SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Paufique J.) "

Search: WFRF:(Paufique J.)

  • Result 1-13 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Dorn, R. J., et al. (author)
  • CRIRES+ on sky at the ESO Very Large Telescope : Observing the Universe at infrared wavelengths and high spectral resolution
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 671
  • Journal article (peer-reviewed)abstract
    • The CRyogenic InfraRed Echelle Spectrograph (CRIRES) Upgrade project CRIRES+ extended the capabilities of CRIRES. It transformed this VLT instrument into a cross-dispersed spectrograph to increase the wavelength range that is covered simultaneously by up to a factor of ten. In addition, a new detector focal plane array of three Hawaii 2RG detectors with a 5.3 mu m cutoff wavelength replaced the existing detectors. Amongst many other improvements, a new spectropolarimetric unit was added and the calibration system has been enhanced. The instrument was installed at the VLT on Unit Telescope 3 at the beginning of 2020 and successfully commissioned and verified for science operations during 2021, partly remotely from Europe due to the COVID-19 pandemic. The instrument was subsequently offered to the community from October 2021 onwards. This article describes the performance and capabilities of the upgraded instrument and presents on sky results.
  •  
2.
  • Follert, R., et al. (author)
  • CRIRES plus : a cross-dispersed high-resolution infrared spectrograph for the ESO VLT
  • 2014
  • In: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V. - : SPIE. - 9780819496157
  • Conference paper (peer-reviewed)abstract
    • High-resolution infrared spectroscopy plays an important role in astrophysics from the search for exoplanets to cosmology. Yet, many existing infrared spectrographs are limited by a rather small simultaneous wavelength coverage. The AO assisted CRIRES instrument, installed at the ESO VLT on Paranal, is one of the few IR (0.92-5.2 mu m) high-resolution spectrographs in operation since 2006. However it has a limitation that hampers its efficient use: the wavelength range covered in a single exposure is limited to similar to 15 nanometers. The CRIRES Upgrade project (CRIRES+) will transform CRIRES into a cross-dispersed spectrograph and will also add new capabilities. By introducing cross-dispersion elements the simultaneously covered wavelength range will be increased by at least a factor of 10 with respect to the present configuration, while the operational wavelength range will be preserved. For advanced wavelength calibration, new custom made absorption gas cells and etalons will be added. A spectro-polarimetric unit will allow one for the first time to record circularly polarized spectra at the highest spectral resolution. This will be all supported by a new data reduction software which will allow the community to take full advantage of the new capabilities of CRIRES+.
  •  
3.
  • Oliva, E., et al. (author)
  • Concept and optical design of the cross-disperser module for CRIRES
  • 2014
  • In: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V. - : SPIE. - 9780819496157
  • Conference paper (peer-reviewed)abstract
    • CRIRES, the ESO high resolution infrared spectrometer, is a unique instrument which allows astronomers to access a parameter space which up to now was largely uncharted. In its current setup, it consists of a single-order spectrograph providing long-slit, single-order spectroscopy with resolving power up to R=100,000 over a quite narrow spectral range. This has resulted in sub-optimal efficiency and use of telescope time for all the scientific programs requiring broad spectral coverage of compact objects (e.g. chemical abundances of stars and intergalactic medium, search and characterization of extra-solar planets). To overcome these limitations, a consortium was set-up for upgrading CRIRES to a cross-dispersed spectrometer, called CRIRES+. This paper presents the updated optical design of the cross-dispersion module for CRIRES+. This new module can be mounted in place of the current pre-disperser unit. The new system yields a factor of >10 increase in simultaneous spectral coverage and maintains a quite long slit (10"), ideal for observations of extended sources and for precise sky-background subtraction.
  •  
4.
  • Seemann, U., et al. (author)
  • Wavelength calibration from 1-5 mu m for the CRIRES plus high-resolution spectrograph at the VLT
  • 2014
  • In: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V. - : SPIE. - 9780819496157
  • Conference paper (peer-reviewed)abstract
    • CRIRES at the VLT is one of the few adaptive optics enabled instruments that offer a resolving power of 10 5 from 1 - 5 mu m. An instrument upgrade (CRIRES+) is proposed to implement cross-dispersion capabilities, spectro-polarimetry modes, a new detector mosaic, and a new gas absorption cell. CRIRES+ will boost the simultaneous wavelength coverage of the current instrument (similar to lambda/70 in a single-order) by a factor of greater than or similar to 10 in the cross-dispersed configuration, while still retaining a 10 arcsec slit suitable for long-slit spectroscopy. CRIRES+ dramatically enhances the instrument's observing efficiency, and opens new scientific opportunities. These include high-precision radial-velocity studies on the 3m/s level to characterize extra-solar planets and their athmospheres, which demand for specialized, highly accurate wavelength calibration techniques. In this paper, we present a newly developed absorption gas-cell to enable high-precision wavelength calibration for CRIRES+. We also discuss the strategies and developments to cover the full operational spectral range (1-5 mu m), employing hollow-cathode emission lamps, Fabry-Perot etalons, and absorption gas-cells.
