SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Oyston Petra C F) "

Search: WFRF:(Oyston Petra C F)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Egge-Jacobsen, Wolfgang, et al. (author)
  • O-Linked glycosylation of the PilA pilin protein of francisella tularensis : identification of the endogenous protein-targeting oligosaccharyltransferase and characterization of the native oligosaccharide
  • 2011
  • In: Journal of Bacteriology. - Baltimore : Williams & Wilkins. - 0021-9193 .- 1098-5530. ; 193:19, s. 5487-5497
  • Journal article (peer-reviewed)abstract
    • Findings from a number of studies suggest that the PilA pilin proteins may play an important role in the pathogenesis of disease caused by species within the genus Francisella. As such, a thorough understanding of PilA structure and chemistry is warranted. Here, we definitively identified the PglA protein-targeting oligosaccharyltransferase by virtue of its necessity for PilA glycosylation in Francisella tularensis and its sufficiency for PilA glycosylation in Escherichia coli. In addition, we used mass spectrometry to examine PilA affinity purified from Francisella tularensis subsp. tularensis and F. tularensis subsp. holarctica and demonstrated that the protein undergoes multisite, O-linked glycosylation with a pentasaccharide of the structure HexNac-HexHex-HexNac-HexNac. Further analyses revealed microheterogeneity related to forms of the pentasaccharide carrying unusual moieties linked to the distal sugar via a phosphate bridge. Type A and type B strains of Francisella subspecies thus express an O-linked protein glycosylation system utilizing core biosynthetic and assembly pathways conserved in other members of the proteobacteria. As PglA appears to be highly conserved in Francisella species, O-linked protein glycosylation may be a feature common to members of this genus.
  •  
2.
  • Forslund, Anna-Lena, 1964-, et al. (author)
  • Direct repeat-mediated deletion of a type IV pilin gene results in major virulence attenuation of Francisella tularensis
  • 2006
  • In: Molecular Microbiology. - : Wiley-Blackwell. - 0950-382X .- 1365-2958. ; 59:6, s. 1818-1830
  • Journal article (peer-reviewed)abstract
    • Francisella tularensis, the causative agent of tularaemia, is a highly infectious and virulent intracellular pathogen. There are two main human pathogenic subspecies, Francisella tularensis ssp. tularensis (type A), and Francisella tularensis ssp. holarctica (type B). So far, knowledge regarding key virulence determinants is limited but it is clear that intracellular survival and multiplication is one major virulence strategy of Francisella. In addition, genome sequencing has revealed the presence of genes encoding type IV pili (Tfp). One genomic region encoding three proteins with signatures typical for type IV pilins contained two 120 bp direct repeats. Here we establish that repeat-mediated loss of one of the putative pilin genes in a type B strain results in severe virulence attenuation in mice infected by subcutaneous route. Complementation of the mutant by introduction of the pilin gene in cis resulted in complete restoration of virulence. The level of attenuation was similar to that of the live vaccine strain and this strain was also found to lack the pilin gene as result of a similar deletion event mediated by the direct repeats. Presence of the pilin had no major effect on the ability to interact, survive and multiply inside macrophage-like cell lines. Importantly, the pilin-negative strain was impaired in its ability to spread from the initial site of infection to the spleen. Our findings indicate that this putative pilin is critical for Francisella infections that occur via peripheral routes.
  •  
3.
  • Garbom, Sara, et al. (author)
  • Phenotypic characterization of a virulence-associated protein, VagH, of Yersinia pseudotuberculosis reveals a tight link between VagH and the type III secretion system.
  • 2007
  • In: Microbiology. - : Society for General Microbiology. - 1350-0872 .- 1465-2080. ; 153:Pt 5, s. 1464-73
  • Journal article (peer-reviewed)abstract
    • Recently, a number of attenuated mutants of Yersinia pseudotuberculosis have been identified using a bioinformatics approach. One of the target genes identified in that study was vagH, which the authors now characterized further. VagH shows homology to HemK of Escherichia coli, possessing methyltransferase activity similar to that of HemK, and targeting release factors 1 and 2. Microarray studies comparing the wild-type and the vagH mutant revealed that the mRNA levels of only a few genes were altered in the mutant. By proteome analysis, expression of the virulence determinant YopD was found to be increased, indicating a possible connection between VagH and the virulence plasmid-encoded type III secretion system (T3SS). Further analysis showed that Yop expression and secretion were repressed in a vagH mutant. This phenotype could be suppressed by trans-complementation with the wild-type vagH gene or by deletion of the negative regulator yopD. Also, in a similar manner to a T3SS-negative mutant, the avirulent vagH mutant was rapidly cleared from Peyer's patches and could not reach the spleen after oral infection of mice. In a manner analogous to that of T3SS mutants, the vagH mutant could not block phagocytosis by macrophages. However, a vagH mutant showed no defects in the T3SS-independent ability to proliferate intracellularly and replicated to levels similar to those of the wild-type in macrophages. In conclusion, the vagH mutant exhibits a virulence phenotype similar to that of a T3SS-negative mutant, indicating a tight link between VagH and type III secretion in Y. pseudotuberculosis.
  •  
4.
  • Oyston, Petra C F, et al. (author)
  • Tularaemia : bioterrorism defence renews interest in Francisella tularensis.
  • 2004
  • In: Nature Reviews Microbiology. - : Springer Science and Business Media LLC. - 1740-1526 .- 1740-1534. ; 2:12, s. 967-78
  • Journal article (peer-reviewed)abstract
    • Francisella tularensis is a highly infectious aerosolizable intracellular pathogen that is capable of causing a debilitating or fatal disease with doses as low as 25 colony-forming units. There is no licensed vaccine available. Since the 1950s there has been concern that F. tularensis could be used as a biological threat agent, and it has received renewed attention recently owing to concerns about bioterrorism. The International Conference on Tularaemia in 2003 attracted more than 200 delegates, twice the number of participants as previous meetings. This is a reflection of the increased funding of research on this pathogen, particularly in the United States.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view