SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Nieradzik Lars) "

Search: WFRF:(Nieradzik Lars)

  • Result 1-21 of 21
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Blichner, Sara M., 1989-, et al. (author)
  • Process-evaluation of forest aerosol-cloud-climate feedback shows clear evidence from observations and large uncertainty in models
  • 2024
  • In: Nature Communications. - 2041-1723. ; 15
  • Journal article (peer-reviewed)abstract
    • Natural aerosol feedbacks are expected to become more important in the future, as anthropogenic aerosol emissions decrease due to air quality policy. One such feedback is initiated by the increase in biogenic volatile organic compound (BVOC) emissions with higher temperatures, leading to higher secondary organic aerosol (SOA) production and a cooling of the surface via impacts on cloud radiative properties. Motivated by the considerable spread in feedback strength in Earth System Models (ESMs), we here use two long-term observational datasets from boreal and tropical forests, together with satellite data, for a process-based evaluation of the BVOC-aerosol-cloud feedback in four ESMs. The model evaluation shows that the weakest modelled feedback estimates can likely be excluded, but highlights compensating errors making it difficult to draw conclusions of the strongest estimates. Overall, the method of evaluating along process chains shows promise in pin-pointing sources of uncertainty and constraining modelled aerosol feedbacks.
  •  
4.
  • Boysen, Lena R., et al. (author)
  • Global climate response to idealized deforestation in CMIP6 models
  • 2020
  • In: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 17, s. 5615-5638
  • Journal article (peer-reviewed)abstract
    • Changes in forest cover have a strong effect on climate through the alteration of surface biogeophysical and biogeochemical properties that affect energy, water and carbon exchange with the atmosphere. To quantify biogeophysical and biogeochemical effects of deforestation in a consistent setup, nine Earth system models (ESMs) carried out an idealized experiment in the framework of the Coupled Model Intercomparison Project, phase 6 (CMIP6). Starting from their pre-industrial state, models linearly replace 20×106 km2 of forest area in densely forested regions with grasslands over a period of 50 years followed by a stabilization period of 30 years. Most of the deforested area is in the tropics, with a secondary peak in the boreal region. The effect on global annual near-surface temperature ranges from no significant change to a cooling by 0.55 ∘C, with a multi-model mean of −0.22±0.21 ∘C. Five models simulate a temperature increase over deforested land in the tropics and a cooling over deforested boreal land. In these models, the latitude at which the temperature response changes sign ranges from 11 to 43∘ N, with a multi-model mean of 23∘ N. A multi-ensemble analysis reveals that the detection of near-surface temperature changes even under such a strong deforestation scenario may take decades and thus longer than current policy horizons. The observed changes emerge first in the centre of deforestation in tropical regions and propagate edges, indicating the influence of non-local effects. The biogeochemical effect of deforestation are land carbon losses of 259±80 PgC that emerge already within the first decade. Based on the transient climate response to cumulative emissions (TCRE) this would yield a warming by 0.46 ± 0.22 ∘C, suggesting a net warming effect of deforestation. Lastly, this study introduces the “forest sensitivity” (as a measure of climate or carbon change per fraction or area of deforestation), which has the potential to provide lookup tables for deforestation–climate emulators in the absence of strong non-local climate feedbacks. While there is general agreement across models in their response to deforestation in terms of change in global temperatures and land carbon pools, the underlying changes in energy and carbon fluxes diverge substantially across models and geographical regions. Future analyses of the global deforestation experiments could further explore the effect on changes in seasonality of the climate response as well as large-scale circulation changes to advance our understanding and quantification of deforestation effects in the ESM frameworks.
  •  
5.
