SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pavlov G. G.) "

Sökning: WFRF:(Pavlov G. G.)

  • Resultat 1-50 av 65
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
2.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  • 2021
  • swepub:Mat__t
  •  
4.
  • 2021
  • swepub:Mat__t
  •  
5.
  •  
6.
  •  
7.
  • Crous, P. W., et al. (författare)
  • Fusarium : more than a node or a foot-shaped basal cell
  • 2021
  • Ingår i: Studies in mycology. - : CENTRAALBUREAU SCHIMMELCULTURE. - 0166-0616 .- 1872-9797. ; :98
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org).
  •  
8.
  • Marinucci, A., et al. (författare)
  • Polarization constraints on the X-ray corona in Seyfert Galaxies : MCG-05-23-16
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 516:4, s. 5907-5913
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the first observation of a radio-quiet active galactic nucleus (AGN) in polarized X-rays: the Seyfert 1.9 galaxy MCG-05-23-16. This source was pointed at with the Imaging X-ray Polarimetry Explorer (IXPE) starting on 2022 May 14 for a net observing time of 486 ks, simultaneously with XMM-Newton (58 ks) and NuSTAR (83 ks). A polarization degree Π smaller than 4.7 per cent (at the 99 per cent confidence level) is derived in the 2–8 keV energy range, where emission is dominated by the primary component ascribed to the hot corona. The broad-band spectrum, inferred from a simultaneous fit to the IXPE, NuSTAR, and XMM-Newton data, is well reproduced by a power law with photon index Γ = 1.85 ± 0.01 and a high-energy cutoff EC = 120 ± 15 keV. A comparison with Monte Carlo simulations shows that a lamp-post and a conical geometry of the corona are consistent with the observed upper limit, a slab geometry is allowed only if the inclination angle of the system is less than 50°.
  •  
9.
  • Keppler, M., et al. (författare)
  • Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Young circumstellar disks are the birthplaces of planets. Their study is of prime interest to understand the physical and chemical conditions under which planet formation takes place. Only very few detections of planet candidates within these disks exist, and most of them are currently suspected to be disk features.Aims. In this context, the transition disk around the young star PDS 70 is of particular interest, due to its large gap identified in previous observations, indicative of ongoing planet formation. We aim to search for the presence of an embedded young planet and search for disk structures that may be the result of disk-planet interactions and other evolutionary processes.Methods. We analyse new and archival near-infrared images of the transition disk PDS 70 obtained with the VLT/SPHERE, VLT/NaCo, and Gemini/NICI instruments in polarimetric differential imaging and angular differential imaging modes.Results. We detect a point source within the gap of the disk at about 195 mas (similar to 22 au) projected separation. The detection is confirmed at five different epochs, in three filter bands and using different instruments. The astrometry results in an object of bound nature, with high significance. The comparison of the measured magnitudes and colours to evolutionary tracks suggests that the detection is a companion of planetary mass. The luminosity of the detected object is consistent with that of an L-type dwarf, but its IR colours are redder, possibly indicating the presence of warm surrounding material. Further, we confirm the detection of a large gap of similar to 54 au in size within the disk in our scattered light images, and detect a signal from an inner disk component. We find that its spatial extent is very likely smaller than similar to 17 au in radius, and its position angle is consistent with that of the outer disk. The images of the outer disk show evidence of a complex azimuthal brightness distribution which is different at different wavelengths and may in part be explained by Rayleigh scattering from very small grains.Conclusions. The detection of a young protoplanet within the gap of the transition disk around PDS 70 opens the door to a so far observationally unexplored parameter space of planetary formation and evolution. Future observations of this system at different wavelengths and continuing astrometry will allow us to test theoretical predictions regarding planet-disk interactions, planetary atmospheres, and evolutionary models.
  •  
10.
  • Ming, D.W., et al. (författare)
  • Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 343:6169
  • Tidskriftsartikel (refereegranskat)abstract
    • H2O, CO2, SO2, O2, H2, H2S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H2O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO2. Concurrent evolution of O2 and chlorinated hydrocarbons suggests the presence of oxychlorine phase(s). Sulfides are likely sources for sulfur-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic carbon sources may be preserved in the mudstone; however, the carbon source for the chlorinated hydrocarbons is not definitively of martian origin.
  •  
11.
  • Morales, J. C., et al. (författare)
  • A giant exoplanet orbiting a very-low-mass star challenges planet formation models
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 365:6460, s. 1441-1445
  • Tidskriftsartikel (refereegranskat)abstract
    • Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts constraints on the planet accretion and migration rates. Disk instabilities may be more efficient in forming planets than previously thought.
  •  
12.
  •  
13.
  • Boeskorov, G G, et al. (författare)
  • The Preliminary Analysis of Cave Lion Cubs Panthera spelaea (Goldfuss, 1810) from the Permafrost of Siberia
  • 2021
  • Ingår i: Quaternary. - : MDPI AG. - 2571-550X. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • A preliminary description is presented of the well-preserved frozen mummies of two cubs of the extinct cave lion Panthera spelaea (finds of 2017–2018, Semyuelyakh River, Yakutia, eastern Siberia, Russia). The fossil lion cubs were found in close proximity, but they do not belong to the same litter, since their radiocarbon ages differ: the female (named ‘Sparta’) was dated to 27,962 ± 109 uncal years BP, and the male (named ‘Boris’) was dated to 43,448 ± 389 uncal years BP. The lion cubs have similar individual ages, 1–2 months. The general tone of the colour of the fur coat of Sparta is greyish to light brown, whereas, in Boris, the fur is generally lighter, greyish yellowish. It is, therefore, possible that light colouration prevailed with age in cave lions and was adaptive for northern snow-covered landscapes. The article discusses the results of computed tomography of cubs of the cave lion, the possible reasons for their death, and the peculiarities of their existence in the Siberian Arctic.
  •  
14.
  • Bonnefoy, M., et al. (författare)
  • The GJ 504 system revisited Combining interferometric, radial velocity, and high contrast imaging data
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 618
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The G-type star GJ504A is known to host a 3-35 M-Jup companion whose temperature, mass, and projected separation all contribute to making it a test case for planet formation theories and atmospheric models of giant planets and light brown dwarfs. Aims. We aim at revisiting the system age, architecture, and companion physical and chemical properties using new complementary interferometric, radial-velocity, and high-contrast imaging data. Methods. We used the CHARA interferometer to measure GJ504A's angular diameter and obtained an estimation of its radius in combination with the HIPPARCOS parallax. The radius was compared to evolutionary tracks to infer a new independent age range for the system. We collected dual imaging data with IRDIS on VLT/SPHERE to sample the near-infrared (1.02-2.25 mu m) spectral energy distribution (SED) of the companion. The SED was compared to five independent grids of atmospheric models (petitCODE, Exo-REM, BT-SETTL, Morley et al., and ATMO) to infer the atmospheric parameters of GJ 504b and evaluate model-to-model systematic errors. In addition, we used a specific model grid exploring the effect of different C/O ratios. Contrast limits from 2011 to 2017 were combined with radial velocity data of the host star through the MESS2 tool to define upper limits on the mass of additional companions in the system from 0.01 to 100 au. We used an MCMC fitting tool to constrain the companion's orbital parameters based on the measured astrometry, and dedicated formation models to investigate its origin. Results. We report a radius of 1.35 +/- 0.04 R-circle dot for GJ504A. The radius yields isochronal ages of 21 +/- 2 Myr or 4.0 +/- 1.8 Gyr for the system and line-of-sight stellar rotation axis inclination of 162.4(-4.3)(+3.8) degrees or 18.6(-3.8)(+4.3) degrees. We re-detect the companion in the Y2, Y3, J3, H2, and K1 dual-band images. The complete 1-4 mu m SED shape of GJ504b is best reproduced by T8-T9.5 objects with intermediate ages (<= 1.5Gyr), and/or unusual dusty atmospheres and/or super-solar metallicities. All atmospheric models yield T-eff = 550 +/- 50 K for GJ504b and point toward a low surface gravity (3.5-4.0 dex). The accuracy on the metallicity value is limited by model-to-model systematics; it is not degenerate with the C/O ratio. We derive log L/L-circle dot = 6.15 +/- 0.15 dex for the companion from the empirical analysis and spectral synthesis. The luminosity and T-eff yield masses of M = 1.3(-0.3)(+0.6) M-Jup and M = 23(-9)(+10) M-Jup for the young and old age ranges, respectively. The semi-major axis (sma) is above 27.8 au and the eccentricity is lower than 0.55. The posterior on GJ 504b's orbital inclination suggests a misalignment with the rotation axis of GJ 504A. We exclude additional objects (90% prob.) more massive than 2.5 and 30 M-Jup with semi-major axes in the range 0.01-80 au for the young and old isochronal ages, respectively. Conclusions. The mass and semi-major axis of GJ 504b are marginally compatible with a formation by disk-instability if the system is 4 Gyr old. The companion is in the envelope of the population of planets synthesized with our core-accretion model. Additional deep imaging and spectroscopic data with SPHERE and JWST should help to confirm the possible spin-orbit misalignment and refine the estimates on the companion temperature, luminosity, and atmospheric composition.
