SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Olson J.) "

Search: WFRF:(Olson J.)

  • Result 1-50 of 326
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  • Tabiri, S, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Bravo, L, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
4.
  • 2021
  • swepub:Mat__t
  •  
5.
  • Glasbey, JC, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
6.
  •  
7.
  • Figlioli, G, et al. (author)
  • The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer
  • 2019
  • In: NPJ breast cancer. - : Springer Science and Business Media LLC. - 2374-4677. ; 5, s. 38-
  • Journal article (peer-reviewed)abstract
    • Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Bale, S. D., et al. (author)
  • The FIELDS Instrument Suite for Solar Probe Plus
  • 2016
  • In: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 204:1-4, s. 49-82
  • Research review (peer-reviewed)abstract
    • NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.
  •  
12.
  •  
13.
  •  
14.
  • Pantazis, N, et al. (author)
  • Determining the likely place of HIV acquisition for migrants in Europe combining subject-specific information and biomarkers data
  • 2019
  • In: Statistical methods in medical research. - : SAGE Publications. - 1477-0334 .- 0962-2802. ; 28:7, s. 1979-1997
  • Journal article (peer-reviewed)abstract
    • In most HIV-positive individuals, infection time is only known to lie between the time an individual started being at risk for HIV and diagnosis time. However, a more accurate estimate of infection time is very important in certain cases. For example, one of the objectives of the Advancing Migrant Access to Health Services in Europe (aMASE) study was to determine if HIV-positive migrants, diagnosed in Europe, were infected pre- or post-migration. We propose a method to derive subject-specific estimates of unknown infection times using information from HIV biomarkers’ measurements, demographic, clinical, and behavioral data. We assume that CD4 cell count (CD4) and HIV-RNA viral load trends after HIV infection follow a bivariate linear mixed model. Using post-diagnosis CD4 and viral load measurements and applying the Bayes’ rule, we derived the posterior distribution of the HIV infection time, whereas the prior distribution was informed by AIDS status at diagnosis and behavioral data. Parameters of the CD4–viral load and time-to-AIDS models were estimated using data from a large study of individuals with known HIV infection times (CASCADE). Simulations showed substantial predictive ability (e.g. 84% of the infections were correctly classified as pre- or post-migration). Application to the aMASE study ( n = 2009) showed that 47% of African migrants and 67% to 72% of migrants from other regions were most likely infected post-migration. Applying a Bayesian method based on bivariate modeling of CD4 and viral load, and subject-specific information, we found that the majority of HIV-positive migrants in aMASE were most likely infected after their migration to Europe.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Lawrenson, Kate, et al. (author)
  • Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.
  •  
19.
  •  
20.
  •  
21.
  • Leisawitz, David, et al. (author)
  • The origins space telescope
  • 2019
  • In: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 11115
  • Conference paper (peer-reviewed)abstract
    • The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid-and far-infrared wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of Herschel, the largest telescope flown in space to date. After a 3 1/2 year study, the Origins Science and Technology Definition Team will recommend to the Decadal Survey a concept for Origins with a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (MISC-T) will measure the spectra of transiting exoplanets in the 2.8-20 μm wavelength range and offer unprecedented sensitivity, enabling definitive biosignature detections. The Far-IR Imager Polarimeter (FIP) will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer (OSS) will cover wavelengths from 25-588 μm, make wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The telescope has a Spitzer-like architecture and requires very few deployments after launch. The cryo-thermal system design leverages JWST technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins' natural backgroundlimited sensitivity.
  •  
22.
  •  
23.
  • Dork, T, et al. (author)
  • Two truncating variants in FANCC and breast cancer risk
  • 2019
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1, s. 12524-
  • Journal article (peer-reviewed)abstract
    • Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95%CI 0.44–1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.
  •  
24.