  •  
5.
  • Bristow, Paul, et al. (author)
  • CRIRES+ : Characterisation and preparation during the pandemic
  • 2022
  • In: Ground-based and Airborne Instrumentation for Astronomy IX. - : SPIE - International Society for Optical Engineering. - 9781510653504 - 9781510653498
  • Conference paper (peer-reviewed)abstract
    • In early 2020 the upgraded(1) CRIRES2 instrument, was installed at the VLT, however the onset of the global pandemic prevented the completion of some aspects of the installation while characterisation and commissioning had to be conducted with a remote connection from Europe. This resulted in a somewhat experimental, ad-hoc, approach to characterisation that required tight co-ordination between Paranal scientists and the instrument team in Europe. Moreover, with the observatory operating at minimal staffing, we had to find workarounds for some unfinished parts of the installation and adapt our characterisation, calibration and operations strategies accordingly. In particular, we discuss the adaptation made to the metrology strategy that illustrates well the pragmatic and ultimately successful approach adopted for getting CRIRES+ ready for operations.
  •  
6.
  • Brucalassi, Anna, et al. (author)
  • Full System Test and early Preliminary Acceptance Europe results for CRIRES
  • 2018
  • In: Ground-Based And Airborne Instrumentation For Astronomy VII. - : SPIE. - 9781510619586
  • Conference paper (peer-reviewed)abstract
    • CRIRES+ is the new high-resolution NIR echelle spectrograph intended to be operated at the platform B of VLT Unit telescope UT3. It will cover from Y to M bands (0.95-5.3um) with a spectral resolution of R = 50000 or R = 100000. The main scientific goals are the search of super-Earths in the habitable zone of low-mass stars, the characterisation of transiting planets atmosphere and the study of the origin and evolution of stellar magnetic fields. Based on the heritage of the old adaptive optics (AO) assisted VLT instrument CRIRES, the new spectrograph will present improved optical layout, a new detector system and a new calibration unit providing optimal performances in terms of simultaneous wavelength coverage and radial velocity accuracy (a few m/s). The total observing efficiency will be enhanced by a factor of 10 with respect to CRIRES. An innovative spectro-polarimetry mode will be also offered and a new metrology system will ensure very high system stability and repeatability. Fiinally, the CRIRES+ project will also provide the community with a new data reduction software (DRS) package. CRIRES+ is currently at the initial phase of its Preliminary Acceptance in Europe (PAE) and it will be commissioned early in 2019 at VLT. This work outlines the main results obtained during the initial phase of the full system test at ESO HQ Garching.
  •  
7.
  • Dorn, Reinhold J., et al. (author)
  • CRIRES+ on sky : High spectral resolution at infrared wavelength enabling better science at the ESO VLT
  • 2022
  • In: Ground-Based And Airborne Instrumentation For Astronomy IX. - : SPIE - International Society for Optical Engineering. - 9781510653504 - 9781510653498
  • Conference paper (peer-reviewed)abstract
    • CRIRES+ extended the capabilities of CRIRES, the CRyogenic InfraRed Echelle Spectrograph. It transformed this VLT instrument into a cross-dispersed spectrograph to increase the wavelength range that is covered simultaneously by a factor of ten. In addition, a new detector focal plane array of three Hawaii 2RG detectors with a 5.3 mu m cut-off wavelength replaced the existing detectors. Amongst many other improvements a new spectropolarimetric unit was added and the calibration system has been enhanced. The instrument was installed at the VLT on Unit Telescope 3 beginning of 2020 and successfully commissioned and verified for science operations during 2021, partly remote from Europe due to the pandemic. The instrument was subsequently offered to the community from October 2021 onwards. This article describes the performance and capabilities of this development and presents on sky results.
  •  
8.