  •  
15.
  •  
16.
  • Olofsson, J., et al. (författare)
  • Resolving faint structures in the debris disk around TWA 7 Tentative detections of an outer belt, a spiral arm, and a dusty cloud
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 617
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Debris disks are the intrinsic by-products of the star and planet formation processes. Most likely due to instrumental limitations and their natural faintness, little is known about debris disks around low mass stars, especially when it comes to spatially resolved observations. Aims. We present new VLT/SPHERE IRDIS dual-polarization imaging (DPI) observations in which we detect the dust ring around the M2 spectral type star TWA 7. Combined with additional angular differential imaging observations we aim at a fine characterization of the debris disk and setting constraints on the presence of low-mass planets. Methods. We modeled the SPHERE DPI observations and constrain the location of the small dust grains, as well as the spectral energy distribution of the debris disk, using the results inferred from the observations, and performed simple N-body simulations. Results. We find that the dust density distribution peaks at similar to 0.72 '' (25 au), with a very shallow outer power-law slope, and that the disk has an inclination of similar to 13 degrees with a position angle of similar to 91 degrees east of north. We also report low signal-to-noise ratio detections of an outer belt at a distance of similar to 1.5 '' (similar to 52 au) from the star, of a spiral arm in the southern side of the star, and of a possible dusty clump at 0.11 ''. These findings seem to persist over timescales of at least a year. Using the intensity images, we do not detect any planets in the close vicinity of the star, but the sensitivity reaches Jovian planet mass upper limits. We find that the SED is best reproduced with an inner disk at similar to 0.2 '' (similar to 7 au) and another belt at 0.72 '' (25 au). Conclusions. We report the detections of several unexpected features in the disk around TWA 7. A yet undetected 100 M-circle plus planet with a semi-major axis at 20-30 au could possibly explain the outer belt as well as the spiral arm. We conclude that stellar winds are unlikely to be responsible for the spiral arm.
  •  
17.
  • Bonnefoy, M., et al. (författare)
  • First light of the VLT planet finder SPHERE IV. Physical and chemical properties of the planets around HR8799
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 587
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The system of four planets discovered around the intermediate-mass star HR8799 offers a unique opportunity to test planet formation theories at large orbital radii and to probe the physics and chemistry at play in the atmospheres of self-luminous young (similar to 30 Myr) planets. We recently obtained new photometry of the four planets and low-resolution (R similar to 30) spectra of HR8799 d and e with the SPHERE instrument (Paper III).Aims. In this paper (Paper IV), we aim to use these spectra and available photometry to determine how they compare to known objects, what the planet physical properties are, and how their atmospheres work.Methods. We compare the available spectra, photometry, and spectral energy distribution (SED) of the planets to field dwarfs and young companions. In addition, we use the extinction from corundum, silicate (enstatite and forsterite), or iron grains likely to form in the atmosphere of the planets to try to better understand empirically the peculiarity of their spectrophotometric properties. To conclude, we use three sets of atmospheric models (BT-SETTL14, Cloud-AE60, Exo-REM) to determine which ingredients are critically needed in the models to represent the SED of the objects, and to constrain their atmospheric parameters (T-eff, log g, M/H).Results. We find that HR8799d and e properties are well reproduced by those of L6-L8 dusty dwarfs discovered in the field, among which some are candidate members of young nearby associations. No known object reproduces well the properties of planets b and c. Nevertheless, we find that the spectra and WISE photometry of peculiar and/or young early-T dwarfs reddened by submicron grains made of corundum, iron, enstatite, or forsterite successfully reproduce the SED of these planets. Our analysis confirms that only the Exo-REM models with thick clouds fit (within 2 sigma) the whole set of spectrophotometric datapoints available for HR8799 d and e for T-eff = 1200 K, log g in the range 3.0-4.5, and M/H = +0.5. The models still fail to reproduce the SED of HR8799c and b. The determination of the metallicity, log g, and cloud thickness are degenerate.Conclusions. Our empirical analysis and atmospheric modelling show that an enhanced content in dust and decreased CIA of H-2 is certainly responsible for the deviation of the properties of the planet with respect to field dwarfs. The analysis suggests in addition that HR8799c and b have later spectral types than the two other planets, and therefore could both have lower masses.
  •  
18.
  • Chauvin, G., et al. (författare)
  • Discovery of a warm, dusty giant planet around HIP 65426
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high-contrast and high-angular-resolution imaging capabilities. It is also intended to place statistical constraints on the rate, mass and orbital distributions of the giant planet population at large orbits as a function of the stellar host mass and age to test planet-formation theories.Methods. We used the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-contrast coronagraphic differential near-infrared images and spectra of the young A2 star HIP 65426. It is a member of the similar to 17 Myr old Lower Centaurus-Crux association. Results. At a separation of 830 mas (92 au projected) from the star, we detect a faint red companion. Multi-epoch observations confirm that it shares common proper motion with HIP 65426. Spectro-photometric measurements extracted with IFS and IRDIS between 0.95 and 2.2 mu m indicate a warm, dusty atmosphere characteristic of young low-surface-gravity L5-L7 dwarfs. Hot-start evolutionary models predict a luminosity consistent with a 6-12 M-Jup, T-eff = 1300-1600K and R = 1.5 +/- 0.1 R-Jup giant planet. Finally, the comparison with Exo-REM and PHOENIX BT-Settl synthetic atmosphere models gives consistent effective temperatures but with slightly higher surface gravity solutions of log(g) = 4.0-5.0 with smaller radii (1.0-1.3 R-Jup).Conclusions. Given its physical and spectral properties, HIP 65426 b occupies a rather unique placement in terms of age, mass, and spectral-type among the currently known imaged planets. It represents a particularly interesting case to study the presence of clouds as a function of particle size, composition, and location in the atmosphere, to search for signatures of non-equilibrium chemistry, and finally to test the theory of planet formation and evolution.
  •  
19.
  • Desidera, S., et al. (författare)
  • The SPHERE infrared survey for exoplanets (SHINE) I. Sample definition and target characterization
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 651
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Large surveys with new-generation high-contrast imaging instruments are needed to derive the frequency and properties of exoplanet populations with separations from ~5 to 300 au. A careful assessment of the stellar properties is crucial for a proper understanding of when, where, and how frequently planets form, and how they evolve. The sensitivity of detection limits to stellar age makes this a key parameter for direct imaging surveys.Aims. We describe the SpHere INfrared survey for Exoplanets (SHINE), the largest direct imaging planet-search campaign initiated at the VLT in 2015 in the context of the SPHERE Guaranteed Time Observations of the SPHERE consortium. In this first paper we present the selection and the properties of the complete sample of stars surveyed with SHINE, focusing on the targets observed during the first phase of the survey (from February 2015 to February 2017). This early sample composed of 150 stars is used to perform a preliminary statistical analysis of the SHINE data, deferred to two companion papers presenting the survey performance, main discoveries, and the preliminary statistical constraints set by SHINE.Methods. Based on a large database collecting the stellar properties of all young nearby stars in the solar vicinity (including kinematics, membership to moving groups, isochrones, lithium abundance, rotation, and activity), we selected the original sample of 800 stars that were ranked in order of priority according to their sensitivity for planet detection in direct imaging with SPHERE. The properties of the stars that are part of the early statistical sample wererevisited, including for instance measurements from the Gaia Data Release 2. Rotation periods were derived for the vast majority of the late-type objects exploiting TESS light curves and dedicated photometric observations.Results. The properties of individual targets and of the sample as a whole are presented.