  • Hollestelle, Antoinette, et al. (author)
  • No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer
  • 2016
  • In: Gynecologic Oncology. - : Elsevier BV. - 0090-8258 .- 1095-6859. ; 141:2, s. 386-401
  • Journal article (peer-reviewed)abstract
    • Objective Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3′ UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370. Methods Centralized genotyping and analysis were performed for 140,012 women enrolled in the Ovarian Cancer Association Consortium (15,357 ovarian cancer patients; 30,816 controls), the Breast Cancer Association Consortium (33,530 breast cancer patients; 37,640 controls), and the Consortium of Modifiers of BRCA1 and BRCA2 (14,765 BRCA1 and 7904 BRCA2 mutation carriers). Results We found no association with risk of ovarian cancer (OR = 0.99, 95% CI 0.94-1.04, p = 0.74) or breast cancer (OR = 0.98, 95% CI 0.94-1.01, p = 0.19) and results were consistent among mutation carriers (BRCA1, ovarian cancer HR = 1.09, 95% CI 0.97-1.23, p = 0.14, breast cancer HR = 1.04, 95% CI 0.97-1.12, p = 0.27; BRCA2, ovarian cancer HR = 0.89, 95% CI 0.71-1.13, p = 0.34, breast cancer HR = 1.06, 95% CI 0.94-1.19, p = 0.35). Null results were also obtained for associations with overall survival following ovarian cancer (HR = 0.94, 95% CI 0.83-1.07, p = 0.38), breast cancer (HR = 0.96, 95% CI 0.87-1.06, p = 0.38), and all other previously-reported associations. Conclusions rs61764370 is not associated with risk of ovarian or breast cancer nor with clinical outcome for patients with these cancers. Therefore, genotyping this variant has no clinical utility related to the prediction or management of these cancers.
  •  
25.
  • Coignard, J, et al. (author)
  • A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers
  • 2021
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1, s. 1078-
  • Journal article (peer-reviewed)abstract
    • Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10−8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers.
  •  
26.
  •  
27.
  •  
28.
  •  
29.
  •  
30.
  • Leisawitz, David, et al. (author)
  • Origins Space Telescope: Baseline mission concept
  • 2021
  • In: Journal of Astronomical Telescopes, Instruments, and Systems. - 2329-4221 .- 2329-4124. ; 7:1
  • Journal article (peer-reviewed)abstract
    • The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid-and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20 μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588 μm, making wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins' natural background-limited sensitivity.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  • Kapoor, Pooja Middha, et al. (author)
  • Combined associations of a polygenic risk score and classical risk factors with breast cancer risk
  • 2021
  • In: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 113:3, s. 329-337
  • Journal article (peer-reviewed)abstract
    • We evaluated the joint associations between a new 313-variant PRS (PRS313) and questionnaire-based breast cancer risk factors for women of European ancestry, using 72 284 cases and 80 354 controls from the Breast Cancer Association Consortium. Interactions were evaluated using standard logistic regression and a newly developed case-only method for breast cancer risk overall and by estrogen receptor status. After accounting for multiple testing, we did not find evidence that per-standard deviation PRS313 odds ratio differed across strata defined by individual risk factors. Goodness-of-fit tests did not reject the assumption of a multiplicative model between PRS313 and each risk factor. Variation in projected absolute lifetime risk of breast cancer associated with classical risk factors was greater for women with higher genetic risk (PRS313 and family history) and, on average, 17.5% higher in the highest vs lowest deciles of genetic risk. These findings have implications for risk prevention for women at increased risk of breast cancer. 
  •  
41.
  • Kattge, Jens, et al. (author)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • In: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Journal article (peer-reviewed)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
42.
  •  
43.
