SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Olsson Ragni) "

Search: WFRF:(Olsson Ragni)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Koksal, Elif Senem, et al. (author)
  • Spontaneous Formation and Rearrangement of Artificial Lipid Nanotube Networks as a Bottom-Up Model for Endoplasmic Reticulum
  • 2019
  • In: Journal of Visualized Experiments. - : MyJove Corporation. - 1940-087X. ; 2019:143
  • Journal article (peer-reviewed)abstract
    • We present a convenient method to form a bottom-up structural organelle model for the endoplasmic reticulum (ER). The model consists of highly dense lipidic nanotubes that are, in terms of morphology and dynamics, reminiscent of ER. The networks are derived from phospholipid double bilayer membrane patches adhering to a transparent Al2O3 substrate. The adhesion is mediated by Ca2+ in the ambient buffer. Subsequent depletion of Ca2+ by means of BAPTA/EDTA causes retraction of the membrane, resulting in spontaneous lipid nanotube network formation. The method only comprises phospholipids and microfabricated surfaces for simple formation of an ER model and does not require the addition of proteins or chemical energy (e.g., GTP or ATP). In contrast to the 3D morphology of the cellular endoplasmic reticulum, the model is two-dimensional (albeit the nanotube dimensions, geometry, structure, and dynamics are maintained). This unique in vitro ER model consists of only a few components, is easy to construct, and can be observed under a light microscope. The resulting structure can be further decorated for additional functionality, such as the addition of ER-associated proteins or particles to study transport phenomena among the tubes. The artificial networks described here are suitable structural models for the cellular ER, whose unique characteristic morphology has been shown to be related to its biological function, whereas details regarding formation of the tubular domain and rearrangements within are still not completely understood. We note that this method uses Al2O3 thin-film-coated microscopy coverslips, which are commercially available but require special orders. Therefore, it is advisable to have access to a microfabrication facility for preparation.
  •  
2.
  • Köksal, Elif Senem, et al. (author)
  • Nanotube-Mediated Path to Protocell Formation
  • 2019
  • In: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851. ; 13
  • Journal article (peer-reviewed)abstract
    • Cellular compartments are membrane-enclosed, spatially distinct microenvironments that confine and protect biochemical reactions in the biological cell. On the early Earth, the autonomous formation of compartments is thought to have led to the encapsulation of nucleotides, thereby satisfying a starting condition for the emergence of life. Recently, surfaces have come into focus as potential platforms for the self-assembly of prebiotic compartments, as significantly enhanced vesicle formation was reported in the presence of solid interfaces. The detailed mechanism of such formation at the mesoscale is still under discussion. We report here on the spontaneous transformation of solid-surface-adhered lipid deposits to unilamellar membrane compartments through a straightforward sequence of topological changes, proceeding via a network of interconnected lipid nanotubes. We show that this transformation is entirely driven by surface-free energy minimization and does not require hydrolysis of organic molecules or external stimuli such as electrical currents or mechanical agitation. The vesicular structures take up and encapsulate their external environment during formation and can subsequently separate and migrate upon exposure to hydrodynamic flow. This may link the self-directed transition from weakly organized bioamphiphile assemblies on solid surfaces to protocells with secluded internal contents.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view