  • de Jonge, Robin Wollesen, et al. (author)
  • Natural Marine Precursors Boost Continental New Particle Formation and Production of Cloud Condensation Nuclei
  • 2024
  • In: Environmental Science and Technology. - Malmö : IVL Svenska Miljöinstitutet. - 0013-936X .- 1520-5851. ; 58:25, s. 10956-10968
  • Journal article (peer-reviewed)abstract
    • Marine dimethyl sulfide (DMS) emissions are the dominant source of natural sulfur in the atmosphere. DMS oxidizes to produce low-volatility acids that potentially nucleate to form particles that may grow into climatically important cloud condensation nuclei (CCN). In this work, we utilize the chemistry transport model ADCHEM to demonstrate that DMS emissions are likely to contribute to the majority of CCN during the biological active period (May-August) at three different forest stations in the Nordic countries. DMS increases CCN concentrations by forming nucleation and Aitken mode particles over the ocean and land, which eventually grow into the accumulation mode by condensation of low-volatility organic compounds from continental vegetation. Our findings provide a new understanding of the exchange of marine precursors between the ocean and land, highlighting their influence as one of the dominant sources of CCN particles over the boreal forest.
  •  
6.
  • D’Onofrio, Donatella, et al. (author)
  • Linking Vegetation-Climate-Fire Relationships in Sub-Saharan Africa to Key Ecological Processes in Two Dynamic Global Vegetation Models
  • 2020
  • In: Frontiers in Environmental Science. - : Frontiers Media SA. - 2296-665X. ; 8
  • Journal article (peer-reviewed)abstract
    • Africa is largely influenced by fires, which play an important ecological role influencing the distribution and structure of grassland, savanna and forest biomes. Here vegetation strongly interacts with climate and other environmental factors, such as herbivory and humans. Fire-enabled Dynamic Global Vegetation Models (DGVMs) display high uncertainty in predicting the distribution of current tropical biomes and the associated transitions, mainly due to the way they represent the main ecological processes and feedbacks related to water and fire. The aim of this study is to evaluate the outcomes of two state-of-the–art DGVMs, LPJ-GUESS and JSBACH, also currently used in two Earth System Models (ESMs), in order to assess which key ecological processes need to be included or improved to represent realistic interactions between vegetation cover, precipitation and fires in sub-Saharan Africa. To this end, we compare models and remote-sensing data, analyzing the relationships between tree and grass cover, mean annual rainfall, average rainfall seasonality and average fire intervals, using generalized linear models, and we compare the patterns of grasslands, savannas, and forests in sub-Saharan Africa. Our analysis suggests that LPJ-GUESS (with a simple fire-model and complex vegetation description) performs well in regions of low precipitation, while in humid and mesic areas the representation of the fire process should probably be improved to obtain more open savannas. JSBACH (with a complex fire-model and a simple vegetation description) can simulate a vegetation-fire feedback that can maintain open savannas at intermediate and high precipitation, although this feedback seems to have stronger effects than observed, while at low precipitation JSBACH needs improvements in the representation of tree-grass competition and drought effects. This comparative process-based analysis permits to highlight the main factors that determine the tropical vegetation distribution in models and observations in sub-Saharan Africa, suggesting possible improvements in DGVMs and, consequently, in ESM simulations for future projections. Given the need to use carbon storage in vegetation as a climate mitigation measure, these models represent a valuable tool to improve our understanding of the sustainability of vegetation carbon pools as a carbon sink and the vulnerability to disturbances such as fire.
  •  
7.
  • Döscher, Ralf, et al. (author)
  • The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6
  • 2022
  • In: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 15:7, s. 2973-3020
  • Journal article (peer-reviewed)abstract
    • The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
  •  
8.
  • Eckes-Shephard, Annemarie, et al. (author)
  • State-of-the-art capabilities in LPJ-GUESS
  • 2022
  • Conference paper (other academic/artistic)abstract
    • LPJ-GUESS is an advanced DGVM including detailed forest demography and management, croplands, wetlands, specialised arctic processes, emissions of nonCO2 GHGs and a highly flexible land-use change scheme which tracks transitions between different land-uses. It is the vegetation component of the EC-Earth CMIP6 ESM, the RCA-GUESS regional ESM, and also has a European mode operating at tree species level.
