SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pernemalm M) "

Search: WFRF:(Pernemalm M)

  • Result 1-50 of 52
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Medina, LMP, et al. (author)
  • Targeted plasma proteomics reveals signatures discriminating COVID-19 from sepsis with pneumonia
  • 2023
  • In: Respiratory research. - : Springer Science and Business Media LLC. - 1465-993X. ; 24:1, s. 62-
  • Journal article (peer-reviewed)abstract
    • BackgroundCOVID-19 remains a major public health challenge, requiring the development of tools to improve diagnosis and inform therapeutic decisions. As dysregulated inflammation and coagulation responses have been implicated in the pathophysiology of COVID-19 and sepsis, we studied their plasma proteome profiles to delineate similarities from specific features.MethodsWe measured 276 plasma proteins involved in Inflammation, organ damage, immune response and coagulation in healthy controls, COVID-19 patients during acute and convalescence phase, and sepsis patients; the latter included (i) community-acquired pneumonia (CAP) caused by Influenza, (ii) bacterial CAP, (iii) non-pneumonia sepsis, and (iv) septic shock patients.ResultsWe identified a core response to infection consisting of 42 proteins altered in both COVID-19 and sepsis, although higher levels of cytokine storm-associated proteins were evident in sepsis. Furthermore, microbiologic etiology and clinical endotypes were linked to unique signatures. Finally, through machine learning, we identified biomarkers, such as TRIM21, PTN and CASP8, that accurately differentiated COVID-19 from CAP-sepsis with higher accuracy than standard clinical markers.ConclusionsThis study extends the understanding of host responses underlying sepsis and COVID-19, indicating varying disease mechanisms with unique signatures. These diagnostic and severity signatures are candidates for the development of personalized management of COVID-19 and sepsis.
  •  
2.
  •  
3.
  •  
4.
  • Lozano, IMD, et al. (author)
  • Proteome profiling of whole plasma and plasma-derived extracellular vesicles facilitates the detection of tissue biomarkers in the non-obese diabetic mouse
  • 2022
  • In: Frontiers in endocrinology. - : Frontiers Media SA. - 1664-2392. ; 13, s. 971313-
  • Journal article (peer-reviewed)abstract
    • The mechanism by which pancreatic beta cells are destroyed in type 1 diabetes (T1D) remains to be fully understood. Recent observations indicate that the disease may arise because of different pathobiological mechanisms (endotypes). The discovery of one or several protein biomarkers measurable in readily available liquid biopsies (e.g. blood plasma) during the pre-diabetic period may enable personalized disease interventions. Recent studies have shown that extracellular vesicles (EVs) are a source of tissue proteins in liquid biopsies. Using plasma samples collected from pre-diabetic non-obese diabetic (NOD) mice (an experimental model of T1D) we addressed if combined analysis of whole plasma samples and plasma-derived EV fractions increases the number of unique proteins identified by mass spectrometry (MS) compared to the analysis of whole plasma samples alone. LC-MS/MS analysis of plasma samples depleted of abundant proteins and subjected to peptide fractionation identified more than 2300 proteins, while the analysis of EV-enriched plasma samples identified more than 600 proteins. Of the proteins detected in EV-enriched samples, more than a third were not identified in whole plasma samples and many were classified as either tissue-enriched or of tissue-specific origin. In conclusion, parallel profiling of EV-enriched plasma fractions and whole plasma samples increases the overall proteome depth and facilitates the discovery of tissue-enriched proteins in plasma. If applied to plasma samples collected longitudinally from the NOD mouse or from models with other pathobiological mechanisms, the integrated proteome profiling scheme described herein may be useful for the discovery of new and potentially endotype specific biomarkers in T1D.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Azimi, A, et al. (author)
  • Silencing FLI or targeting CD13/ANPEP lead to dephosphorylation of EPHA2, a mediator of BRAF inhibitor resistance, and induce growth arrest or apoptosis in melanoma cells
  • 2017
  • In: Cell death & disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 8:8, s. e3029-
  • Journal article (peer-reviewed)abstract
