density of LFP battery and NMC battery is close to the theoretical limit, the energy density limit of high nickel material + silicon carbon negative cell is about 300Wh/Kg At current time only CATL and GOTION High-Tech have reached this level.New battery technologies are emerging, such as the Li-S (Lithium-Sulfur) battery that was first proposed in the 1960s, but progress has been slow so far; it was not until the 21st century that China’s research on Li-S batteries began gradually to develop. Solid-state lithium and lithium-rich manganese-based battery technologies are becoming the new hot-spots of battery development in China.Beside capacity and performance, the main challenges for battery development that we have identified are:Safety issues, especially the risk of fire during battery charging. The need to improve battery-management systems in collaborative settings between vehicle OEMs and key partners such as battery manufacturers and battery swapping technology developers. The management of batteries in their second and third lifecycles, as well as the decommissioning and recycling of old batteries.According to the development of the existing market, the market size of power lithium battery pack recycling will reach about 6.5 billion yuan by 2020, of which the market size of ladder utilization is about 4.1 billion yuan, and the market size of recycling is 2.4 billion yuan. By 2023, the total market size for battery decommissioning will reach 15 billion yuan, of which the market size of ladder utilization is about 5.7 billion yuan, and the market size of recycling is about 9.3 billion yuan.
  •  
17.
  • Lihua Liu, Jasmine, 1978-, et al. (author)
  • Electrification of the Transportation System in China : Exploring Inductive Charging Technology for Electric Vehicles in China 1.0
  • 2021
  • Reports (other academic/artistic)abstract
    • In 2020, there were about 360 million vehicles in China, of which 270 million were passenger vehicles, accounting for 75% of the total number of motor vehicles, while the new energy vehicle population was 4.17 million, a year-on-year increase of 9.45%. According to the forecast of the State Grid Electric Vehicle Company, the number of electric vehicles in China will reach 300 million in 2040.This article mainly conducts research in the field of wireless power transmission for static and dynamic charging of electric vehicles in China.The orderly guidance of electric vehicle chargingcan greatly increase the utilization rate of grid equip- ment and save nearly 70% of investment. The power battery capacity can reach more than 20 billion kWh, which will provide 12 billion kWh of energy storage and 4.8 million MW of regulation capacity for the grid.There are several Chinese automotive OEM companies, such as FAW, SAIC, Geely, Changan, Dongfeng, BAIC, GAC, BYD, etc., all of which are involved in the development of wireless charging technology, as well as several independent equipment companies. There are also more than 30 electric vehicle wireless charging equipment suppliers in China, including Xiamen New Page, ZTE New Energy, Huawei Technology, Wanan, Anjie, and Zhonghui.Some interesting achievements of some of the Chinese companies include:• SAIC Roewe released the pure electric SUV MAVELX in 2018, equipped with a 6.6 kW EV WPT (wireless power transfer) system. Themodel is also equipped with the AI Pilot intelligent driving assistance system, which has theAI Parking full-function intelligent parking assistance system, offering the perfect combinationof automatic parking and EV WPT. The wireless charging system configured by MAVELX is a front-end product. The vehicle chassis retains the structure, electrical and communication interfaces for the EV WPT. This is the first pure electric vehicle equipped with EV WPT.• ZXNE is a wholly owned subsidiary of ZTE Cor- poration. It began researching EV WPT technology in 2012 and established an operating company in July 2014. As of August 2019, ZXNE had completed the development of the third-generation EV WPT system. The first-generation products are put in operation. In 2016, it has completed modification and testing with 11 domestic and foreign auto manufacturers.The development in demonstration sites began in 2015, based on the early days of research and basic technology development. The foundation has led to mature knowledge and a theoretical framework for the operation of wireless charging technologies.In 2015, EV WPT’s TRL (Technology Readiness Level) curve reached TRL6 in the private domain due to the early mature theoretical system. Since 2019, the development of EV WPT in the private sector has become more mature, and the curve will reach TRL7 in 2020.In the public application field, a large amount of theoretical knowledge about the application results of WPT on the TRL reached L3 in 2010 and rose to TRL6 in 2019.There are two main reasons why TRL analysis does not show higher levels:There is a lack of national and international standards, particularly in interoperability, preventing the wireless charging technology from going all the way to full scale commercialization.There is also uncertainty concerning radiation associated with wireless charging. The sender and the receiver modules are physically separated and the distance between must be overcome with high energy transmission that creates radiation outside the ray beam between the sender and the receiver. It is unclear what outcome this radiation might have on humans and animals. Until this is clear, full-scale commercialization has been put on hold.