  •  
20.
  • Freissinet, C., et al. (författare)
  • Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars
  • 2015
  • Ingår i: Journal of Geophysical Research - Planets. - 2169-9097 .- 2169-9100. ; 120:3, s. 495-514
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sample Analysis at Mars (SAM) instrument [Mahaffy et al., 2012] onboard the Mars Science Laboratory (MSL) Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater [Grotzinger et al., 2012]. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration and long-term preservation. This will guide the future search for biosignatures [Summons et al., 2011]. Here we report the definitive identification of chlorobenzene (150–300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS), and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of martian chlorine and organic carbon derived from martian sources (e.g. igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets or interplanetary dust particles.
  •  
21.
  • Lagrange, A. -M., et al. (författare)
  • Post-conjunction detection of beta Pictoris b with VLT/SPHERE
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 621
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. With an orbital distance comparable to that of Saturn in the solar system, beta Pictoris b is the closest (semi-major axis similar or equal to 9 au) exoplanet that has been imaged to orbit a star. Thus it offers unique opportunities for detailed studies of its orbital, physical, and atmospheric properties, and of disk-planet interactions. With the exception of the discovery observations in 2003 with NaCo at the Very Large Telescope (VLT), all following astrometric measurements relative to beta Pictoris have been obtained in the southwestern part of the orbit, which severely limits the determination of the planet's orbital parameters.Aims. We aimed at further constraining beta Pictoris b orbital properties using more data, and, in particular, data taken in the northeastern part of the orbit.Methods. We used SPHERE at the VLT to precisely monitor the orbital motion of beta beta Pictoris b since first light of the instrument in 2014.Results. We were able to monitor the planet until November 2016, when its angular separation became too small (125 mas, i.e., 1.6 au) and prevented further detection. We redetected beta Pictoris b on the northeast side of the disk at a separation of 139 mas and a PA of 30 degrees in September 2018. The planetary orbit is now well constrained. With a semi-major axis (sma) of a = 9.0 +/- 0.5 au (1 sigma), it definitely excludes previously reported possible long orbital periods, and excludes beta Pictoris b as the origin of photometric variations that took place in 1981. We also refine the eccentricity and inclination of the planet. From an instrumental point of view, these data demonstrate that it is possible to detect, if they exist, young massive Jupiters that orbit at less than 2 au from a star that is 20 pc away.
  •  
22.
  • Langlois, M., et al. (författare)
  • The SPHERE infrared survey for exoplanets (SHINE) : II. Observations, data reduction and analysis, detection performances, and initial results
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 651
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. In recent decades, direct imaging has confirmed the existence of substellar companions (exoplanets or brown dwarfs) on wide orbits (>10 au) around their host stars. In striving to understand their formation and evolution mechanisms, in 2015 we initiated the SPHERE infrared survey for exoplanets (SHINE), a systematic direct imaging survey of young, nearby stars that is targeted at exploring their demographics.Aims. We aim to detect and characterize the population of giant planets and brown dwarfs beyond the snow line around young, nearby stars. Combined with the survey completeness, our observations offer the opportunity to constrain the statistical properties (occurrence, mass and orbital distributions, dependency on the stellar mass) of these young giant planets.Methods. In this study, we present the observing and data analysis strategy, the ranking process of the detected candidates, and the survey performances for a subsample of 150 stars that are representative of the full SHINE sample. Observations were conducted in a homogeneous way between February 2015 and February 2017 with the dedicated ground-based VLT/SPHERE instrument equipped with the IFS integral field spectrograph and the IRDIS dual-band imager, covering a spectral range between 0.9 and 2.3 μm. We used coronographic, angular, and spectral differential imaging techniques to achieve the best detection performances for this study, down to the planetary mass regime.Results. We processed, in a uniform manner, more than 300 SHINE observations and datasets to assess the survey typical sensitivity as a function of the host star and of the observing conditions. The median detection performance reached 5σ-contrasts of 13 mag at 200 mas and 14.2 mag at 800 mas with the IFS (YJ and YJH bands), and of 11.8 mag at 200 mas, 13.1 mag at 800 mas, and 15.8 mag at 3 as with IRDIS in H band, delivering one of the deepest sensitivity surveys thus far for young, nearby stars. A total of sixteen substellar companions were imaged in this first part of SHINE: seven brown dwarf companions and ten planetary-mass companions.These include two new discoveries, HIP 65426 b and HIP 64892 B, but not the planets around PDS70 that had not been originally selected for the SHINE core sample. A total of 1483 candidates were detected, mainly in the large field of view that characterizes IRDIS. The color-magnitude diagrams, low-resolution spectrum (when available with IFS), and follow-up observations enabled us to identify the nature (background contaminant or comoving companion) of about 86% of our subsample. The remaining cases are often connected to crowded-field follow-up observations that were missing. Finally, even though SHINE was not initially designed for disk searches, we imaged twelve circumstellar disks, including three new detections around the HIP 73145, HIP 86598, and HD 106906 systems.Conclusions. Nowadays, direct imaging provides a unique opportunity to probe the outer part of exoplanetary systems beyond 10 au to explore planetary architectures, as highlighted by the discoveries of: one new exoplanet, one new brown dwarf companion, and three new debris disks during this early phase of SHINE. It also offers the opportunity to explore and revisit the physical and orbital properties of these young, giant planets and brown dwarf companions (relative position, photometry, and low-resolution spectrum in near-infrared, predicted masses, and contrast in order to search for additional companions). Finally, these results highlight the importance of finalizing the SHINE systematic observation of about 500 young, nearby stars for a full exploration of their outer part to explore the demographics of young giant planets beyond 10 au and to identify the most interesting systems for the next generation of high-contrast imagers on very large and extremely large telescopes.
  •  
23.
  • Singh, G., et al. (författare)
  • Revealing asymmetrical dust distribution in the inner regions of HD 141569
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The combination of high-contrast imaging with spectroscopy and polarimetry offers a pathway to studying the grain distribution and properties of debris disks in exquisite detail. Here, we focus on the case of a gas-rich debris disk around HD 141569A, which features a multiple-ring morphology first identified with SPHERE in the near-infrared.Aims. We obtained polarimetric differential imaging with SPHERE in the H-band to compare the scattering properties of the innermost ring at 44 au with former observations in total intensity with the same instrument. In polarimetric imaging, we observed that the intensity of the ring peaks in the south-east, mostly in the forward direction, whereas in total intensity imaging, the ring is detected only at the south. This noticeable characteristic suggests a non-uniform dust density in the ring. With these two sets of images, we aim to study the distribution of the dust to solve for the actual dust distribution.Methods. We implemented a density function varying azimuthally along the ring and generated synthetic images both in polarimetry and in total intensity, which are then compared to the actual data. The search for the best-fit model was performed both with a grid-based and an MCMC approach. Using the outcome of this modelization, we further measured the polarized scattering phase function for the observed scattering angle between 33 degrees and 147 degrees as well as the spectral reflectance of the southern part of the ring between 0.98 and 2.1 mu m. We tentatively derived the grain properties by comparing these quantities with MCFOST models and assuming Mie scattering.Results. We find that the dust density peaks in the south-west at an azimuthal angle of 220 degrees similar to 238 degrees with a rather broad width of 61 degrees similar to 127 degrees. The difference in the intensity distributions observed in polarimetry and total intensity is the result of this particular morphology. Although there are still uncertainties that remain in the determination of the anisotropic scattering factor, the implementation of an azimuthal density variation to fit the data proved to be robust. Upon elaborating on the origin of this dust density distribution, we conclude that it could be the result of a massive collision when we account for the effect of the high gas mass that is present in the system on the dynamics of grains. In terms of grain composition, our preliminary interpretation indicates a mixture of porous sub-micron sized astro-silicate and carbonaceous grains.Conclusions. The SPHERE observations have allowed, for the first time, for meaningful constraints to be placed on the dust distribution beyond the standard picture of a uniform ring-like debris disk. However, future studies with a multiwavelength approach and additional detailed modeling would be required to better characterize the grain properties in the HD 141569 system.