  •  
9.
  • Hamilton, Douglas S., et al. (author)
  • Impact of Changes to the Atmospheric Soluble Iron Deposition Flux on Ocean Biogeochemical Cycles in the Anthropocene
  • 2020
  • In: Global Biogeochemical Cycles. - 0886-6236. ; 34:3
  • Journal article (peer-reviewed)abstract
    • Iron can be a growth‐limiting nutrient for phytoplankton, modifying rates of net primary production, nitrogen fixation, and carbon export ‐ highlighting the importance of new iron inputs from the atmosphere. The bioavailable iron fraction depends on the emission source and the dissolution during transport. The impacts of anthropogenic combustion and land use change on emissions from industrial, domestic, shipping, desert, and wildfire sources suggest that Northern Hemisphere soluble iron deposition has likely been enhanced between 2% and 68% over the Industrial Era. If policy and climate follow the intermediate Representative Concentration Pathway 4.5 trajectory, then results suggest that Southern Ocean (>30°S) soluble iron deposition would be enhanced between 63% and 95% by 2100. Marine net primary productivity and carbon export within the open ocean are most sensitive to changes in soluble iron deposition in the Southern Hemisphere; this is predominantly driven by fire rather than dust iron sources. Changes in iron deposition cause large perturbations to the marine nitrogen cycle, up to 70% increase in denitrification and 15% increase in nitrogen fixation, but only modestly impacts the carbon cycle and atmospheric CO2 concentrations (1–3 ppm). Regionally, primary productivity increases due to increased iron deposition are often compensated by offsetting decreases downstream corresponding to equivalent changes in the rate of phytoplankton macronutrient uptake, particularly in the equatorial Pacific. These effects are weaker in the Southern Ocean, suggesting that changes in iron deposition in this region dominates the global carbon cycle and climate response.
  •  
10.
  • Hantson, Stijn, et al. (author)
  • Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project
  • 2020
  • In: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 13:7, s. 3299-3318
  • Journal article (peer-reviewed)abstract
    • Global fire-vegetation models are widely used to assess impacts of environmental change on fire regimes and the carbon cycle and to infer relationships between climate, land use and fire. However, differences in model structure and parameterizations, in both the vegetation and fire components of these models, could influence overall model performance, and to date there has been limited evaluation of how well different models represent various aspects of fire regimes. The Fire Model Intercomparison Project (FireMIP) is coordinating the evaluation of state-of-the-art global fire models, in order to improve projections of fire characteristics and fire impacts on ecosystems and human societies in the context of global environmental change. Here we perform a systematic evaluation of historical simulations made by nine FireMIP models to quantify their ability to reproduce a range of fire and vegetation benchmarks. The FireMIP models simulate a wide range in global annual total burnt area (39-536 Mha) and global annual fire carbon emission (0.91-4.75 Pg C yr-1) for modern conditions (2002-2012), but most of the range in burnt area is within observational uncertainty (345-468 Mha). Benchmarking scores indicate that seven out of nine FireMIP models are able to represent the spatial pattern in burnt area. The models also reproduce the seasonality in burnt area reasonably well but struggle to simulate fire season length and are largely unable to represent interannual variations in burnt area. However, models that represent cropland fires see improved simulation of fire seasonality in the Northern Hemisphere. The three FireMIP models which explicitly simulate individual fires are able to reproduce the spatial pattern in number of fires, but fire sizes are too small in key regions, and this results in an underestimation of burnt area. The correct representation of spatial and seasonal patterns in vegetation appears to correlate with a better representation of burnt area. The two older fire models included in the FireMIP ensemble (LPJ-GUESS-GlobFIRM, MC2) clearly perform less well globally than other models, but it is difficult to distinguish between the remaining ensemble members; some of these models are better at representing certain aspects of the fire regime; none clearly outperforms all other models across the full range of variables assessed.