    • A majority of patients with BRAF-mutated metastatic melanoma respond to therapy with BRAF inhibitors (BRAFi), but relapses are common owing to acquired resistance. To unravel BRAFi resistance mechanisms we have performed gene expression and mass spectrometry based proteome profiling of the sensitive parental A375 BRAF V600E-mutated human melanoma cell line and of daughter cell lines with induced BRAFi resistance. Increased expression of two novel resistance candidates, aminopeptidase-N (CD13/ANPEP) and ETS transcription factor FLI1 was observed in the BRAFi-resistant daughter cell lines. In addition, increased levels of the previously reported resistance mediators, receptor tyrosine kinase ephrine receptor A2 (EPHA2) and the hepatocyte growth factor receptor MET were also identified. The expression of these proteins was assessed in matched tumor samples from melanoma patients obtained before BRAFi and after disease progression. MET was overexpressed in all progression samples while the expression of the other candidates varied between the individual patients. Targeting CD13/ANPEP by a blocking antibody induced apoptosis in both parental A375- and BRAFi-resistant daughter cells as well as in melanoma cells with intrinsic BRAFi resistance and led to dephosphorylation of EPHA2 on S897, previously demonstrated to cause inhibition of the migratory capacity. AKT and RSK, both reported to induce EPHA2 S897 phosphorylation, were also dephosphorylated after inhibition of CD13/ANPEP. FLI1 silencing also caused decreases in EPHA2 S897 phosphorylation and in total MET protein expression. In addition, silencing of FLI1 sensitized the resistant cells to BRAFi. Furthermore, we show that BRAFi in combination with the multi kinase inhibitor dasatinib can abrogate BRAFi resistance and decrease both EPHA2 S897 phosphorylation and total FLI1 protein expression. This is the first report presenting CD13/ANPEP and FLI1 as important mediators of resistance to BRAF inhibition with potential as drug targets in BRAFi refractory melanoma.
  •  
10.
  •  
11.
  • Babacic, Haris, et al. (author)
  • Glioblastoma stem cells express non-canonical proteins and exclusive mesenchymal-like or non-mesenchymal-like protein signatures
  • 2023
  • In: Molecular Oncology. - : John Wiley & Sons. - 1574-7891 .- 1878-0261. ; 17:2, s. 238-260
  • Journal article (peer-reviewed)abstract
    • Glioblastoma (GBM) cancer stem cells (GSCs) contribute to GBM's origin, recurrence, and resistance to treatment. However, the understanding of how mRNA expression patterns of GBM subtypes are reflected at global proteome level in GSCs is limited. To characterize protein expression in GSCs, we performed in-depth proteogenomic analysis of patient-derived GSCs by RNA-sequencing and mass-spectrometry. We quantified > 10 000 proteins in two independent GSC panels and propose a GSC-associated proteomic signature characterizing two distinct phenotypic conditions; one defined by proteins upregulated in proneural and classical GSCs (GPC-like), and another by proteins upregulated in mesenchymal GSCs (GM-like). The GM-like protein set in GBM tissue was associated with necrosis, recurrence, and worse overall survival. Through proteogenomics, we discovered 252 non-canonical peptides in the GSCs, i.e., protein sequences that are variant or derive from genome regions previously considered non-protein-coding, including variants of the heterogeneous ribonucleoproteins implicated in RNA splicing. In summary, GSCs express two protein sets that have an inverse association with clinical outcomes in GBM. The discovery of non-canonical protein sequences questions existing gene models and pinpoints new protein targets for research in GBM.
  •  
12.
  • Babacic, H, et al. (author)
  • In-depth plasma proteomics reveals increase in circulating PD-1 during anti-PD-1 immunotherapy in patients with metastatic cutaneous melanoma
  • 2020
  • In: Journal for immunotherapy of cancer. - : BMJ. - 2051-1426. ; 8:1
  • Journal article (peer-reviewed)abstract
    • Immune checkpoint inhibitors (ICIs) have significantly improved the outcome in metastatic cutaneous melanoma (CM). However, therapy response is limited to subgroups of patients and clinically useful predictive biomarkers are lacking.MethodsTo discover treatment-related systemic changes in plasma and potential biomarkers associated with treatment outcome, we analyzed serial plasma samples from 24 patients with metastatic CM, collected before and during ICI treatment, with mass-spectrometry-based global proteomics (high-resolution isoelectric focusing liquid chromatography–mass spectrometry (HiRIEF LC-MS/MS)) and targeted proteomics with proximity extension assays (PEAs). In addition, we analyzed plasma proteomes of 24 patients with metastatic CM treated with mitogen-activated protein kinase inhibitors (MAPKis), to pinpoint changes in protein plasma levels specific to the ICI treatment. To detect plasma proteins associated with treatment response, we performed stratified analyses in anti-programmed cell death protein 1 (anti-PD-1) responders and non-responders. In addition, we analyzed the association between protein plasma levels and progression-free survival (PFS) by Cox proportional hazards models.ResultsUnbiased HiRIEF LC-MS/MS-based proteomics showed plasma levels’ alterations related to anti-PD-1 treatment in 80 out of 1160 quantified