  •  
24.
  • Vigan, A., et al. (författare)
  • The SPHERE infrared survey for exoplanets (SHINE) : III. The demographics of young giant exoplanets below 300 au with SPHERE
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 651
  • Tidskriftsartikel (refereegranskat)abstract
    • The SpHere INfrared Exoplanet (SHINE) project is a 500-star survey performed with SPHERE on the Very Large Telescope for the purpose of directly detecting new substellar companions and understanding their formation and early evolution. Here we present an initial statistical analysis for a subsample of 150 stars spanning spectral types from B to M that are representative of the full SHINE sample. Our goal is to constrain the frequency of substellar companions with masses between 1 and 75 MJup and semimajor axes between 5 and 300 au. For this purpose, we adopt detection limits as a function of angular separation from the survey data for all stars converted into mass and projected orbital separation using the BEX-COND-hot evolutionary tracks and known distance to each system. Based on the results obtained for each star and on the 13 detections in the sample, we use a Markov chain Monte Carlo tool to compare our observations to two different types of models. The first is a parametric model based on observational constraints, and the second type are numerical models that combine advanced core accretion and gravitational instability planet population synthesis. Using the parametric model, we show that the frequencies of systems with at least one substellar companion are 23.0−9.7+13.5, 5.8−2.8+4.7, and 12.6−7.1+12.9% for BA, FGK, and M stars, respectively. We also demonstrate that a planet-like formation pathway probably dominates the mass range from 1–75 MJup for companions around BA stars, while for M dwarfs, brown dwarf binaries dominate detections. In contrast, a combination of binary star-like and planet-like formation is required to best fit the observations for FGK stars. Using our population model and restricting our sample to FGK stars, we derive a frequency of 5.7−2.8+3.8%, consistent with predictions from the parametric model. More generally, the frequency values that we derive are in excellent agreement with values obtained in previous studies.
  •  
25.
  • Zurlo, A., et al. (författare)
  • First light of the VLT planet finder SPHERE III. New spectrophotometry and astrometry of the HR 8799 exoplanetary system
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 587
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The planetary system discovered around the young A-type HR8799 provides a unique laboratory to: a) test planet formation theories; b) probe the diversity of system architectures at these separations, and c) perform comparative (exo)planetology.Aims. We present and exploit new near-infrared images and integral-field spectra of the four gas giants surrounding HR8799 obtained with SPHERE, the new planet finder instrument at the Very Large Telescope, during the commissioning and science verification phase of the instrument (July-December 2014). With these new data, we contribute to completing the spectral energy distribution (SED) of these bodies in the 1.0-2.5 mu m range. We also provide new astrometric data, in particular for planet e, to further constrain the orbits.Methods. We used the infrared dual-band imager and spectrograph (IRDIS) subsystem to obtain pupil-stabilized, dual-band H2H3 (1.593 mu m, 1.667 mu m), K1K2 (2.110 mu m, 2.251 mu m), and broadband J (1.245 mu m) images of the four planets. IRDIS was operated in parallel with the integral field spectrograph (IFS) of SPHERE to collect low-resolution (R similar to 30), near-infrared (0.94-1.64 mu m) spectra of the two innermost planets HR8799 d and e. The data were reduced with dedicated algorithms, such as the Karhunen-Loeve image projection (KLIP), to reveal the planets. We used the so-called negative planets injection technique to extract their photometry, spectra, and measure their positions. We illustrate the astrometric performance of SPHERE through sample orbital fits compatible with SPHERE and literature data.Results. We demonstrated the ability of SPHERE to detect and characterize planets in this kind of systems, providing spectra and photometry of its components. The spectra improve upon the signal-to-noise ratio of previously obtained data and increase the spectral coverage down to the Y band. In addition, we provide the first detection of planet e in the J band. Astrometric positions for planets HR8799 bcde are reported for the epochs of July, August, and December 2014. We measured the photometric values in J, H2H3, K1K2 bands for the four planets with a mean accuracy of 0.13 mag. We found upper limit constraints on the mass of a possible planet f of 3-7 M-Jup. Our new measurements are more consistent with the two inner planets d and e being in a 2d:1e or 3d:2e resonance. The spectra of HR8799 d and e are well matched by those of L6-8 field dwarfs. However, the SEDs of these objects are redder than field L dwarfs longward of 1.6 mu m.
  •  
26.
  • Asensio-Torres, R., et al. (författare)
  • Perturbers : SPHERE detection limits to planetary-mass companions in protoplanetary disks
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 652
  • Tidskriftsartikel (refereegranskat)abstract
    • The detection of a wide range of substructures such as rings, cavities, and spirals has become a common outcome of high spatial resolution imaging of protoplanetary disks, both in the near-infrared scattered light and in the thermal millimetre continuum emission. The most frequent interpretation of their origin is the presence of planetary-mass companions perturbing the gas and dust distribution in the disk (perturbers), but so far the only bona fide detection has been the two giant planets carving the disk around PDS 70. Here, we present a sample of 15 protoplanetary disks showing substructures in SPHERE scattered-light images and a homogeneous derivation of planet detection limits in these systems. To obtain mass limits we rely on different post-formation luminosity models based on distinct formation conditions, which are critical in the first million years of evolution. We also estimate the mass of these perturbers through a Hill radius prescription and a comparison to ALMA data. Assuming that one single planet carves each substructure in scattered light, we find that more massive perturbers are needed to create gaps within cavities than rings, and that we might be close to a detection in the cavities of RX J1604.3-2130A, RX J1615.3-3255, Sz Cha, HD 135344B, and HD 34282. We reach typical mass limits in these cavities of 3–10 MJup. For planets in the gaps between rings, we find that the detection limits of SPHERE high-contrast imaging are about an order of magnitude away in mass, and that the gaps of PDS 66 and HD 97048 seem to be the most promising structures for planet searches. The proposed presence of massive planets causing spiral features in HD 135344B and HD 36112 are also within SPHERE’s reach assuming hot-start models. These results suggest that the current detection limits are able to detect hot-start planets in cavities, under the assumption that they are formed by a single perturber located at the centre of the cavity. More realistic planet mass constraints would help to clarify whether this is actually the case, which might indicate that perturbers are not the only way of creating substructures.
  •  
27.
  • Cheetham, A., et al. (författare)
  • Discovery of a brown dwarf companion to the star HIP 64892
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 615
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a bright, brown dwarf companion to the star HIP 64892, imaged with VLT/SPHERE during the SHINE exoplanet survey. The host is a B9.5V member of the Lower-Centaurus-Crux subgroup of the Scorpius Centaurus OB association. The measured angular separation of the companion (1.2705 +/- 0.0023) corresponds to a projected distance of 159 +/- 12AU. We observed the target with the dual-band imaging and long-slit spectroscopy modes of the IRDIS imager to obtain its spectral energy distribution (SED) and astrometry. In addition, we reprocessed archival NACO L-band data, from which we also recover the companion. Its SED is consistent with a young (<30 Myr), low surface gravity object with a spectral type of M9 gamma +/- 1. From comparison with the BT-Settl atmospheric models we estimate an effective temperature of T-eff = 2600 +/- 100 K, and comparison of the companion photometry to the COND evolutionary models yields a mass of similar to 29-37 M-J at the estimated age of 16(-7)(+15) Myr for the system. The star HIP 64892 is a rare example of an extreme-mass ratio system (q similar to 0.01) and will be useful for testing models relating to the formation and evolution of such low-mass objects.
  •  
28.
