SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Petit Géraldine) "

Sökning: WFRF:(Petit Géraldine)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Clausen, Bettina Hjelm, et al. (författare)
  • Systemically administered anti-TNF therapy ameliorates functional outcomes after focal cerebral ischemia
  • 2014
  • Ingår i: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The innate immune system contributes to the outcome after stroke, where neuroinflammation and post-stroke systemic immune depression are central features. Tumor necrosis factor (TNF), which exists in both a transmembrane (tm) and soluble (sol) form, is known to sustain complex inflammatory responses associated with stroke. We tested the effect of systemically blocking only solTNF versus blocking both tmTNF and solTNF on infarct volume, functional outcome and inflammation in focal cerebral ischemia. Methods: We used XPro1595 (a dominant-negative inhibitor of solTNF) and etanercept (which blocks both solTNF and tmTNF) to test the effect of systemic administration on infarct volume, functional recovery and inflammation after focal cerebral ischemia in mice. Functional recovery was evaluated after one, three and five days, and infarct volumes at six hours, 24 hours and five days after ischemia. Brain inflammation, liver acute phase response (APR), spleen and blood leukocyte profiles, along with plasma microvesicle analysis, were evaluated. Results: We found that both XPro1595 and etanercept significantly improved functional outcomes, altered microglial responses, and modified APR, spleen T cell and microvesicle numbers, but without affecting infarct volumes. Conclusions: Our data suggest that XPro1595 and etanercept improve functional outcome after focal cerebral ischemia by altering the peripheral immune response, changing blood and spleen cell populations and decreasing granulocyte infiltration into the brain. Blocking solTNF, using XPro1595, was just as efficient as blocking both solTNF and tmTNF using etanercept. Our findings may have implications for future treatments with anti-TNF drugs in TNF-dependent diseases.
  •  
2.
  • Duarte, Ane, et al. (författare)
  • IGF-1 protects against diabetic features in an in vivo model of Huntington's disease.
  • 2011
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886. ; 231, s. 314-319
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington's disease (HD) is the most prevalent polyglutamine expansion disorder. HD is caused by an expansion of CAG triplet in the huntingtin (HTT) gene, associated with striatal and cortical neuronal loss. Central and peripheral metabolic abnormalities and altered insulin-like growth factor-1 (IGF-1) levels have been described in HD. Thus, we hypothesized that restoration of IGF-1-mediated signaling pathways could rescue R6/2 mice from metabolic stress and behavioral changes induced by polyglutamine expansion. We analyzed the in vivo effect of continuous peripheral IGF-1 administration on diabetic parameters, body weight and motor behavior in the hemizygous R6/2 mouse model of HD. We used 9week-old and age-matched wild-type mice, subjected to continuously infused recombinant IGF-I or vehicle, for 14days. IGF-1 treatment prevented the age-related decrease in body weight in R6/2 mice. Although blood glucose levels were higher in R6/2 mice, they did not reach a diabetic state. Even though, IGF-1 ameliorated poor glycemic control in HD mice. This seemed to be associated with a decrease in blood insulin levels in R6/2 mice, which was increased following IGF-1 infusion. Similarly, blood IGF-1 levels decreased during aging in both wild-type and R6/2 mice, being significantly improved upon its continuous infusion. Although no significant differences were found in motor function in R6/2-treated mice, IGF-1 treatment highly improved paw clasping scores. In summary, these results suggest that IGF-1 has a protective role against HD-associated impaired glucose tolerance, by enhancing blood insulin levels.
  •  
3.
  • George, Sonia, et al. (författare)
  • Lesion of the subiculum reduces the spread of amyloid beta pathology to interconnected brain regions in a mouse model of Alzheimer's disease.
  • 2014
  • Ingår i: Acta Neuropathologica Communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The progressive development of Alzheimer's disease (AD) pathology follows a spatiotemporal pattern in the human brain. In a transgenic (Tg) mouse model of AD expressing amyloid precursor protein (APP) with the arctic (E693G) mutation, pathology spreads along anatomically connected structures. Amyloid-β (Aβ) pathology first appears in the subiculum and is later detected in interconnected brain regions, including the retrosplenial cortex. We investigated whether the spatiotemporal pattern of Aβ pathology in the Tg APP arctic mice to interconnected brain structures can be interrupted by destroying neurons using a neurotoxin and thereby disconnecting the neural circuitry.
  •  
4.
  • George, Sonia, et al. (författare)
  • Nonsteroidal Selective Androgen Receptor Modulators and Selective Estrogen Receptor β Agonists Moderate Cognitive Deficits and Amyloid-β Levels in a Mouse Model of Alzheimer's Disease.