  •  
11.
  • Haverd, Vanessa, et al. (author)
  • A new version of the CABLE land surface model (Subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis
  • 2018
  • In: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 11:7, s. 2995-3026
  • Journal article (peer-reviewed)abstract
    • The Community Atmosphere-Biosphere Land Exchange model (CABLE) is a land surface model (LSM) that can be applied stand-alone and provides the land surface-atmosphere exchange within the Australian Community Climate and Earth System Simulator (ACCESS). We describe new developments that extend the applicability of CABLE for regional and global carbon-climate simulations, accounting for vegetation responses to biophysical and anthropogenic forcings. A land use and land cover change module driven by gross land use transitions and wood harvest area was implemented, tailored to the needs of the Coupled Model Intercomparison Project 6 (CMIP6). Novel aspects include the treatment of secondary woody vegetation, which benefits from a tight coupling between the land use module and the Population Orders Physiology (POP) module for woody demography and disturbance-mediated landscape heterogeneity. Land use transitions and harvest associated with secondary forest tiles modify the annually resolved patch age distribution within secondary vegetated tiles, in turn affecting biomass accumulation and turnover rates and hence the magnitude of the secondary forest sink. Additionally, we implemented a novel approach to constrain modelled GPP consistent with the coordination hypothesis and predicted by evolutionary theory, which suggests that electron-transport- and Rubisco-limited rates adjust seasonally and across biomes to be co-limiting. We show that the default prior assumption - common to CABLE and other LSMs - of a fixed ratio of electron transport to carboxylation capacity at standard temperature (Jmax,0/Vcmax,0) is at odds with this hypothesis; we implement an alternative algorithm for dynamic optimisation of this ratio such that coordination is achieved as an outcome of fitness maximisation. The results have significant implications for the magnitude of the simulated CO2 fertilisation effect on photosynthesis in comparison to alternative estimates and observational proxies. These new developments enhance CABLE's capability for use within an Earth system model and in stand-alone applications to attribute trends and variability in the terrestrial carbon cycle to regions, processes and drivers. Model evaluation shows that the new model version satisfies several key observational constraints: (i) trend and interannual variations in the global land carbon sink, including sensitivities of interannual variations to global precipitation and temperature anomalies; (ii) centennial trends in global GPP; (iii) coordination of Rubisco-limited and electron-transport-limited photosynthesis; (iv) spatial distributions of global ET, GPP, biomass and soil carbon; and (v) age-dependent rates of biomass accumulation in boreal, temperate and tropical secondary forests. CABLE simulations agree with recent independent assessments of the global land-atmosphere flux partition that use a combination of atmospheric inversions and bottom-up constraints. In particular, there is agreement that the strong CO2-driven sink in the tropics is largely cancelled by net deforestation and forest degradation emissions, leaving the Northern Hemisphere (NH) extratropics as the dominant contributor to the net land sink.
  •  
12.
  • Haverd, Vanessa, et al. (author)
  • A stand-alone tree demography and landscape structure module for Earth system models
  • 2013
  • In: Geophysical Research Letters. - : American Geophysical Union (AGU). - 1944-8007 .- 0094-8276. ; 40:19, s. 5234-5239
  • Journal article (peer-reviewed)abstract
    • We propose and demonstrate a new approach for the simulation of woody ecosystem stand dynamics, demography, and disturbance-mediated heterogeneity suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any earth system model. The approach is encoded in a model called Populations-Order-Physiology (POP). We demonstrate the behavior and performance of POP coupled to the Community Atmosphere Biosphere Land Exchange model (CABLE) applied along the Northern Australian Tropical Transect, featuring gradients in rainfall and fire disturbance. The model is able to simultaneously reproduce observation-based estimates of key functional and structural variables along the transect, namely gross primary production, tree foliage projective cover, basal area, and maximum tree height. Prospects for the use of POP to address current vegetation dynamic deficiencies in earth system modeling are discussed.