  • Claudi, R., et al. (författare)
  • SPHERE dynamical and spectroscopic characterization of HD142527B
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 622
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. HD142527 is one of the most frequently studied Herbig Ae/Be stars with a transitional disk that hosts a large cavity that is up to about 100 au in radius. For this reason, it has been included in the guaranteed time observation (GTO) SpHere INfrared survey for Exoplanets (SHINE) as part of the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) at the Very Large Telescope (VLT) in order to search for low-mass companions that might explain the presence of the gap. SHINE is a large survey within about 600 young nearby stars are observed with SPHERE with the aim to constrain the occurrence and orbital properties of the giant planet population at large (>5 au) orbital separation around young stars. Methods. We used the IRDIFS observing mode of SPHERE (IRDIS short for infrared dual imaging and spectrograph plus IFS or integral field spectrograph) without any coronagraph in order to search for and characterize companions as close as 30 mas of the star. Furthermore, we present the first observations that ever used the sparse aperture mask (SAM) for SPHERE both in IRDIFS and IRDIFS_EXT modes. All the data were reduced using the dedicated SPHERE pipeline and dedicated algorithms that make use of the principal component analysis (PCA) and reference differential imaging (RDI) techniques. Results. We detect the accreting low-mass companion HD142527B at a separation of 73 mas (11.4 au) from the star. No other companions with mass greater than 10 M-J are visible in the field of view of IFS (similar to 100 au centered on the star) or in the IRDIS field of view (similar to 400 au centered on the star). Measurements from IFS, SAM IFS, and IRDIS suggest an M6 spectral type for HD142527B, with an uncertainty of one spectral subtype, compatible with an object of M = 0.11 +/- 0.06 M-circle dot and R = 0.15 +/- 0.07 R-circle dot. The determination of the mass remains a challenge using contemporary evolutionary models, as they do not account for the energy input due to accretion from infalling material. We consider that the spectral type of the secondary may also be earlier than the type we derived from IFS spectra. From dynamical considerations, we further constrain the mass to 0.26(-0.14)(+0.16) , which is consistent with both our spectroscopic analysis and the values reported in the literature. Following previous methods, the lower and upper dynamical mass values correspond to a spectral type between M2.5 and M5.5 for the companion. By fitting the astrometric points, we find the following orbital parameters: a period of P = 35 137 yr; an inclination of i = 121 130 degrees, a value of Omega = 124 135 degrees for the longitude of node, and an 68% confidence interval of similar to 18-57 au for the separation at periapsis. Eccentricity and time at periapsis passage exhibit two groups of values: similar to 0.2-0.45 and similar to 0.45-0.7 for e, and similar to 2015-2020 and similar to 2020-2022 for T-0. While these orbital parameters might at first suggest that HD142527B is not the companion responsible for the outer disk truncation, a previous hydrodynamical analysis of this system showed that they are compatible with a companion that is able to produce the large cavity and other observed features.
  •  
29.
  • Conrad, P.G., et al. (författare)
  • Environmental Dynamics and the Habitability Potential at Gale Crater, Mars
  • 2013
  • Konferensbidrag (refereegranskat)abstract
    • The assessment of environmental habitability potential involves measurement of the chemical and physical attributes of the system as well as their dynamic interplay. The environmental dynamics describe the availability of both energy sources and raw materials for meeting the requirements of organisms and for altering the environment. Energetic exchange can also determine the preservation potential for organic materials in the rock record. During its first year at Gale Crater, the Mars Science Laboratory payload has directly measured the chemistry and physical attributes, e.g., temperature, humidity, radiation, pressure, etc. of the martian atmosphere. Curiosity has also acquired chemical and mineralogical data, both from a wind drift deposit of fines and from two examples of a sedimentary rock formation in a region of Gale Crater called Yellowknife Bay, some 445 meters to the east of Bradbury Landing, where Curiosity initially touched down. These data enabled inferences to be made regarding depositional environment and past habitability potential at Gale Crater. The rock chemistry data reveal signs of aqueous interaction i.e., H2O, OH and H2 and sufficient elemental basis (C, H, O, S and possibly N) for plausible nutrient supply, should Mars have ever had autotrophic prokaryotes to exploit it, and a range of redox conditions tolerable to Earth microbes is indicated by the presence of clay minerals. Curiosity’s observations of the chemical, physical and geologic features of Yellowknife Bay point to a formerly habitable environment.
  •  
30.
  •  
31.
  •  
32.
  • Milisavljevic, Dan, et al. (författare)
  • A JWST Survey of the Supernova Remnant Cassiopeia A
  • 2024
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 965:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present initial results from a James Webb Space Telescope (JWST) survey of the youngest Galactic core-collapse supernova remnant, Cassiopeia A (Cas A), made up of NIRCam and MIRI imaging mosaics that map emission from the main shell, interior, and surrounding circumstellar/interstellar material (CSM/ISM). We also present four exploratory positions of MIRI Medium Resolution Spectrograph integral field unit spectroscopy that sample ejecta, CSM, and associated dust from representative shocked and unshocked regions. Surprising discoveries include (1) a weblike network of unshocked ejecta filaments resolved to ∼0.01 pc scales exhibiting an overall morphology consistent with turbulent mixing of cool, low-entropy matter from the progenitor's oxygen layer with hot, high-entropy matter heated by neutrino interactions and radioactivity; (2) a thick sheet of dust-dominated emission from shocked CSM seen in projection toward the remnant's interior pockmarked with small (∼1'') round holes formed by ≲01 knots of high-velocity ejecta that have pierced through the CSM and driven expanding tangential shocks; and (3) dozens of light echoes with angular sizes between ∼01 and 1' reflecting previously unseen fine-scale structure in the ISM. NIRCam observations place new upper limits on infrared emission (≲20 nJy at 3 μm) from the neutron star in Cas A's center and tightly constrain scenarios involving a possible fallback disk. These JWST survey data and initial findings help address unresolved questions about massive star explosions that have broad implications for the formation and evolution of stellar populations, the metal and dust enrichment of galaxies, and the origin of compact remnant objects.
  •  
33.
  • Peretti, S., et al. (författare)
  • Orbital and spectral analysis of the benchmark brown dwarf HD 4747B
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 631
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The study of high-contrast imaged brown dwarfs and exoplanets depends strongly on evolutionary models. To estimate the mass of a directly imaged substellar object, its extracted photometry or spectrum is used and adjusted with model spectra together with the estimated age of the system. These models still need to be properly tested and constrained. HD 4747B is a brown dwarf close to the H burning mass limit, orbiting a nearby (d = 19.25 +/- 0.58 pc), solar-type star (G9V); it has been observed with the radial velocity method for over almost two decades. Its companion was also recently detected by direct imaging, allowing a complete study of this particular object.Aims. We aim to fully characterize HD 4747B by combining a well-constrained dynamical mass and a study of its observed spectral features in order to test evolutionary models for substellar objects and to characterize its atmosphere.Methods. We combined the radial velocity measurements of High Resolution Echelle Spectrometer (HIRES) and CORALIE taken over two decades and high-contrast imaging of several epochs from NACO, NIRC2, and SPHERE to obtain a dynamical mass. From the SPHERE data we obtained a low-resolution spectrum of the companion from Y to H band, and two narrow band-width photometric measurements in the K band. A study of the primary star also allowed us to constrain the age of the system and its distance.Results. Thanks to the new SPHERE epoch and NACO archival data combined with previous imaging data and high-precision radial velocity measurements, we were able to derive a well-constrained orbit. The high eccentricity (e = 0.7362 +/- 0.0025) of HD 4747B is confirmed, and the inclination and the semi-major axis are derived (i = 47.3 +/- 1.6 degrees, a = 10.01 +/- 0.21 au). We derive a dynamical mass of m(B) = 70.0 +/- 1.6 M-Jup, which is higher than a previous study but in better agreement with the models. By comparing the object with known brown dwarfs spectra, we derive a spectral type of L9 and an effective temperature of 1350 +/- 50 K. With a retrieval analysis we constrain the oxygen and carbon abundances and compare them with the values from the HR 8799 planets.
  •  
34.