  •  
18.
  • Liu, Jasmine Lihua, et al. (author)
  • Exploring battery swapping for heavy trucks in China 1.0
  • 2021
  • Reports (other academic/artistic)abstract
    •  To achieve successful transportation electrification, we need to understand the role of different vehicle charging solutions. This report focuses on conductive technology that involves the physical exchange of empty batteries with fully charged ones, an approach called battery swapping. The battery swapping alternative has garnered great interest in China and many other developing economies in recent years, particularly for two- and three-wheeled vehicles. This battery swapping approach is now tackling the heavy vehicle sector, such as trucks and buses. As a result, this approach to “refueling” electric vehicles is important to explore, and we need to understand the conditions needed for battery swapping to succeed. In this report we focus on the use of battery-swapping technology to develop and market Electric Heavy Trucks (EHT) in China.
  •  
19.
  •  
20.
  • Nåbo, Arne, 1958-, et al. (author)
  • Battery-Swapping for Heavy Duty Vehicles : A Feasibility Study on Up-Scaling in Sweden
  • 2024
  • Reports (other academic/artistic)abstract
    • Rapporten fokuserar på den kommersiella genomförbarheten av ett batteribytessystem för tunga lastbilar i Sverige. Genom att studera affärsmodeller, kompatibilitet med svenska regelverk och integration i transportverksamheten har vi utforskat hur disruptiva teknologier, ekosystemeffekter och cirkularitet skulle kunna möjliggöra en snabb introduktion och uppskalning av ett batteribytessystem. Ett särskilt fokus har legat på Kina för att analysera statusen för batteribyten och de processer som har lett till den snabba utvecklingen och uppskalningen där. I Kina krävde batteribyte en ny affärsmodell där aktörer såsom energiproducenter, batteritillverkare och maskinindustri går i spetsen för utvecklingen och spridningen av batteribyten. Batteribyte är nu den dominerande tekniken för eldrivna lastbilar i Kina.Exempel på fördelar med batteribyte som förespråkas är att det bara tar några minuter att byta batteri, minskad investering för lastbilsägare, låg påverkan på det lokala elnätet och att fordons- och batterilivscykler separeras. En simuleringsstudie om batteribyte för tunga lastbilar i hamnverksamhet visar i denna rapport på tydliga fördelar jämfört med kabelladdning. Det finns dock ett par utmaningar med att införa batteribyte i Sverige. För det första finns det inga tydliga förespråkare för batteribyte inom industrin. Till exempel är de svenska och europeiska fordonstillverkarna tveksamma eftersom det utmanar deras nuvarande affärsmodell och att de kan ta rollen som grindvakter. För det andra omfattar inte de nuvarande standarderna och regelverken för fordon och energisystem i Sverige och i EU batteribyte. Rapporten tar också upp behovet av kunskap och utbildning av personer vid batteribytesstationer, samt vikten av social hållbarhet vid elektrifiering av tunga transporter.
  •  
21.