  •  
13.
  • Lee, Hanna, et al. (author)
  • Toward Effective Collaborations between Regional Climate Modeling and Impacts-Relevant Modeling Studies in Polar Regions
  • 2022
  • In: Bulletin of the American Meteorological Society. - 0003-0007. ; 103:8, s. 1866-1874
  • Journal article (peer-reviewed)abstract
    • The aim of this workshop was to discuss the needs and challenges in using high-resolution climate model outputs for impacts-relevant modeling. Development of impacts-relevant climate projections in the polar regions requires effective collaboration between regional climate modelers and impacts-relevant modelers in the design stage of high-resolution climate projections for the polar regions.
  •  
14.
  • Lu, Zhengyao, et al. (author)
  • Vegetation Pattern and Terrestrial Carbon Variation in Past Warm and Cold Climates
  • 2019
  • In: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 46:14, s. 8133-8143
  • Journal article (peer-reviewed)abstract
    • Understanding the transition of biosphere-atmosphere carbon exchange between glacial and interglacial climates can constrain uncertainties in its future projections. Using an individual-based dynamic vegetation model, we simulate vegetation distribution and terrestrial carbon cycling in past cold and warm climates and elucidate the forcing effects of temperature, precipitation, atmospheric CO2 concentration (pCO(2)), and landmass. Results are consistent with proxy reconstructions and reveal that the vegetation extent is mainly determined by temperature anomalies, especially in a cold climate, while precipitation forcing effects on global-scale vegetation patterns are marginal. The pCO(2) change controls the global carbon balance with the fertilization effect of higher pCO(2) linking to higher vegetation coverage, an enhanced terrestrial carbon sink, and increased terrestrial carbon storage. Our results indicate carbon transfer from ocean and permafrost/peat to the biosphere and atmosphere and highlight the importance of forest expansion as a driver of terrestrial ecosystem carbon stock from cold to warm climates.
  •  
15.
  • Molinari, Chiara, et al. (author)
  • Fire Dynamics in Boreal Forests Over the 20th Century : A Data-Model Comparison
  • 2021
  • In: Frontiers in Ecology and Evolution. - : Frontiers Media SA. - 2296-701X. ; 9
  • Journal article (peer-reviewed)abstract
    • Fire regimes across the world are expected to be altered by continuing variations in socio-economic conditions and climate. Current global fire-vegetation models are able to represent the present-day fire activity, but it is unclear how well they can simulate past or future scenarios. Here we use sedimentary charcoal-based biomass burning reconstructions to evaluate fire probability and total carbon flux emitted to the atmosphere per year simulated by the dynamic global vegetation model LPJ-GUESS with its incorporated fire model SIMFIRE-BLAZE across the boreal region during the last century. The analyses were run for the whole time period (1900–2000 CE), as well as for the intervals 1900–1950 CE and 1950–2000 CE. The data–model comparison for the 20th century reveals a general disagreement in trends between charcoal reconstructions (with decreasing or stable trends) and simulations (showing an overall increase) at both global (boreal forests) and continental scales (North America and Fennoscandia), as well as for most of the regional sub-areas (Canada, Norway and Sweden). The only exceptions are Alaska and Finland/Russia Karelia, where all the variables increase. Negative correlations between observations and model outputs are also recorded for the two different sub-periods, except for Alaska and North America during the time interval 1900–1950 CE, and Norway and Finland/Russia Karelia between 1950 and 2000 CE. Despite several uncertainties in charcoal records, main differences between modeled and observed fire activity are probably due to limitations in the representation of the human impact on fire regime (especially connected to forest management and landscape fragmentation) in the model simulations.
  •  
16.
  • Pellegrini, Adam F.A., et al. (author)
  • Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity
  • 2018
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 553:7687, s. 194-198
  • Journal article (peer-reviewed)abstract
    • Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.
