SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Navarro‐González Rafael) "

Search: WFRF:(Navarro‐González Rafael)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • G. Trainer, Melissa, et al. (author)
  • Seasonal Variations in Atmospheric Composition as Measured in Gale Crater, Mars
  • 2019
  • In: Journal of Geophysical Research - Planets. - : John Wiley & Sons. - 2169-9097 .- 2169-9100. ; 124:11, s. 3000-3024
  • Journal article (peer-reviewed)abstract
    • The Sample Analysis at Mars (SAM) instrument onboard the Mars Science Laboratory Curiosity rover measures the chemical composition of major atmospheric species (CO2, N2, 40Ar, O2, and CO) through a dedicated atmospheric inlet. We report here measurements of volume mixing ratios in Gale Crater using the SAM quadrupole mass spectrometer, obtained over a period of nearly 5 years (3 Mars years) from landing. The observation period spans the northern summer of MY 31 and solar longitude (LS) of 175° through spring of MY 34, LS = 12°. This work expands upon prior reports of the mixing ratios measured by SAM QMS in the first 105 sols of the mission. The SAM QMS atmospheric measurements were taken periodically, with a cumulative coverage of four or five experiments per season on Mars. Major observations include the seasonal cycle of CO2, N2, and Ar, which lags approximately 20–40° of LS behind the pressure cycle driven by CO2 condensation and sublimation from the winter poles. This seasonal cycle indicates that transport occurs on faster timescales than mixing. The mixing ratio of O2 shows significant seasonal and interannual variability, suggesting an unknown atmospheric or surface process at work. The O2 measurements are compared to several parameters, including dust optical depth and trace CH4 measurements by Curiosity. We derive annual mean volume mixing ratios for the atmosphere in Gale Crater: CO2 = 0.951 (±0.003), N2 = 0.0259 (±0.0006), 40Ar = 0.0194 (±0.0004), O2 = 1.61 (±0.09) x 10‐3, and CO = 5.8 (±0.8) x 10‐4.
  •  
2.
  • Navarro‐González, Rafael, et al. (author)
  • Abiotic Input of Fixed Nitrogen by Bolide Impacts to Gale Crater During the Hesperian : Insights From the Mars Science Laboratory
  • 2019
  • In: Journal of Geophysical Research - Planets. - : John Wiley & Sons. - 2169-9097 .- 2169-9100. ; 124:1, s. 94-113
  • Journal article (peer-reviewed)abstract
    • Molecular hydrogen (H2) from volcanic emissions is suggested to warm the Martian surface when carbon dioxide (CO2) levels dropped from the Noachian (4100 to 3700 Myr) to the Hesperian (3700 to 3000 Myr). Its presence is expected to shift the conversion of molecular nitrogen (N2) into different forms of fixed nitrogen (N). Here we present experimental data and theoretical calculations that investigate the efficiency of nitrogen fixation by bolide impacts in CO2‐N2 atmospheres with or without H2. Surprisingly, nitric oxide (NO) was produced more efficiently in 20% H2 in spite of being a reducing agent and not likely to increase the rate of nitrogen oxidation. Nevertheless, its presence led to a faster cooling of the shock wave raising the freeze‐out temperature of NO resulting in an enhanced yield. We estimate that the nitrogen fixation rate by bolide impacts varied from 7 × 10−4 to 2 × 10−3 g N·Myr−1·cm−2 and could imply fluvial concentration to explain the nitrogen (1.4 ± 0.7 g N·Myr−1·cm−2) detected as nitrite (NO2−) and nitrate (NO3−) by Curiosity at Yellowknife Bay. One possible explanation is that the nitrogen detected in the lacustrine sediments at Gale was deposited entirely on the crater's surface and was subsequently dissolved and transported by superficial and ground waters to the lake during favorable wet climatic conditions. The nitrogen content sharply decreases in younger sediments of the Murray formation suggesting a decline of H2 in the atmosphere and the rise of oxidizing conditions causing a shortage in the supply to putative microbial life.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view