  • Nåbo, Arne, 1958-, et al. (author)
  • Elvägar i körsimulator : design, test, utvärdering och demonstration av elvägstekniker och elfordon med virtuella metoder
  • 2015
  • Reports (other academic/artistic)abstract
    • Elvägar, där el överförs kontinuerligt till fordon på vägen, kan vara ett sätt att nå målet om en fossiloberoende transportsektor. För att testa och utvärdera elvägar och elfordon på elvägar i ett tidigt stadium utvecklades en demonstrationsmiljö i körsimulator. En studie genomfördes med 25 förare där varje förare fick köra en 40 kilometer lång vägsträcka, dels med en hybridlastbil på elväg, dels med en konventionell lastbil utan elväg. Körning på elväg uppvisade inga anmärkningsvärda skillnader på förarens upplevelser vad gäller säkerhet och estetik eller körbeteende jämfört med körning utan elväg. Undantaget var medelhastigheten vilken var cirka 2 kilometer/timme högre på elväg. Energianvändningen var cirka 35 procent lägre på elväg. För att sprida projektresultatet till aktörer och intressenter av elvägar har ett stort antal demonstrationer genomförts, samt kommunikation via pressreleaser och tidningsartiklar. Det har även tagits fram en mindre, mobil körsimulator för elvägar som ett led i att nå ut till en större målgrupp.
  •  
22.
  • Nåbo, Arne, 1958-, et al. (author)
  • Known Roads : real roads in simulated environments for the virtual testing of new vehicle systems
  • 2016
  • Reports (other academic/artistic)abstract
    • This publication presents a project aiming to develop virtual representations of real roads for use in driving simulators. The development was done in order to enable assessments of new systems on existing and well known roads in a driving simulator, and will increase the external validity of virtual testing. Furthermore, the usage of the virtual model of such roads makes the simulator results better comparable to earlier performed or later following road tests. The roads connecting Göteborg-Borås-Alingsås-Göteborg were selected. The purpose for this is due to their proximity to the vehicle industry in west Sweden and to the test tracks “Hällered” and “AstaZero”. However, the tools and methods developed can be used to build a virtual representation of any other road through a surrounding landscape and/or more urban environment. The project was carried out in steps, starting with data collection (investigation and assessment of available data from different sources as well as measurement of road properties) followed by data treatment (remove irrelevant data and errors, filtering, etc.), modelling (mathematical description of road properties) and simulation (selection of data formats for real time simulation).
  •  
23.
  • Nåbo, Arne, 1958-, et al. (author)
  • Körsimulering och visualisering i framtidsforskningens tjänst
  • 2016
  • Reports (other academic/artistic)abstract
    • Körsimulering och visualisering i framtidsforskningens tjänst är ett projekt med syftet att utreda en vidareutveckling av körsimulatorns användningsområde till att omfatta även framtidsforskning. Forskning om framtiden har fått en ökad betydelse i samhället mot bakgrund av de globala mål som formulerats avseende miljö och säkerhet. Detta har medfört ett ökat intresse för att kunna genomföra prov och demonstrationer av framtidsscenarier för vägtransportsystem (vägar, fordon, IT-system, m.m.). I korthet är syftet med det genomförda arbetet att kartlägga de kompetenser och resurser som behövs för att bedriva framtidsforskning med körsimulatorn som verktyg, samt möjligheter till samverkan mellan organisationer och kompetenscentra inom simulering och visualisering.
  •  
24.