  •  
17.
  • Pellegrini, Adam F.A., et al. (author)
  • Soil carbon storage capacity of drylands under altered fire regimes
  • 2023
  • In: Nature Climate Change. - 1758-678X. ; 13:10, s. 1089-1094
  • Journal article (peer-reviewed)abstract
    • The determinants of fire-driven changes in soil organic carbon (SOC) across broad environmental gradients remains unclear, especially in global drylands. Here we combined datasets and field sampling of fire-manipulation experiments to evaluate where and why fire changes SOC and compared our statistical model to simulations from ecosystem models. Drier ecosystems experienced larger relative changes in SOC than humid ecosystems—in some cases exceeding losses from plant biomass pools—primarily explained by high fire-driven declines in tree biomass inputs in dry ecosystems. Many ecosystem models underestimated the SOC changes in drier ecosystems. Upscaling our statistical model predicted that soils in savannah–grassland regions may have gained 0.64 PgC due to net-declines in burned area over the past approximately two decades. Consequently, ongoing declines in fire frequencies have probably created an extensive carbon sink in the soils of global drylands that may have been underestimated by ecosystem models.
  •  
18.
  • Rabin, Sam S., et al. (author)
  • The Fire Modeling Intercomparison Project (FireMIP), phase 1 : Experimental and analytical protocols with detailed model descriptions
  • 2017
  • In: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 10:3, s. 1175-1197
  • Journal article (peer-reviewed)abstract
    • The important role of fire in regulating vegetation community composition and contributions to emissions of greenhouse gases and aerosols make it a critical component of dynamic global vegetation models and Earth system models. Over 2 decades of development, a wide variety of model structures and mechanisms have been designed and incorporated into global fire models, which have been linked to different vegetation models. However, there has not yet been a systematic examination of how these different strategies contribute to model performance. Here we describe the structure of the first phase of the Fire Model Intercomparison Project (FireMIP), which for the first time seeks to systematically compare a number of models. By combining a standardized set of input data and model experiments with a rigorous comparison of model outputs to each other and to observations, we will improve the understanding of what drives vegetation fire, how it can best be simulated, and what new or improved observational data could allow better constraints on model behavior. In this paper, we introduce the fire models used in the first phase of FireMIP, the simulation protocols applied, and the benchmarking system used to evaluate the models. We have also created supplementary tables that describe, in thorough mathematical detail, the structure of each model.
  •  
19.
  • Rowlinson, Matthew J., et al. (author)
  • Tropospheric ozone radiative forcing uncertainty due to pre-industrial fire and biogenic emissions
  • 2020
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:18, s. 10937-10951
  • Journal article (peer-reviewed)abstract
    • pTropospheric ozone concentrations are sensitive to natural emissions of precursor compounds. In contrast to existing assumptions, recent evidence indicates that terrestrial vegetation emissions in the pre-industrial era were larger than in the present day. We use a chemical transport model and a radiative transfer model to show that revised inventories of pre-industrial fire and biogenic emissions lead to an increase in simulated pre-industrial ozone concentrations, decreasing the estimated pre-industrial to present-day tropospheric ozone radiative forcing by up to 34 % (0.38 to 0.25 W mspan classCombining double low line"inline-formula"-2/span). We find that this change is sensitive to employing biomass burning and biogenic emissions inventories based on matching vegetation patterns, as the co-location of emission sources enhances the effect on ozone formation. Our forcing estimates are at the lower end of existing uncertainty range estimates (0.2-0.6 W mspan classCombining double low line"inline-formula"-2/span), without accounting for other sources of uncertainty. Thus, future work should focus on reassessing the uncertainty range of tropospheric ozone radiative forcing.
  •  
20.