  • Dorn, Reinhold J., et al. (author)
  • The " plus " for CRIRES : enabling better science at infrared wavelength and high spectral resolution at the ESO VLT
  • 2016
  • In: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY VI. - : SPIE. - 9781510601963
  • Conference paper (peer-reviewed)abstract
    • The adaptive optics (AO) assisted CRIRES instrument was a IR (0.92 - 5.2 mu m) high-resolution spectrograph in operation from 2006 to 2014 at the Very Large Telescope (VLT) observatory. CRIRES was a unique instrument, accessing a parameter space (wavelength range and spectral resolution) up to now largely uncharted. It consisted of a single-order spectrograph providing long-slit (40 arcsecond) spectroscopy with a resolving power up to R=100 000. However the setup was limited to a narrow, single-shot, spectral range of about 1/70 of the central wavelength, resulting in low observing efficiency for many scientific programmes requiring a broad spectral coverage. The CRIRES upgrade project, CRIRES, transfouns this VLT instrument into a cross-dispersed spectrograph to increase the simultaneously covered wavelength range by a factor of ten. A new and larger detector focal plane array of three Hawaii 2RG detectors with 5.3 mu m cut-off wavelength will replace the existing detectors. For advanced wavelength calibration, custom-made absorption gas cells and an etalon system will be added. A spectro-polarimetric unit will allow the recording of circular and linear polarized spectra. This upgrade will be supported by dedicated data reduction software allowing the community to take full advantage of the new capabilities. CRIRES has now entered its assembly and integration phase and will return with all new capabilities by the beginning of 2018 to the Very Large Telescope in Chile. This article will provide the reader with an update of the current status of the instrument as well as the remaining steps until final installation at the Paranal Observatory.
  •  
9.
  • Follert, Roman, et al. (author)
  • Characterizing the cross dispersion reflection gratings of CRIRES
  • 2016
  • In: Advances In Optical And Mechanical Technologies For Telescopes And Instrumentation Ii. - : SPIE. - 9781510602038 - 9781510602045
  • Conference paper (peer-reviewed)abstract
    • The CRIRES+ project attempts to upgrade the CRIRES instrument into a cross dispersed echelle spectrograph with a simultaneous recording of 8-10 diffraction orders. In order to transform the CRIRES spectrograph into a cross-dispersing instrument, a set of six reflection gratings, each one optimized for one of the wavelength bands CRIRES+ will operate in (YJHKLM), will be used as cross dispersion elements in CRIRES+. Due to the upgrade nature of the project, the choice of gratings depends on the fixed geometry of the instrument. Thus, custom made gratings would be required to achieve the ambitious design goals. Custom made gratings have the disadvantage, though, that they come at an extraordinary price and with lead times of more than 12 months. To mitigate this, a set of off-the-shelf gratings was obtained which had grating parameters very close to the ones being identified as optimal. To ensure that the rigorous specifications for CRIRES+ will be fulfilled, the CRIRES+ team started a collaboration with the Physikalisch-Technische Bundesanstalt Berlin (PTB) to characterize gratings under conditions similar to the operating conditions in CRIRES+ (angle of incidence, wavelength range). The respective test setup was designed in collaboration between PTB and the CRIRES+ consortium. The PTB provided optical radiation sources and calibrated detectors for each wavelength range. With this setup, it is possible to measure the absolute efficiency of the gratings both wavelength dependent and polarization state dependent in a wavelength range from 0.9 mu m to 6 mu m.
  •  
10.
  • Lizon, Jean Louis, et al. (author)
  • Opto-mechanical design of a new Cross Dispersion Unit for the CRIRES plus high resolution spectrograph for the VLT
  • 2014
  • In: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V. - : SPIE. - 9780819496157
  • Conference paper (peer-reviewed)abstract
    • CRIRES is one of the few IR (0.92-5.2 mu m) high-resolution spectrographs in operation at the VLT since 2006. Despite good performance it suffers a limitation that significantly hampers its ability: a small spectral coverage per exposure. The CRIRES upgrade (CRIRES+) proposes to transform CRIRES into a cross-dispersed spectrograph while maintaining the high resolution (100000) and increasing the wavelength coverage by a factor 10 compared to the current capabilities. A major part of the upgrade is the exchange of the actual cryogenic pre-disperser module by a new cross disperser unit. In addition to a completely new optical design, a number of important changes are required on key components and functions like the slit unit and detectors units. We will outline the design of these new units fitting inside a predefined and restricted space. The mechanical design of the new functions including a description and analysis will be presented. Finally we will present the strategy for the implementation of the changes.