  • Nåbo, Arne, 1958-, et al. (author)
  • Laddsträcka i Lund : En studie av busslinje i körsimulator
  • 2018
  • Reports (other academic/artistic)abstract
    • År 2018 träder klimatlagen i kraft. Till år 2030 ska klimatpåverkan i transportsektorn ha minskat med 70 procent jämfört med år 2010 och år 2045 ska Sveriges klimatpåverkan vara netto noll. Det innebär en fundamental omställning av energiförsörjningen av vägtransporter och fordonsflottan. För bussar i stadstrafik ser man gärna en elektrifiering då elbussar både är avgasfria och tysta, vilket ger en mindre miljöpåverkan på gaturummet och det då finns möjlighet att även skapa attraktiva busslinjer.För att exemplifiera hur en elektrifiering av buss kan göras gjordes en studie i körsimulator där en möjlig elbusslinje i Lund som använder elväg studerades. Elektrifieringens mål var att nå en hög användarvänlighet och uppfylla framtidens krav på miljö- och energianpassning. Med hjälp av olika informationskällor om elbussar, elvägsteknik och Lunds stadsmiljö skapades virtuella modeller av dessa som sedan installerades i körsimulatorn.För att utvärdera om bussen och elektrifieringen uppfyllde kraven på användarvänlighet genomfördes försök med bussförare i en dynamisk körsimulator, SIM II på VTI i Linköping. Resultaten visade att förarna inte hade några större svårigheter att framföra bussen så att elektrifieringen fungerade. Tyvärr drabbades några av förarna av illamående under körningen (”simulatorsjuka”) och fick avbryta.En utvärdering av körsimulatorn som ett verktyg för opinionsbildning gjordes genom att tillhandahålla ett informationsblad om elväg för bussar samt att demonstrera elektrifieringen för anställda i Lunds kommun med hjälp av en mindre, flyttbar körsimulator. Intervjuer om elbussar och elektrifiering gjordes före och efter demonstrationen för att se effekter på inställningen till och förståelsen av elbuss och elväg. Resultaten visade att simulatorkörningen gav ett mervärde utöver informationsbladet, 2/3 av deltagarna svarade att förståelsen blev större och 1/3 att den inte förändrades. Inställningen till elbuss och elväg förändrades inte. Majoriteten av deltagarna ansåg att simulatorn kan vara en hjälp i beslutsfattande.En analys av energiåtgången för bussen visade att batterinivån var lägre i slutet av körningen än i början, det vill säga batterinivån sjönk. Detta hade kunnat undvikas om elektrifieringen lagts ut på ett mer fördelaktigt sätt, och behöver således inte vara en begränsande faktor vid en framtida implementering.Vidare gjordes en jämförelse med några andra energiförsörjningsalternativ såsom depåladdning och ändhållplatsladdning. För- och nackdelar för dessa alternativ diskuterades utifrån ekonomiska och bussoperativa perspektiv.
  •  
25.
  • Nåbo, Arne, 1958-, et al. (author)
  • Regeringsuppdrag om elektrifieringen av transporter : rekommendationer för att underlätta datadelning och nyttiggörande av data för planering, utveckling och drift av laddinfrastruktur och affärsmodeller
  • 2023
  • Reports (other academic/artistic)abstract
    • Regeringen har uppdragit åt Statens väg- och transportforskningsinstitut (VTI) att ”bidra till kunskapsuppbyggnaden kring en snabb, smart och samhällsekonomiskt effektiv elektrifiering av transportsektorn”. Den här rapporten redovisar den del av uppdraget som handlar om att genomföra pilotprojekt och ta fram modeller för hur data i praktiken på bästa sätt kan tillgängliggöras, delas och nyttiggöras för att optimera planering, utveckling, drift samt affärsmodeller för laddinfrastruktur. I rapporten ges en beskrivning av förekommande tekniker för laddning av elfordon, viktiga användarperspektiv, och hur affärsmodeller och system för laddinfrastruktur kan modelleras. Rapporten fokuserar på datadelning och beskriver hur aktörer idag delar data samt vilka svårigheter de ser med datadelning. Detta omfattar bland annat datatillgänglighet, delning och nyttiggörande, samt hur aktörerna vill att det ska fungera framåt. En stor utmaning handlar om datatillgänglighet, där aktörer dels ser problem med att få tillgång till data och dels är avvaktande till att vilja dela med sig av egna data. Ofta handlar det om integritetsfrågor och reglering enligt GDPR. Betydelsen av en väl fungerande samverkan mellan energi- och transportsektorn har lyfts i tidigare rapporteringar från det här uppdraget. Vikten av en digitalisering och digital infrastruktur som kopplar samman dessa sektorer betonas speciellt i detta arbete. Digitalisering behövs för att effektivisera planering, utveckling och drift av den infrastruktur som ett elektrifierat transportsystem kräver. De modelleringar som gjorts i den här delen av uppdraget handlar om transportmodellering och energimodellering samt utveckling för att få modellerna att samspela.