  • Svenhag, Carl, et al. (author)
  • Implementing detailed nucleation predictions in the Earth system model EC-Earth3.3.4: sulfuric acid–ammonia nucleation
  • 2024
  • In: Geoscientific Model Development. - Malmö : IVL Svenska Miljöinstitutet. - 1991-959X .- 1991-9603. ; 17:12, s. 4923-4942
  • Journal article (peer-reviewed)abstract
    • Representing detailed atmospheric aerosol processes in global Earth system models (ESMs) has proven to be challenging from both a computational and a parameterizationperspective. The representation of secondary organic aerosol (SOA) formation and new particle formation (NPF) in large ESMs is generally constructed with low detail to save computational costs. The simplification could result in losing the representation of some processes. In this study, we test and evaluate a new approach for improving the description of NPF processes in the ESM EC-Earth3 (ECE3) without significant additional computational burden.The current NPF scheme in EC-Earth3.3.4 is derived from the nucleation of low volatility organic vapors and sulfuric acid (H2SO4) together with a homogeneous water-H2SO4 nucleation scheme. We expand the existing schemes and introduce a new lookup table approach that incorporates detailed formation rate predictions through molecular modeling of sulfuric acid–ammonia nucleation (H2SO2–NH3). We apply tables of particle formation rates for H2SO2–NH3 nucleation, including dependence on temperature, atmospheric ion production rate, and molecular cluster scavenging sink.The resulting differences between using the H2SO4–NH3 nucleation in ECE3 and the original default ECE3 scheme are evaluated and compared with a focus on changes in the aerosol composition, cloud properties, and radiation balance. From this new nucleation scheme, EC-Earth3’s global average aerosol concentrations in the sub-100 nm sizes increased by 12 %–28 %. Aerosol concentrations above 100 nm and the direct radiative effect (in Wm?2) showed only minor differences upon changing of the nucleation scheme. However, the radiative effect from clouds affected by aerosols from the new nucleation scheme resulted in a global decrease (cooling effect) by 0.28–1Wm?2. The modeled aerosol concentrations were compared to observed measurements at various stations. In most cases, the new NPF predictions (H2SO2–NH3) performed better at stations where previous underestimations for aerosol concentrations occurred.
  •  
21.
  • Zhengyao, Lu, et al. (author)
  • Dynamic Vegetation Simulations of the Mid-Holocene Green Sahara
  • 2018
  • In: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 45:16, s. 8294-8303
  • Journal article (peer-reviewed)abstract
    • The Green Sahara is a period when North Africa was characterized by vegetation cover and wetlands. To qualitatively identify the orbital-climatic causation of the Green Sahara regime, we performed dynamic vegetation model (LPJ-GUESS) simulations, driven by climate forcings from coupled general circulation model (EC-Earth) simulations for the mid-Holocene, in which the vegetation is prescribed to be either modern desert or artificially vegetated with a reduced dust load. LPJ-GUESS simulates a vegetated Sahara covered by both herbaceous and woody vegetation types consistent with proxy reconstructions only in the latter scenario. Sensitivity experiments identify interactions required to capture the northward extension of vegetation. Increased precipitation is the main driver of the vegetation extent changes, and the temperature anomalies determine the plant functional types mainly through altered fire disturbance. Furthermore, the simulated vegetation composition also depends on the correct representation of soil texture in a humid environment like Green Sahara. Plain Language Summary The Sahara Desert experienced wet and vegetated conditions in the past. The vegetation-atmosphere feedbacks play an important role in sustaining vegetation cover in that region. Here we perform dynamic vegetation model simulations to reproduce herbaceous and woody vegetation types in North Africa 6,000 years ago. We further investigate separately the relative importance of various climate forcings (precipitation, temperature, radiation, and soil temperature) in inducing the Green Sahara. We conclude that vegetation extent is mainly determined by precipitation, while vegetation composition is mainly determined by temperature, and the correct representation of soil texture is also important. Future modeling work considering dynamic vegetation-atmosphere feedbacks could be valuable for providing analogues to Sahara/Sahel climate and vegetation regimes in the past and future.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-21 of 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view