  •  
11.
  • Lizon, Jean Louis, et al. (author)
  • Very accurate cryogenic mechanisms for CRIRES
  • 2018
  • In: OPTICAL AND INFRARED INTERFEROMETRY AND IMAGING VI. - : SPIE-INT SOC OPTICAL ENGINEERING. - 9781510619562
  • Conference paper (peer-reviewed)abstract
    • After 5 years of operation on the VLT, a large upgrade of CRIRES (the ESO Cryogenic InfraRed Echelle Spectrograph) was decided mainly in order to increase the efficiency. Using a cross dispersion design allows better wavelength coverage per exposure. This means a complete re-design of the cryogenic pre-optic which were including a pre-dispersion stage with a large prism as dispersive element. The new design requires a move of the entrance slit and associated decker toward the first intermediate focal plane right behind the window. Implement 2 functions with high positioning accuracy in a pre-defined and limited space was a real challenge. The design and the test results recorded in the ESO Cryogenic Test Facility are reported in this paper. The second critical function is the grating wheel which positions the 6 cross disperser gratings into the beam. The paper describes the design of the mechanism which includes a detente system in order to guaranty the 5 arc sec positioning reproducibility requested. The design includes also feedback system, based on switches, in order to ensure that the right grating is in position before starting a long exposure. The paper reports on the tests carried out at cryogenic temperature at the sub-system level. It also includes early performances recorded in the instrument along the first phases of the system test.
  •  
12.
  • Lockhart, Matthew, et al. (author)
  • Novel infrared polarimeter for the ESO CRIRES plus instrument
  • 2014
  • In: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY V. - : SPIE. - 9780819496157
  • Conference paper (peer-reviewed)abstract
    • The CRIRES infrared spectrograph at the European Southern Observatory (ESO) Very Large Telescope (VLT) facility will soon receive an upgrade. This upgrade will include the addition of a module for performing high-resolution spectropolarimetry. The polarimetry module will incorporate a novel infrared beamsplitter based on polarization gratings (PGs). The beamsplitter produces a pair of infrared output beams, with opposite circular polarizations, which are then fed into the spectrograph. Visible light passes through the module virtually unaltered and is then available for use by the CRIRES adaptive optics system. We present the design of the polarimetry module and measurements of PG behavior in the 1 to 2.7 mu m wavelength range.
  •  
13.
  • Piskunov, Nikolai, professor, 1957-, et al. (author)
  • A unique infrared spectropolarimetric unit for CRIRES
  • 2018
  • In: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY VII. - : SPIE-INT SOC OPTICAL ENGINEERING. - 9781510619586
  • Conference paper (peer-reviewed)abstract
    • High-resolution infrared spectropolarimetry has many science applications in astrophysics. One of them is measuring weak magnetic fields using the Zeeman effect. Infrared domain is particularly advantageous as Zeeman splitting of spectral lines is proportional to the square of the wavelength while the intrinsic width of the line cores increases only linearly. Important science cases include detection and monitoring of global magnetic fields on solar-type stars, study of the magnetic field evolution from stellar formation to the final stages of the stellar life with massive stellar winds, and the dynamo mechanism operation across the boundary between fully-and partially-convective stars. CRIRES+ (the CRIRES upgrade project) includes a novel spectropolarimetric unit (SPU) based on polarization gratings. The novel design allows to perform beam-splitting very early in the optical path, directly after the tertiary mirror of the telescope (the ESO Very Large Telescope, VLT), minimizing instrumental polarization. The new SPU performs polarization beam-splitting in the near-infrared while keeping the telescope beam mostly unchanged in the optical domain, making it compatible with the adaptive optics system of the CRIRES+ instrument. The SPU consists of four beam-splitters optimized for measuring circular and linear polarization of spectral lines in YJ and HK bands. The SPU can perform beam switching allowing to correct for throughput in each beam and for variations in detector pixel sensitivity. Other new features of CRIRES+, such as substantially increased wavelength coverage, stability and advanced data reduction pipeline will further enhance the sensitivity of the polarimetric mode. The combination of the SPU, CRIRES+ and the VLT is a unique facility for making major progress in understanding stellar activity. In this article we present the design of the SPU, laboratory measurements of individual components and of the whole unit as well as the performance prediction for the operation at the VLT.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-13 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view