  •  
26.
  • Ståhle, Alexander, et al. (author)
  • Designguide för Smarta gator
  • 2022
  • Book (other academic/artistic)abstract
    • Designguiden för smarta gator konkretiserar hur de fyra megatrenderna urbanisering, digitalisering, samhällsförändringar och miljöförändringar leder till nya krav och utformningsprinciper för framtidens gator. Guiden är tänkt att fungera som en inspiration och ett underlag för att förnya svensk gatupolicy på nationell, regional och kommunal nivå.Guiden innehåller utöver en inledning följande kapitel: en historisk tillbakablick (gatans utveckling), gatans användning, gatans delar, gatans design, designprocessen, guidens genomförande.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-26 of 26
Type of publication
reports (14)
conference paper (7)
journal article (4)
book (1)
Type of content
other academic/artistic (17)
peer-reviewed (9)
Author/Editor
Nåbo, Arne, 1958- (26)
Danilovic, Mike, 195 ... (7)
Larsson, Tony, 1950- (6)
Jansson, Jonas, 1973 ... (6)
Bhatti, Harrison Joh ... (6)
Almestrand Linné, Ph ... (4)
show more...
Aramrattana, Maythee ... (4)
Müllern, Tomas (3)
Danilovic, Mike (3)
Englund, Cristofer, ... (2)
Kircher, Katja, 1973 ... (2)
Nilsson, Lena (2)
Englund, Cristofer (2)
Thorslund, Birgitta, ... (2)
Rydström, Annie (2)
Almgren, Susanne (2)
Ricknäs, Daniel (2)
Hjort, Mattias, 1972 ... (2)
Aramrattana, Maythee ... (2)
Blissing, Björn, 197 ... (2)
Fu, Jiali, 1973- (2)
Liu, Chengxi, 1987- (1)
Abrahamsson, Mats, P ... (1)
Andersson, Anders, 1 ... (1)
Andersson, Jeanette, ... (1)
Kuttah, Dina K, 1975 ... (1)
Erlingsson, Sigurdur ... (1)
Lindstedt, Krister (1)
Ranhagen, Ulf, 1947- (1)
Ahlström, Christer (1)
Ahlström, Christer, ... (1)
Hellman, Fredrik, 19 ... (1)
Carlsson, Håkan, 196 ... (1)
Ljung Aust, Mikael, ... (1)
Alenius, Malin (1)
Nyman, Joakim (1)
Ståhle, Alexander (1)
Berghauser Pont, Met ... (1)
Genell, Anders, 1974 ... (1)
Eriksson, Gabriella, ... (1)
Stave, Christina, 19 ... (1)
Svensson, Tony (1)
Nordin, Lina, 1981- (1)
Berglund, Magnus, 19 ... (1)
Stavroulaki, Ioanna, ... (1)
Lindahl, Per (1)
Chakarova Käck, Svet ... (1)
Käck, Andreas, 1976- (1)
Bhatti, Harrison Joh ... (1)
Sallnäs, Uni, 1981- (1)
show less...
University
VTI - The Swedish National Road and Transport Research Institute (26)
Halmstad University (13)
RISE (4)
Linköping University (1)
Lund University (1)
Chalmers University of Technology (1)
show more...
Högskolan Dalarna (1)
show less...
Language
English (20)
Swedish (6)
Research subject (UKÄ/SCB)
Engineering and Technology (25)
Natural sciences (3)
Social Sciences (3)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view