  • Rodet, L., et al. (författare)
  • Dynamical masses of M-dwarf binaries in young moving groups I. The case of TWA22 and GJ2060
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 618
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Evolutionary models are widely used to infer the mass of stars, brown dwarfs, and giant planets. Their predictions are thought to be less reliable at young ages (<200 Myr) and in the low-mass regime (< 1 M-circle dot). GJ 2060AB and TWA22AB are two rare astrometric M-dwarf binaries, respectively members of the AB Doradus (AB Dor) and Beta Pictoris (beta Pic) moving groups. As their dynamical mass can be measured to within a few years, they can be used to calibrate the evolutionary tracks and set new constraints on the age of young moving groups.Aims. We provide the first dynamical mass measurement of GJ 2060 and a refined measurement of the total mass of TWA22. We also characterize the atmospheric properties of the individual components of GJ 2060 that can be used as inputs to the evolutionary models.Methods. We used NaCo and SPHERE observations at VLT and archival Keck/NIRC2 data to complement the astrometric monitoring of the binaries. We combined the astrometry with new HARPS radial velocities (RVs) and FEROS RVs of GJ 2060. We used a Markov chain MonteCarlo (MCMC) module to estimate posteriors on the orbital parameters and dynamical masses of GJ 2060AB and TWA22AB from the astrometry and RVs. Complementary data obtained with the integral field spectrograph VLT /SINFONI were gathered to extract the individual near-infrared (1.1-2.5 mu m) medium-resolution (R similar to 1500 2000) spectra of GJ 2060A and B. We compared the spectra to those of known objects and to grids of BT-SETTL model spectra to infer the spectral type, bolometric luminosities, and temperatures of those objects.Results. We find a total mass of 0 : 18 +/- 0 : 02 M-circle dot for TWA22, which is in good agreement with model predictions at the age of the fi Pic moving group. We obtain a total mass of 1 : 09 +/- 0 : 10 M-circle dot for GJ 2060. We estimate a spectral type of M1 +/- 0.5, L/L-circle dot = -1.20 +/- 0.05 dex, and T-eff = 3700 +/- 100 K for GJ 2060 A. The B component is a M3 +/- 0 : 5 dwarf with L/L-circle dot = 1.63 +/- 0.05 dex and T-eff = 3400 +/- 100 K. The dynamical mass of GJ 2060AB is inconsistent with the most recent models predictions (BCAH15, PARSEC) for an AB Dor age in the range 50-150 Myr. It is 10%-20% (1-2 sigma, depending on the assumed age) above the model's predictions, corresponding to an underestimation of 0.10-0.20 M fi. Coevality suggests a young age for the system (similar to 50 Myr) according to most evolutionary models.Conclusions. TWA22 validates the predictions of recent evolutionary tracks at similar to 20 Myr. On the other hand, we evidence a 1-2 sigma mismatch between the predicted and observed mass of GJ 2060 AB. This slight departure may indicate that one of the stars hosts a tight companion. Alternatively, this would confirm the model's tendency to underestimate the mass of young low-mass stars.
  •  
35.
  • Titarenko, Yu E., et al. (författare)
  • Measurement and simulation of the cross sections for nuclide production in Fe-56 and Cr-nat targets irradiated with 0.04- to 2.6-GeV protons
  • 2011
  • Ingår i: Physics of Atomic Nuclei. - 1063-7788 .- 1562-692X. ; 74:4, s. 523-536
  • Tidskriftsartikel (refereegranskat)abstract
    • The cross sections for nuclide production in thin Fe-56 and Cr-nat targets irradiated by 0.04-2.6-GeV protons are measured by direct gamma spectrometry using two gamma spectrometers with the resolutions of 1.8 and 1.7 keV for the Co-60 1332-keV gamma line. As a result, 649 yields of radioactive residual product nuclei have been obtained. The Al-27(p, x)Na-22 reaction has been used as a monitor reaction. The experimental data are compared with the MCNPX (BERTINI, ISABEL), CEM03.02, INCL4.2, INCL4.5, PHITS, and CASCADE07 calculations.
  •  
36.
  • Titarenko, Yu E., et al. (författare)
  • Measurement and simulation of the cross sections for nuclide production in Nb-93 and Ni-nat targets irradiated with 0.04- to 2.6-GeV protons
  • 2011
  • Ingår i: Physics of Atomic Nuclei. - 1063-7788 .- 1562-692X. ; 74:4, s. 537-550
  • Tidskriftsartikel (refereegranskat)abstract
    • The cross sections for nuclide production in thin Nb-93 and Ni-nat targets irradiated by 0.04- to 2.6-GeV protons have been measured by direct gamma spectrometry using two gamma spectrometers with the resolutions of 1.8 and 1.7 keV in the Co-60 1332-keV gamma line. As a result, 1112 yields of radioactive residual nuclei have been obtained. The Al-27(p, x)Na-22 reaction has been used as a monitor reaction. The experimental data have been compared with the MCNPX (BERTINI, ISABEL), CEM03.02, INCL4.2, INCL4.5, PHITS, and CASCADE07 calculations.
  •  
37.
  • Titarenko, Yu E., et al. (författare)
  • Measurement and simulation of the cross sections for nuclide production in W-nat and Ta-181 targets irradiated with 0.04- to 2.6-GeV protons
  • 2011
  • Ingår i: Physics of Atomic Nuclei. - 1063-7788 .- 1562-692X. ; 74:4, s. 551-572
  • Tidskriftsartikel (refereegranskat)abstract
    • The cross sections for nuclide production in thin (nat)Wand Ta-181 targets irradiated by 0.04-2.6-GeV protons have been measured by direct gamma spectrometry using two gamma spectrometers with the resolutions of 1.8 and 1.7 keV in the Co-60 1332-keV gamma line. As a result, 1895 yields of radioactive residual product nuclei have been obtained. The Al-27(p, x)Na-22 reaction has been used as a monitor reaction. The experimental data have been compared with the MCNPX (BERTINI, ISABEL), CEM03.02, INCL4.2, INCL4.5, PHITS, and CASCADE07 calculations.
  •  
38.
  • Titarenko, Yu E., et al. (författare)
  • Measurement and simulation of the cross sections for the production of Gd-148 in thin W-nat and Ta-181 targets irradiated with 0.4- to 2.6-GeV protons
  • 2011
  • Ingår i: Physics of Atomic Nuclei. - 1063-7788 .- 1562-692X. ; 74:4, s. 573-579
  • Tidskriftsartikel (refereegranskat)abstract
    • The cross sections for the production of Gd-148 in W-nat and Ta-181 targets irradiated by 0.4-, 0.6-, 0.8-, 1.2-, 1.6-, and 2.6-GeV protons at the ITEP accelerator complex have been measured by direct alpha spectrometry without chemical separation. The experimental data have been compared with the data obtained at other laboratories and with the theoretical simulations of the yields on the basis of the BERTINI, ISABEL, CEM03.02, INCL4.2, INCL4.5, CASCADE07, and PHITS codes.
  •  
39.
  • Titarenko, Yu. E., et al. (författare)
  • Verification of high-energy transport codes on the basis of activation data
  • 2011
  • Ingår i: Physical Review C. Nuclear Physics. - 0556-2813 .- 1089-490X. ; 84:6, s. 064612-
  • Tidskriftsartikel (refereegranskat)abstract
    • Nuclide production cross sections measured at the Institute for Theoretical and Experimental Physics (ITEP) for the targets of (nat)Cr, (56)Fe, (nat)Ni, (93)Nb, (181)Ta, (nat)W, (nat)Pb, and (209)Bi irradiated by protons with energies from 40 to 2600 MeV were used to estimate the predictive accuracy of several popular high-energy transport codes. A general agreement of the ITEP data with the data obtained by other groups, including the numerous GSI data measured by the inverse kinematics method was found. Simulations of the measured data were performed with the MCNPX (BERTINI and ISABEL options), CEM03.02, INCL4.2 + ABLA, INCL4.5 + ABLA07, PHITS, and CASCADE.07 codes. Deviation factors between the calculated and experimental cross sections have been estimated for each target and for the whole energy range covered by our measurements. Two-dimensional diagrams of deviation factor values were produced for estimating the predictive power of every code for intermediate, not measured masses of nuclei targets and bombarding energies of protons. Further improvements of all tested here codes are recommended. In addition, new measurements at ITEP of nuclide yields from the (208)Pb target irradiated by 500-MeV protons are presented. A good agreement between these new data and the GSI measurements obtained by the inverse kinematics method was found.
  •  
40.
  • Vigan, A., et al. (författare)
  • First light of the VLT planet finder SPHERE I. Detection and characterization of the substellar companion GJ 758 B
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 587
  • Tidskriftsartikel (refereegranskat)abstract
    • GJ 758 B is a brown dwarf companion to a nearby (15.76%) solar-type, metal-rich (M/H = +0.2 dex) main-sequence star (G9V) that was discovered with Subaru/HiCIAO in 2009. From previous studies, it has drawn attention as being the coldest (similar to 600 K) companion ever directly imaged around a neighboring star. We present new high-contrast data obtained during the commissioning of the SPHERE instrument at the Very Large Telescope (VLT). The data was obtained in Y-, J-, H-, and K-s-bands with the dual-band imaging (DBI) mode of IRDIS, thus providing a broad coverage of the full near-infrared (near-IR) range at higher contrast and better spectral sampling than previously reported. In this new set of high-quality data, we report the re-detection of the companion, as well as the first detection of a new candidate closer-in to the star. We use the new eight photometric points for an extended comparison of GJ 758 B with empirical objects and four families of atmospheric models. From comparison to empirical object, we estimate a T8 spectral type, but none of the comparison objects can accurately represent the observed near-IR fluxes of GJ 758 B. From comparison to atmospheric models, we attribute a T-eff = 600 +/- 100 K, but we find that no atmospheric model can adequately fit all the fluxes of GJ 758 B. The lack of exploration of metal enrichment in model grids appears as a major limitation that prevents an accurate estimation of the companion physical parameters. The photometry of the new candidate companion is broadly consistent with L-type objects, but a second epoch with improved photometry is necessary to clarify its status. The new astrometry of GJ 758 B shows a significant proper motion since the last epoch. We use this result to improve the determination of the orbital characteristics using two fitting approaches: Least-Squares Monte Carlo and Markov chain Monte Carlo. We confirm the high-eccentricity of the orbit (peak at 0.5), and find a most likely semi-major axis of 46.05 AU. We also use our imaging data, as well as archival radial velocity data, to reject the possibility that this is a false positive effect created by an unseen, closer-in, companion. Finally, we analyze the sensitivity of our data to additional closer-in companions and reject the possibility of other massive brown dwarf companions down to 4-5 AU.
  •  
41.
  •  
42.
  • Balbekin, N.S., et al. (författare)
  • Nondestructive monitoring of aircraft composites using terahertz radiation
  • 2014
  • Ingår i: Progress in Biomedical Optics and Imaging - Proceedings of SPIE. - : SPIE. - 1605-7422. - 9781628415643 ; 9448, s. 94482D-
  • Konferensbidrag (refereegranskat)abstract
    • In this paper we consider using the terahertz (THz) time domain spectroscopy (TDS) for non destructive testing and determining the chemical composition of the vanes and rotor-blade spars. A versatile terahertz spectrometer for reflection and transmission has been used for experiments. We consider the features of measured terahertz signal in temporal and spectral domains during propagation through and reflecting from various defects in investigated objects, such as voids and foliation. We discuss requirements are applicable to the setup and are necessary to produce an image of these defects, such as signal-to-noise ratio and a method for registration THz radiation. Obtained results indicated the prospects of the THz TDS method for the inspection of defects and determination of the particularities of chemical composition of aircraft parts.
  •  
43.
  • Biller, B. A., et al. (författare)
  • Dynamical masses for two M1 + mid-M dwarf binaries monitored during the SPHERE-SHINE survey
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • We present orbital fits and dynamical masses for HIP 113201AB and HIP 36985AB, two M1 + mid-M dwarf binary systems monitored as part of the SPHERE-SHINE survey. To robustly determine the age of both systems via gyrochronology, we undertook a photometric monitoring campaign for HIP 113201 and GJ 282AB, the two wide K star companions to HIP 36985, using the 40 cm Remote Observatory Atacama Desert telescope. Based on this monitoring and gyrochronological relationships, we adopt ages of 1.2 ± 0.1 Gyr for HIP 113201AB and 750 ± 100 Myr for HIP 36985AB. These systems are sufficiently old that we expect that all components of these binaries have reached the main sequence. To derive dynamical masses for all components of the HIP 113201AB and HIP 36985AB systems, we used parallel-tempering Markov chain Monte Carlo sampling to fit a combination of radial velocity, direct imaging, and Gaia and HIPPARCOS astrometry. Fitting the direct imaging and radial velocity data for HIP 113201 yields a primary mass of 0.54 ± 0.03 M⊙, fully consistent with its M1 spectral type, and a secondary mass of 0.145 ± M⊙. The secondary masses derived with and without including HIPPARCOS-Gaia data are all considerably more massive than the 0.1 M⊙ mass estimated from the photometry of the companion. Thus, the dynamical impacts of this companion suggest that it is more massive than expected from its photometry. An undetected brown dwarf companion to HIP 113201B could be a natural explanation for this apparent discrepancy. At an age >1 Gyr, a 30 MJup companion to HIP 113201B would make a negligible (<1%) contribution to the system luminosity but could have strong dynamical impacts. Fitting the direct imaging, radial velocity, and HIPPARCOS-Gaia proper motion anomaly for HIP 36985AB, we find a primary mass of 0.54 ± 0.01 M⊙ and a secondary mass of 0.185 ± 0.001 M⊙, which agree well with photometric estimates of component masses, the masses estimated from MK– mass relationships for M dwarf stars, and previous dynamical masses in the literature.
  •  
44.
  • Boffano, P., et al. (författare)
  • The epidemiology and management of ameloblastomas: A European multicenter study
  • 2021
  • Ingår i: Journal of Cranio-Maxillofacial Surgery. - : Elsevier BV. - 1010-5182. ; 49:12, s. 1107-1112
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study aimed at assessing the epidemiology including demographic variables, diagnostic features, and management of ameloblastomas at several European departments of maxillofacial and oral surgery. The following data were recorded for each patient: gender, age, voluptuary habits, comorbidities, site, size, radiographic features, type, histopathological features, kind of treatment, length of hospital stay, complications, recurrence, management and complications of the recurrence. A total of 244 patients, 134 males and 110 females with ameloblastomas were included in the study. Mean age was 47.4 years. In all, 81% of lesions were found in the mandible, whereas 19% were found in the maxilla. Mean size of included ameloblastomas was 38.9 mm. The most frequently performed treatment option was enucleation plus curettage/peripheral ostectomy in 94 ameloblastomas, followed by segmental resection (60 patients), simple enucleation (46 patients), and marginal resection (40 pa-tients). A recurrence (with a mean follow up of 5 years) was observed in 47 cases out of 244 ameloblastomas (19.3%). Segmental resection was associated with a low risk of recurrence (p = 0003), whereas enucleation plus curettage/peripheral ostectomy was associated with a high risk of recurrence (p = 0002). A multilocular radiographic appearance was associated with a high risk of recurrence (p < .05), as well as the benign solid/multicystic histologic type (p < .05). Within the limitations of the study it seems that the management of ameloblastomas will probably remain controversial even in the future. Balancing low surgical morbidity with a low recurrence rate is a difficult aim to reach. (c) 2021 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
  •  
45.
  • Brown-Sevilla, S. B., et al. (författare)
  • Revisiting the atmosphere of the exoplanet 51 Eridani b with VLT/SPHERE
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 673
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We aim to better constrain the atmospheric properties of the directly imaged exoplanet 51 Eri b using a retrieval approach with data of higher signal-to-noise ratio (S/N) than previously reported. In this context, we also compare the results from an atmospheric retrieval to using a self-consistent model to fit atmospheric parameters. Methods. We applied the radiative transfer code petitRADTRANS to our near-infrared SPHERE observations of 51 Eri b in order to retrieve its atmospheric parameters. Additionally, we attempted to reproduce previous results with the retrieval approach and compared the results to self-consistent models using the best-fit parameters from the retrieval as priors. Results. We present a higher S/N YH spectrum of the planet and revised K1K2 photometry (M-K1 = 15.11 +/- 0.04 mag, M-K2 = 17.11 +/- 0.38 mag). The best-fit parameters obtained using an atmospheric retrieval differ from previous results using self-consistent models. In general, we find that our solutions tend towards cloud-free atmospheres (e.g. log tau(clouds) = 5.20 +/- 1.44). For our `nominal' model with new data, we find a lower metallicity ([Fe/H] = 0.26 +/- 0.30 dex) and C/O ratio (0.38 +/- 0.09), and a slightly higher effective temperature (T-eff = 807 +/- 45 K) than previous studies. The surface gravity (log g = 4.05 +/- 0.37) is in agreement with the reported values in the literature within uncertainties. We estimate the mass of the planet to be between 2 and 4 MJup. When comparing with self-consistent models, we encounter a known correlation between the presence of clouds and the shape of the P-T profiles. Conclusions. Our findings support the idea that results from atmospheric retrievals should not be discussed in isolation, but rather along with self-consistent temperature structures obtained using the best-fit parameters of the retrieval. This, along with observations at longer wavelengths, might help to better characterise the atmospheres and determine their degree of cloudiness.