  • 2013
  • Ingår i: ACS Chemical Neuroscience. - : American Chemical Society (ACS). - 1948-7193. ; 4:12, s. 1537-1548
  • Tidskriftsartikel (refereegranskat)abstract
    • Decreases of the sex steroids, testosterone and estrogen, are associated with increased risk of Alzheimer's disease. Testosterone and estrogen supplementation improves cognitive deficits in animal models of Alzheimer's disease. Sex hormones play a role in the regulation of amyloid-β via induction of the amyloid-β degrading enzymes neprilysin and insulin-degrading enzyme. To mimic the effect of dihydrotestosterone (DHT), we administered a selective androgen receptor agonist, ACP-105, alone and in combination with the selective estrogen receptor β (ERβ) agonist AC-186 to male gonadectomized triple transgenic mice. We assessed long-term spatial memory in the Morris water maze, spontaneous locomotion, and anxiety-like behavior in the open field and in the elevated plus maze. We found that ACP-105 given alone decreases anxiety-like behavior. Furthermore, when ACP-105 is administered in combination with AC-186, they increase the amyloid-β degrading enzymes neprilysin and insulin-degrading enzyme and decrease amyloid-β levels in the brain as well as improve cognition. Interestingly, the androgen receptor level in the brain was increased by chronic treatment with the same combination treatment, ACP-105 and AC-186, not seen with DHT or ACP-105 alone. Based on these results, the beneficial effect of the selective ERβ agonist as a potential therapeutic for Alzheimer's disease warrants further investigation.
  •  
5.
  • Hansen, Christian, et al. (författare)
  • A novel α-synuclein-GFP mouse model displays progressive motor impairment, olfactory dysfunction and accumulation of α-synuclein-GFP.
  • 2013
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 56C:April,30, s. 145-155
  • Tidskriftsartikel (refereegranskat)abstract
    • Compelling evidence suggests that accumulation and aggregation of alpha-synuclein (α-syn) contribute to the pathogenesis of Parkinson's disease (PD). Here, we describe a novel Bacterial Artificial Chromosome (BAC) transgenic model, in which we have expressed wild-type human α-syn fused to green fluorescent protein (GFP), under control of the mouse α-syn promoter. We observed a widespread and high expression of α-syn-GFP in multiple brain regions, including the dopaminergic neurons of the substantia nigra pars compacta (SNpc) and the ventral tegmental area, the olfactory bulb as well as in neocortical neurons. With increasing age, transgenic mice exhibited reductions in amphetamine-induced locomotor activity in the open field, impaired rotarod performance and a reduced striatal dopamine release, as measured by amperometry. In addition, they progressively developed deficits in an odor discrimination test. Western blot analysis revealed that α-syn-GFP and phospho-α-syn levels increased in multiple brain regions, as the mice grew older. Further, we observed, by immunohistochemical staining for phospho-α-syn and in vivo by two-photon microscopy, the formation of α-syn aggregates as the mice aged. The latter illustrates that the model can be used to track α-syn aggregation in vivo. In summary, this novel BAC α-syn-GFP model mimics a unique set of aspects of PD progression combined with the possibility of tracking α-syn aggregation in neocortex of living mice. Therefore, this α-syn-GFP-mouse model can provide a powerful tool that will facilitate the study of α-syn biology and its involvement in PD pathogenesis.
  •  
6.
  • Jensen, Laura, et al. (författare)
  • Cell transplantation in Parkinson's disease: problems and perspectives.
  • 2010
  • Ingår i: Current Opinion in Neurology. - 1473-6551. ; 23, s. 426-432
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE OF REVIEW: We review recent experiments conducted using embryonic tissue and stem cell transplants in experimental models of Parkinson's disease. We also highlight the challenges which remain to be met in order for cell therapy to become clinically effective and safe. RECENT FINDINGS: The outcome of previous clinical transplantation trials was variable in terms of motor recovery. We discuss whether transplants can mitigate L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesias and consider the risk factors which predispose to graft-induced dyskinesias. In addition, we introduce Transeuro, a new European Union-funded multicenter consortium which plans to perform transplantation trials.Stem cells have emerged as an alternative source for the generation of dopaminergic precursors. We briefly outline progress made in the use of human embryonic stem cells and focus predominantly on the emerging field of induced pluripotency. We conclude by introducing the exciting and novel method of direct reprogramming which involves the conversion of fibroblasts to neurons without inducing a pluripotent state. SUMMARY: The area of cell transplantation has been revitalized by the identification of parameters which predispose patients to graft-induced dyskinesias and by the emergence of novel methods of generating dopaminergic neurons. Hopefully, the Transeuro clinical trials will give further impetus and act as a stepping stone to future trials employing stem-cell-derived neurons.
  •  
7.
  •  
8.