  • Mavaddat, Nasim, et al. (author)
  • Prediction of Breast Cancer Risk Based on Profiling With Common Genetic Variants
  • 2015
  • In: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 1460-2105 .- 0027-8874. ; 107:5, s. 036-036
  • Journal article (peer-reviewed)abstract
    • Background: Data for multiple common susceptibility alleles for breast cancer may be combined to identify women at different levels of breast cancer risk. Such stratification could guide preventive and screening strategies. However, empirical evidence for genetic risk stratification is lacking. Methods: We investigated the value of using 77 breast cancer-associated single nucleotide polymorphisms (SNPs) for risk stratification, in a study of 33 673 breast cancer cases and 33 381 control women of European origin. We tested all possible pair-wise multiplicative interactions and constructed a 77-SNP polygenic risk score (PRS) for breast cancer overall and by estrogen receptor (ER) status. Absolute risks of breast cancer by PRS were derived from relative risk estimates and UK incidence and mortality rates. Results: There was no strong evidence for departure from a multiplicative model for any SNP pair. Women in the highest 1% of the PRS had a three-fold increased risk of developing breast cancer compared with women in the middle quintile (odds ratio [OR] = 3.36, 95% confidence interval [CI] = 2.95 to 3.83). The ORs for ER-positive and ER-negative disease were 3.73 (95% CI = 3.24 to 4.30) and 2.80 (95% CI = 2.26 to 3.46), respectively. Lifetime risk of breast cancer for women in the lowest and highest quintiles of the PRS were 5.2% and 16.6% for a woman without family history, and 8.6% and 24.4% for a woman with a first-degree family history of breast cancer. Conclusions: The PRS stratifies breast cancer risk in women both with and without a family history of breast cancer. The observed level of risk discrimination could inform targeted screening and prevention strategies. Further discrimination may be achievable through combining the PRS with lifestyle/environmental factors, although these were not considered in this report.
  •  
44.
  •  
45.
  •  
46.
  •  
47.
  •  
48.
  •  
49.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 326
Type of publication
journal article (291)
conference paper (19)
research review (4)
book chapter (3)
reports (1)
book (1)
show more...
other publication (1)
doctoral thesis (1)
show less...
Type of content
peer-reviewed (296)
other academic/artistic (25)
Author/Editor
Easton, DF (82)
Hall, P (79)
Fasching, PA (78)
Chang-Claude, J (78)
Garcia-Closas, M (78)
Couch, FJ (77)
show more...
Giles, GG (75)
Southey, MC (75)
Czene, K (74)
Olson, JE (73)
Dunning, AM (69)
Mannermaa, A (69)
Nevanlinna, H (69)
Hopper, JL (68)
Beckmann, MW (68)
Chenevix-Trench, G (68)
Milne, RL (66)
Andrulis, IL (65)
Bojesen, SE (65)
Anton-Culver, H (64)
Schmidt, MK (64)
Cox, A (64)
Pharoah, PDP (64)
Dork, T (63)
Hamann, U (62)
Lambrechts, D (62)
Kosma, VM (61)
Olson, L (60)
Bolla, MK (60)
Margolin, S (60)
Benitez, J. (58)
Burwinkel, B (58)
Devilee, P (57)
Brauch, H (56)
Flyger, H (56)
Dennis, J (55)
Wang, Q. (55)
Lindblom, A (55)
Brenner, H (54)
Peto, J (53)
Jakubowska, A (53)
Peterlongo, P (51)
Guenel, P (51)
Haiman, CA (51)
Truong, T (50)
Arndt, V (50)
Lubinski, J (50)
Blomqvist, C (49)
Rudolph, A (49)
Lissowska, J (49)
show less...
University
Karolinska Institutet (210)
Uppsala University (49)
Lund University (45)
Umeå University (41)
University of Gothenburg (30)
Linköping University (12)
show more...
Royal Institute of Technology (11)
Chalmers University of Technology (6)
RISE (4)
Swedish University of Agricultural Sciences (3)
Stockholm University (2)
Högskolan Dalarna (2)
Kristianstad University College (1)
University West (1)
Linnaeus University (1)
Karlstad University (1)
Swedish National Defence College (1)
show less...
Language
English (323)
Swedish (2)
Undefined language (1)
Research subject (UKÄ/SCB)
Medical and Health Sciences (107)
Natural sciences (28)
Social Sciences (4)
Engineering and Technology (3)
Agricultural Sciences (1)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view