proteins. Circulating PD-1 had the highest increase during anti-PD-1 treatment (log2-FC=2.03, p=0.0008) and in anti-PD-1 responders (log2-FC=2.09, p=0.005), but did not change in the MAPKis cohort. Targeted, antibody-based proteomics by PEA confirmed this observation. Anti-PD-1 responders had an increase in plasma proteins involved in T-cell response, neutrophil degranulation, inflammation, cell adhesion, and immune suppression. Furthermore, we discovered new associations between plasma proteins (eg, interleukin 6, interleukin 10, proline-rich acidic protein 1, desmocollin 3, C-C motif chemokine ligands 2, 3 and 4, vascular endothelial growth factor A) and PFS, which may serve as predictive biomarkers.ConclusionsWe detected an increase in circulating PD-1 during anti-PD-1 treatment, as well as diverse immune plasma proteomic signatures in anti-PD-1 responders. This study demonstrates the potential of plasma proteomics as a liquid biopsy method and in discovery of putative predictive biomarkers for anti-PD-1 treatment in metastatic CM.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Deutsch, Eric W., et al. (author)
  • p Advances and Utility of the Human Plasma Proteome
  • 2021
  • In: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 20:12, s. 5241-5263
  • Research review (peer-reviewed)abstract
    • The study of proteins circulating in blood offers tremendous opportunities to diagnose, stratify, or possibly prevent diseases. With recent technological advances and the urgent need to understand the effects of COVID19, the proteomic analysis of blood-derived serum and plasma has become even more important for studying human biology and pathophysiology. Here we provide views and perspectives about technological developments and possible clinical applications that use mass-spectrometry(MS)- or affinity-based methods. We discuss examples where plasma proteomics contributed valuable insights into SARS-CoV-2 infections, aging, and hemostasis and the opportunities offered by combining proteomics with genetic data. As a contribution to the Human Proteome Organization (HUPO) Human Plasma Proteome Project (HPPP), we present the Human Plasma PeptideAtlas build 2021-07 that comprises 4395 canonical and 1482 additional nonredundant human proteins detected in 240 MS-based experiments. In addition, we report the new Human Extracellular Vesicle PeptideAtlas 2021-06, which comprises five studies and 2757 canonical proteins detected in extracellular vesicles circulating in blood, of which 74% (2047) are in common with the plasma PeptideAtlas. Our overview summarizes the recent advances, impactful applications, and ongoing challenges for translating plasma proteomics into utility for precision medicine.
  •  
19.
  •  
20.
  • Drobin, Kimi (author)
  • Antibody-based bead arrays for high-throughput protein profiling in human plasma and serum
  • 2018
  • Licentiate thesis (other academic/artistic)abstract
    • Affinity-based proteomics utilizes affinity binders to detect target proteins in a large-scale manner. This thesis describes a high-throughput method, which enables the search for biomarker candidates in human plasma and serum. A highly multiplexed antibody-based suspension bead array is created by coupling antibodies generated in the Human Protein Atlas project to color-coded beads. The beads are combined for parallel analysis of up to 384 analytes in patient and control samples. This provides data to compare protein levels from the different groups.In paper I osteoporosis patients are compared to healthy individuals to find disease-linked proteins. An untargeted discovery screening was conducted using 4608 antibodies in 16 cases and 6 controls. This revealed 72 unique proteins, which appeared differentially abundant. A validation screening of 91 cases and 89 controls confirmed that the protein autocrine motility factor receptor (AMFR) is decreased in the osteoporosis patients.Paper II investigates the risk proteome of inflammatory bowel disease (IBD). Antibodies targeting 209 proteins corresponding to 163 IBD genetic risk loci were selected. To find proteins related to IBD or its subgroups, sera from 49 patients with Crohn’s disease, 51 with ulcerative colitis and 50 matched controls were analyzed. From these targeted assays, the known inflammation-related marker serum amyloid protein A (SAA) was shown to be elevated in the IBD cases. In addition, the protein laccase (multi-copper oxidoreductase) domain containing 1 (LACC1) was found to be decreased in the IBD subjects.In conclusion, assays using affinity-based bead arrays were developed and applied to screen human plasma and serum samples in two disease contexts. Untargeted and targeted screening strategies were applied to discover disease-associated proteins. Upon further validation, these potential biomarker candidates could be valuable in future disease studies.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  •  
26.