  • Petit, Géraldine, et al. (författare)
  • Rasagiline ameliorates olfactory deficits in an alpha-synuclein mouse model of Parkinson's disease.
  • 2013
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Impaired olfaction is an early pre-motor symptom of Parkinson's disease. The neuropathology underlying olfactory dysfunction in Parkinson's disease is unknown, however α-synuclein accumulation/aggregation and altered neurogenesis might play a role. We characterized olfactory deficits in a transgenic mouse model of Parkinson's disease expressing human wild-type α-synuclein under the control of the mouse α-synuclein promoter. Preliminary clinical observations suggest that rasagiline, a monoamine oxidase-B inhibitor, improves olfaction in Parkinson's disease. We therefore examined whether rasagiline ameliorates olfactory deficits in this Parkinson's disease model and investigated the role of olfactory bulb neurogenesis. α-Synuclein mice were progressively impaired in their ability to detect odors, to discriminate between odors, and exhibited alterations in short-term olfactory memory. Rasagiline treatment rescued odor detection and odor discrimination abilities. However, rasagiline did not affect short-term olfactory memory. Finally, olfactory changes were not coupled to alterations in olfactory bulb neurogenesis. We conclude that rasagiline reverses select olfactory deficits in a transgenic mouse model of Parkinson's disease. The findings correlate with preliminary clinical observations suggesting that rasagiline ameliorates olfactory deficits in Parkinson's disease.
  •  
9.
  • Petit, Géraldine, et al. (författare)
  • Review: The future of cell therapies and brain repair: Parkinson's disease leads the way.
  • 2014
  • Ingår i: Neuropathology & Applied Neurobiology. - : Wiley. - 1365-2990 .- 0305-1846. ; 40:1, s. 60-70
  • Forskningsöversikt (refereegranskat)abstract
    • During the past 40 years brain tissue grafting techniques have been used both to study fundamental neurobiological questions and to treat neurological diseases. Motor symptoms of Parkinson's disease are largely due to degeneration of midbrain dopamine neurones. Because the nigrostriatal pathology is relatively focused anatomically, Parkinson's disease is considered the ideal candidate for brain repair by neural grafting and dopamine neurone transplantation for it has led the way in the neural transplantation research field. In this mini-review, we briefly highlight four important areas of development. First, we describe marked functional benefits up to 18 years after transplantation surgery in patients with Parkinson's disease. This is proof-of-principle that, using optimal techniques and patient selection, grafted dopamine neurones can work in humans and the duration of the benefit exceeds placebo effects associated with surgery. Second, we describe that eventually protein aggregates containing α-synuclein, identical to Lewy bodies, develop inside foetal dopamine neurones transplanted to patients with Parkinson's disease. This gives clues about pathogenetic mechanisms operating in Parkinson's disease, and also raises the question whether neural graft function will eventually decline as the result of the disease process. Third, we describe new emerging sources of transplantable dopamine neurones derived from pluripotent stem cells or reprogrammed adult somatic cells. Fourth, we highlight an important European Union-funded multicentre clinical trial involving transplantation of foetal dopamine neurones in Parkinson's disease. We describe the design of this ongoing trial and how it can impact on the overall future of cell therapy in Parkinson's disease.
  •  
10.
  • Rey, Nolwen, et al. (författare)
  • Transfer of human α-synuclein from the olfactory bulb to interconnected brain regions in mice.
  • 2013
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 126:4, s. 555-573
  • Tidskriftsartikel (refereegranskat)abstract
    • α-Synuclein (α-syn) is a protein prevalent in neural tissue and known to undergo axonal transport. Intracellular α-syn aggregates are a hallmark of Parkinson's disease (PD). Braak and collaborators have suggested that in people who are destined to eventually develop PD, α-syn aggregate pathology progresses following a stereotypic pattern, starting in the olfactory bulb (OB) and the gut. α-Synuclein aggregates are postulated to spread to interconnected brain regions over several years. Thus, propagation of the pathology via neural pathways can potentially explain how α-syn aggregates spread in PD. We have now studied if α-syn can transfer from the OB to other brain structures through neural connections, by injecting different molecular species of human α-syn (monomers, oligomers, fibrils) into the OB of wild-type mice. We found that non-fibrillar human α-syn is taken up very quickly by OB neurons. Within minutes to hours, it is also found in neurons in structures connected to the OB. Conversely, when we injected bovine serum albumin used as a control protein, we found that it does not diffuse beyond the OB, is rarely taken up by OB cells, and does not transfer to other structures. Taken together, our results show that OB cells readily take up α-syn, and that monomeric and oligomeric, but not fibrillar, forms of α-syn are rapidly transferred to interconnected structures within the timeframe we explored. Our results support the idea that α-syn can transfer along neural pathways and thereby contribute to the progression of the α-syn-related pathology.
  •  
11.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy