SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ohlen J.) "

Search: WFRF:(Ohlen J.)

  • Result 1-16 of 16
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Jaen-Luchoro, Daniel, et al. (author)
  • Corynebacterium genitalium sp. nov., nom. rev. and Corynebacterium pseudogenitalium sp. nov., nom. rev., two old species of the genus Corynebacterium described from clinical and environmental samples
  • 2023
  • In: Research in Microbiology. - : Elsevier BV. - 0923-2508. ; 174:1-2
  • Journal article (peer-reviewed)abstract
    • Two Corynebacterium species were proposed decades ago, isolated from clinical samples and divided into biovars: "Corynebacterium genitalium" biovars I-V and "Corynebacterium pseudogenitalium" biovars C1 -C6. Several biovars have been re-classified as new species. Nevertheless, biovar I and C5, together with their respective specific epithets "Corynebacterium genitalium" and "Corynebacterium pseudogenitalium", remained not validly published after more than 40 years. Several more strains, temptatively classified as "C. genitalium" biovar I and "Corynebacterium pseudogenitalium" C5, have been isolated from clinical and environmental samples. Both species presented Gram-positive, non-spore forming rod-shaped cells, able to grow aerobically with CO2. Core-genome analysis identified "C. genitalium" to be most closely related to Corynebacterium tuscaniense, Corynebacterium urinipleomorphum, Corynebacterium aquatimens and C appendicis, and Corynebacterium gottingense as the most closely related species to "C. pseudogenitalium". Comprehensive genomic, genotypic, phenotypic analyses, as well as chemotaxonomic, support the proposal for "C. genitalium" and "C. pseudogenitalium" as distinct species within the genus Corynebacterium. The designated type strains of the two species are Furness 392-1T = ATCC 33030T = CCUG 38989T = CCM 9178T = DSM 113155T for C. genitalium sp. nov., nom. rev., and Furness 162-C2T = ATCC 33039T = CCUG 27540T = CCM 9177T = DSM 113154T for C. pseudogenitalium sp. nov., nom. rev. (c) 2022 The Author(s). Published by Elsevier Masson SAS on behalf of Institut Pasteur. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
12.
  • Jaén-Luchoro, Daniel, et al. (author)
  • Corynebacterium sanguinis sp. nov., a clinical and environmental associated corynebacterium.
  • 2020
  • In: Systematic and applied microbiology. - : Elsevier BV. - 1618-0984 .- 0723-2020. ; 43:1
  • Journal article (peer-reviewed)abstract
    • Clinical and environmental-associated strains (n=17), genotypically related to Corynebacterium spp., yet distinct from any species of the genus Corynebacterium with validly published names, have been isolated during the last 20 years and tentatively identified as Corynebacterium sanguinis, although the combination, "Corynebacterium sanguinis" was never validly published. The comprehensive genotypic and phenotypic characterisations and genomic analyses in this study support the proposal for recognizing the species within the genus Corynebacterium, for which the name, Corynebacterium sanguinis sp. nov., is reaffirmed and proposed. Strains of Corynebacterium sanguinis are Gram-positive, non-motile, non-spore-forming, short, pleomorphic and coryneform bacilli, growing aerobically, with CO2. They contain mycolic acids, major respiratory menaquinones, MK-8 (II-H2) and MK-9 (II-H2), and polar lipids, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, phosphoglycolipid, glycolipids and a novel lipid that remains to be characterized and identified. Strains of Corynebacterium sanguinis are genotypically most similar to Corynebacterium lipophiliflavum, with 16S rRNA gene sequence similarities of 98.3% and rpoB sequence similarities of 94.9-95.2%. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis were able to clearly differentiate Corynebacterium sanguinis from the most closely related species. The genome size of Corynebacterium sanguinis is 2.28-2.37Mbp with 65.1-65.5mol% G+C content. A total of 2202-2318 ORFs were predicted, comprising 2141-2251 protein-encoding genes. The type strain is CCUG 58655T (=CCM 8873T=NCTC 14287T).
  •  
13.
  •  
14.
  • Ohlen, P., et al. (author)
  • Data plane and control architectures for 5G transport networks
  • 2015
  • In: European Conference on Optical Communication, ECOC. - : Institute of Electrical and Electronics Engineers (IEEE). - 9788460817413
  • Conference paper (peer-reviewed)abstract
    • Next generation 5G mobile system will support the vision of connecting all devices that benefit from a connection. Transport networks need to support the required capacity, latency and flexibility. This paper outlines how 5G transport networks will address these requirements.
  •  
15.
  •  
16.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-16 of 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view