  •  
27.
  • Indira Chandran, Vineesh, et al. (author)
  • Ultrasensitive Immunoprofiling of Plasma Extracellular Vesicles Identifies Syndecan-1 as a Potential Tool for Minimally Invasive Diagnosis of Glioma
  • 2019
  • In: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 25:10, s. 3115-3127
  • Journal article (peer-reviewed)abstract
    • Purpose: Liquid biopsy has great potential to improve the management of brain tumor patients at high risk of surgery-associated complications. Here, the aim was to explore plasma extracellular vesicle (plEV) immunoprofiling as a tool for noninvasive diagnosis of glioma.Experimental Design: PlEV isolation and analysis were optimized using advanced mass spectrometry, nanoparticle tracking analysis, and electron microscopy. We then established a new procedure that combines size exclusion chromatography isolation and proximity extension assay-based ultrasensitive immunoprofiling of plEV proteins that was applied on a well-defined glioma study cohort (n = 82).Results: Among potential candidates, we for the first time identify syndecan-1 (SDC1) as a plEV constituent that can discriminate between high-grade glioblastoma multiforme (GBM, WHO grade IV) and low-grade glioma [LGG, WHO grade II; area under the ROC curve (AUC): 0.81; sensitivity: 71%; specificity: 91%]. These findings were independently validated by ELISA. Tumor SDC1 mRNA expression similarly discriminated between GBM and LGG in an independent glioma patient population from The Cancer Genome Atlas cohort (AUC: 0.91; sensitivity: 79%; specificity: 91%). In experimental studies with GBM cells, we show that SDC1 is efficiently sorted to secreted EVs. Importantly, we found strong support of plEVSDC1 originating from GBM tumors, as plEVSDC1 correlated with SDC1 protein expression in matched patient tumors, and plEVSDC1 was decreased postoperatively depending on the extent of surgery.Conclusions: Our studies support the concept of circulating plEVs as a tool for noninvasive diagnosis and monitoring of gliomas and should move this field closer to the goal of improving the management of cancer patients.
  •  
28.
  • Lee, WJ, et al. (author)
  • Identifying and Assessing Interesting Subgroups in a Heterogeneous Population
  • 2015
  • In: BioMed research international. - : Hindawi Limited. - 2314-6141 .- 2314-6133. ; 2015, s. 462549-
  • Journal article (peer-reviewed)abstract
    • Biological heterogeneity is common in many diseases and it is often the reason for therapeutic failures. Thus, there is great interest in classifying a disease into subtypes that have clinical significance in terms of prognosis or therapy response. One of the most popular methods to uncover unrecognized subtypes is cluster analysis. However, classical clustering methods such ask-means clustering or hierarchical clustering are not guaranteed to produce clinically interesting subtypes. This could be because the main statistical variability—the basis of cluster generation—is dominated by genes not associated with the clinical phenotype of interest. Furthermore, a strong prognostic factor might be relevant for a certain subgroup but not for the whole population; thus an analysis of the whole sample may not reveal this prognostic factor. To address these problems we investigate methods to identify and assess clinically interesting subgroups in a heterogeneous population. The identification step uses a clustering algorithm and to assess significance we use a false discovery rate- (FDR-) based measure. Under the heterogeneity condition the standard FDR estimate is shown to overestimate the true FDR value, but this is remedied by an improved FDR estimation procedure. As illustrations, two real data examples from gene expression studies of lung cancer are provided.
  •  
29.
  •  
30.
  •  
31.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  •  
37.
  • Pernemalm, Maria, et al. (author)
  • Evaluation of three principally different intact protein prefractionation methods for plasma biomarker discovery.
  • 2008
  • In: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 7:7, s. 2712-2722
  • Journal article (peer-reviewed)abstract
    • The aim of this study was to evaluate three principally different top-down protein prefractionation methods for plasma: high-abundance protein depletion, size fractionation and peptide ligand affinity beads, focusing in particular on compatibility with downstream analysis, reproducibility and analytical depth. Our data clearly demonstrates the benefit of high-abundance protein depletion. However, MS/MS analysis of the proteins eluted from the high-abundance protein depletion column show that more proteins than aimed for are removed and, in addition, that the depletion efficacy varies between the different high-abundance proteins. Although a smaller number of proteins were identified per fraction using the peptide ligand affinity beads, this technique showed to be both robust and versatile. Size fractionation, as performed in this study, focusing on the low molecular weight proteome using a combination of gel filtration chromatography and molecular weight cutoff filters, showed limitations in the molecular weight cutoff precision leading detection of high molecular weight proteins and, in the case of the cutoff filters, high variability. GeLC-MS/MS analysis of the fractionation methods in combination with pathway analysis demonstrates that increased fractionation primarily leads to high proteome coverage of pathways related to biological functions of plasma, such as acute phase reaction, complement cascade and coagulation. Further, the prefractionation methods in this study induces limited effect on the proportion of tissue proteins detected, thereby highlighting the importance of extensive or targeted downstream fractionation.
  •  
38.
  • Pernemalm, Maria, et al. (author)
  • In-depth human plasma proteome analysis captures tissue proteins and transfer of protein variants across the placenta
  • 2019
  • In: eLIFE. - : ELIFE SCIENCES PUBLICATIONS LTD. - 2050-084X. ; 8
  • Journal article (peer-reviewed)abstract
    • Here, we present a method for in-depth human plasma proteome analysis based on high-resolution isoelectric focusing HiRIEF LC-MS/MS, demonstrating high proteome coverage, reproducibility and the potential for liquid biopsy protein profiling. By integrating genomic sequence information to the MS-based plasma proteome analysis, we enable detection of single amino acid variants and for the first time demonstrate transfer of multiple protein variants between mother and fetus across the placenta. We further show that our method has the ability to detect both low abundance tissue-annotated proteins and phosphorylated proteins in plasma, as well as quantitate differences in plasma proteomes between the mother and the newborn as well as changes related to pregnancy.
  •  
39.
  •  
40.
  •  
41.
  •  
42.
  •  
43.
  • Pernemalm, Maria, et al. (author)
  • Quantitative Proteomics Profiling of Primary Lung Adenocarcinoma Tumors Reveals Functional Perturbations in Tumor Metabolism
  • 2013
  • In: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 12:9, s. 3934-3943
  • Journal article (peer-reviewed)abstract
    • In this study, we have analyzed human primary lung adenocarcinoma tumors using global mass spectrometry to elucidate the biological mechanisms behind relapse post surgery. In total, we identified over 3000 proteins with high confidence. Supervised multivariate analysis was used to select 132 proteins separating the prognostic groups. Based on in-depth bioinformatics analysis, we hypothesized that the tumors with poor prognosis had a higher glycolytic activity and HIF activation. By measuring the bioenergetic cellular index of the tumors, we could detect a higher dependency of glycolysis among the tumors with poor prognosis. Further, we could also detect an up-regulation of HIF1 alpha mRNA expression in tumors with early relapse. Finally, we selected three proteins that were upregulated in the poor prognosis group (cathepsin D, ENO1, and VDAC1) to confirm that the proteins indeed originated from the tumor and not from a stromal or inflammatory component. Overall, these findings show how in-depth analysis of clinical material can lead to an increased understanding of the molecular mechanisms behind tumor progression.
  •  
44.
  •  
45.
  •  
46.
  •  
47.
  •  
48.
  •  
49.
  •  
50.
  • Veerman, Rosanne E., et al. (author)
  • Molecular evaluation of five different isolation methods for extracellular vesicles reveals different clinical applicability and subcellular origin
  • 2021
  • In: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 10:9
  • Journal article (peer-reviewed)abstract
    • Extracellular vesicles (EVs) are increasingly tested as therapeutic vehicles and biomarkers, but still EV subtypes are not fully characterised. To isolate EVs with few co-isolated entities, a combination of methods is needed. However, this is time-consuming and requires large sample volumes, often not feasible in most clinical studies or in studies where small sample volumes are available. Therefore, we compared EVs rendered by five commonly used methods based on different principles from conditioned cell medium and 250 mu l or 3 ml plasma, that is, precipitation (ExoQuick ULTRA), membrane affinity (exoEasy Maxi Kit), size-exclusion chromatography (qEVoriginal), iodixanol gradient (OptiPrep), and phosphatidylserine affinity (MagCapture). EVs were characterised by electron microscopy, Nanoparticle Tracking Analysis, Bioanalyzer, flow cytometry, and LC-MS/MS. The different methods yielded samples of different morphology, particle size, and proteomic profile. For the conditioned medium, Izon 35 isolated the highest number of EV proteins followed by exoEasy, which also isolated fewer non-EV proteins. For the plasma samples, exoEasy isolated a high number of EV proteins and few non-EV proteins, while Izon 70 isolated the most EV proteins. We conclude that no method is perfect for all studies, rather, different methods are suited depending on sample type and interest in EV subtype, in addition to sample volume and budget.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 52

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view