  •  
46.
  • Davidenko, N.A., et al. (författare)
  • Thermal influence on passing of polarized light through the SnO2 : In2O3 layers
  • 2006
  • Ingår i: Journal of Applied Physics. - Lancaster : American Institute of Physics (AIP). - 0021-8979 .- 1089-7550. ; 100:2, s. 023111-1-023111-3
  • Tidskriftsartikel (refereegranskat)abstract
    • Thermal dependent changes of light depolarization degree were observed in the SnO2:In2O3 (ITO) layers deposited onto the flat glass substrates which are used usually as electrodes for optoelectronic devices. The observed effect is reversible. It can be attributed to the changes of nanostructure geometry in the bulk of the ITO layer as well as on its surface. Such geometric changes involve dispersion of polarized light. The investigated effect should be taken into consideration when developing optoelectronic devices because it can provoke distortion of the optical information field.
  •  
47.
  • Farley, K.A., et al. (författare)
  • In situ radiometric and exposure age dating of the martian surface
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 343:6169
  • Tidskriftsartikel (refereegranskat)abstract
    • We determined radiogenic and cosmogenic noble gases in a mudstone on the floor of Gale Crater. A K-Ar age of 4.21 ± 0.35 billion years represents a mixture of detrital and authigenic components and confirms the expected antiquity of rocks comprising the crater rim. Cosmic-ray-produced 3He, 21Ne, and 36Ar yield concordant surface exposure ages of 78 ± 30 million years. Surface exposure occurred mainly in the present geomorphic setting rather than during primary erosion and transport. Our observations are consistent with mudstone deposition shortly after the Gale impact or possibly in a later event of rapid erosion and deposition. The mudstone remained buried until recent exposure by wind-driven scarp retreat. Sedimentary rocks exposed by this mechanism may thus offer the best potential for organic biomarker preservation against destruction by cosmic radiation.
  •  
48.
  • Gratton, R., et al. (författare)
  • Blobs, spiral arms, and a possible planet around HD 169142
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 623
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Young planets are expected to cause cavities, spirals, and kinematic perturbations in protostellar disks that may be used to infer their presence. However, a clear detection of still-forming planets embedded within gas-rich disks is still rare.Aims. HD169142 is a very young Herbig Ae-Be star surrounded by a pre-transitional disk, composed of at least three rings. While claims of sub-stellar objects around this star have been made previously, follow-up studies remain inconclusive. The complex structure of this disk is not yet well understood.Methods. We used the high contrast imager SPHERE at ESO Very large Telescope to obtain a sequence of high-resolution, high-contrast images of the immediate surroundings of this star over about three years in the wavelength range 0.95-2.25 mu m. This enables a photometric and astrometric analysis of the structures in the disk.Results. While we were unable to definitively confirm the previous claims of a massive sub-stellar object at 0.1-0.15 arcsec from the star, we found both spirals and blobs within the disk. The spiral pattern may be explained as due to the presence of a primary, a secondary, and a tertiary arm excited by a planet of a few Jupiter masses lying along the primary arm, likely in the cavities between the rings. The blobs orbit the star consistently with Keplerian motion, allowing a dynamical determination of the mass of the star. While most of these blobs are located within the rings, we found that one of them lies in the cavity between the rings, along the primary arm of the spiral design.Conclusions. This blob might be due to a planet that might also be responsible for the spiral pattern observed within the rings and for the cavity between the two rings. The planet itself is not detected at short wavelengths, where we only see a dust cloud illuminated by stellar light, but the planetary photosphere might be responsible for the emission observed in the K1 and K2 bands. The mass of this putative planet may be constrained using photometric and dynamical arguments. While uncertainties are large, the mass should be between 1 and 4 Jupiter masses. The brightest blobs are found at the 1:2 resonance with this putative planet.
  •  
49.
  •  
50.
  • Maire, A. -L., et al. (författare)
  • VLT/SPHERE astrometric confirmation and orbital analysis of the brown dwarf companion HR 2562 B
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 615
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. A low-mass brown dwarf has recently been imaged around HR 2562 (HD 50571), a star hosting a debris disk resolved in the far infrared. Interestingly, the companion location is compatible with an orbit coplanar with the disk and interior to the debris belt. This feature makes the system a valuable laboratory to analyze the formation of substellar companions in a circumstellar disk and potential disk-companion dynamical interactions. Aims. We aim to further characterize the orbital motion of HR 2562 B and its interactions with the host star debris disk. Methods. We performed a monitoring of the system over similar to 10 months in 2016 and 2017 with the VLT/SPHERE exoplanet imager. Results. We confirm that the companion is comoving with the star and detect for the first time an orbital motion at high significance, with a current orbital motion projected in the plane of the sky of 25 mas (similar to 0.85 au) per year. No orbital curvature is seen in the measurements. An orbital fit of the SPHERE and literature astrometry of the companion without priors on the orbital plane clearly indicates that its orbit is (quasi-)coplanar with the disk. To further constrain the other orbital parameters, we used empirical laws for a companion chaotic zone validated by N-body simulations to test the orbital solutions that are compatible with the estimated disk cavity size. Non-zero eccentricities (>0.15) are allowed for orbital periods shorter than 100 yr, while only moderate eccentricities up to similar to 0.3 for orbital periods longer than 200 yr are compatible with the disk observations. A comparison of synthetic Herschel images to the real data does not allow us to constrain the upper eccentricity of the companion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 65
Typ av publikation
tidskriftsartikel (54)
konferensbidrag (6)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (60)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Pavlov, A. (25)
Feldt, M. (23)
Mesa, D. (23)
Gratton, R. (23)
Chauvin, G. (23)
Langlois, M. (23)
visa fler...
Janson, Markus (22)
Desidera, S. (22)
Bonnefoy, M. (22)
Lagrange, A.-M. (22)
Vigan, A. (22)
Maire, A.-L. (21)
Boccaletti, A. (21)
Zurlo, A. (20)
Hagelberg, J. (19)
Meyer, M. (17)
D'Orazi, V (16)
Ménard, F. (15)
Schmidt, T. (14)
Henning, T. (14)
Udry, S. (14)
Gluck, L. (14)
Weber, L (14)
Roux, A (13)
Fusco, T. (13)
Ramos, J. (13)
Wildi, F. (13)
Sissa, E. (13)
Stadler, E. (13)
Cantalloube, F. (12)
Keppler, M. (12)
Beuzit, J-L (12)
Cheetham, A. (12)
De Caprio, V (11)
Kasper, M (11)
Jaquet, M. (11)
Rousset, G. (11)
Petit, C (11)
Mouillet, D. (11)
Galicher, R. (11)
Fantinel, D. (10)
Dominik, C. (10)
Turatto, M. (10)
Abe, L. (10)
Soenke, C. (10)
Milli, J. (10)
Biller, B. (10)
Perrot, C. (10)
Samland, M. (10)
Rochat, S. (10)
visa färre...
Lärosäte
Stockholms universitet (28)
Kungliga Tekniska Högskolan (13)
Karolinska Institutet (10)
Luleå tekniska universitet (6)
Uppsala universitet (3)
Lunds universitet (3)
visa fler...
Göteborgs universitet (2)
Linköpings universitet (2)
Naturhistoriska riksmuseet (2)
Högskolan i Halmstad (1)
Chalmers tekniska högskola (1)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (64)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (45)
Teknik (7)
Medicin och hälsovetenskap (3)
Samhällsvetenskap (2)
Lantbruksvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy